罗伊氏乳酸杆菌(Lactobacillus reuteri) GKD2改善高脂高糖饮食动物模式之血糖调控
Lactobacillus reuteri GKD2 Improves Blood Glucose Regulation in High-Fat and High-Sugar Diet Animal Model
DOI: 10.12677/hjbm.2024.142023, PDF, HTML, XML, 下载: 111  浏览: 154 
作者: 陈雅君, 蔡侑珊, 林诗伟, 陈炎炼:葡萄王生技股份有限公司,台湾 桃园;林静敏:上海葡萄王企业有限公司,上海;陈劲初*:台湾大学食品科技研究所,台湾 台北
关键词: 高脂高糖飲食胰島素瘦體素血糖調節血脂益生菌High-Fat and High-Sugar Diet Insulin Leptin Blood Sugar Regulation Blood Lipids Probiotics
摘要: 葡萄糖耐受不良(impaired glucose tolerance)系指生理对血糖调控能力较差的状态,虽无明显临床症状,却为糖尿病(diabetes)或心血管疾病(cardiovascular diseases)的病变前兆。此阶段往往被忽视,或医疗建议的饮食控制与运动对于此类族群的实施效果有限。益生菌(probiotics)系指对人体机能有益的细菌,可参与人体的生理代谢、肠道菌相调整等,广受市场接受,因此具应用于糖尿病病变前期对策的潜能。本实验以高脂、高糖(high fat-high sugar, HF-HS)的饮食方式诱导C57BL/6JNarl小鼠发生葡萄糖耐受不良的状况,模拟常见之葡萄糖耐受不良成因。HF-HS小鼠分别补充8周低剂量(20.5 mg/kg/day)与高剂量(102.5 mg/kg/day)的罗伊氏乳酸杆菌(Lactobacillus reuteri) GKD2菌粉。在口服葡萄糖耐受性试验(oral glucose toerance test)中,相比单纯HF-HS饮食组,摄入菌株GKD2的HF-HS小鼠,其餐后血糖值有较低的趋势。此外,血糖调节的相关指标瘦体素(leptin)在益生菌组观察到下降的趋势;非空腹的胰岛素(insulin)浓度以高剂量GKD2组呈显著下降(p < 0.05)。血脂方面,益生菌GKD2的补充显著降低血液中总胆固醇(total cholesterol)的含量(p < 0.05)。组织病理学上,观测到较少的脂肪堆积于GKD2组的小鼠肝脏组织。总观以上结果,L. reuteri GKD2有助于高脂高糖饮食者的血糖调控与生理代谢。
Abstract: Impaired glucose tolerance refers to a state of poor physiological ability to regulate blood sugar. Although there are no obvious clinical symptoms, it is a precursor to diabetes or cardiovascular diseases. This stage is often ignored, or medically recommended diet control and exercise have limited effect on this group of people. Probiotics refer to bacteria that are beneficial to human body functions. They can participate in the body’s physiological metabolism and balance the gut microbiota. They are widely accepted by the market and therefore have the potential to be used in early stage countermeasures for diabetes. In this experiment, a high-fat, high-sugar (HF-HS) diet was used to induce glucose intolerance in C57BL/6JNarl mice, simulating the common causes of glucose intolerance. HF-HS mice were supplemented with low-dose (20.5 mg/kg/day) and high-dose (102.5 mg/kg/day) Lactobacillus reuteri GKD2 bacterial powder respectively for 8 weeks. In the oral glucose tolerance test, compared with the simple HF-HS diet group, the postprandial blood glucose levels of HF-HS mice consuming strain GKD2 tended to be lower. In addition, leptin, a related marker of blood sugar regulation, showed a downward trend in the probiotic group; non-fasting insulin concentration showed a significant decrease in the high-dose GKD2 group (p < 0.05). In terms of blood lipids, probiotic GKD2 supplementation significantly reduced the total cholesterol content in the blood (p < 0.05). Histopathologically, less fat accumulation was observed in the liver tissue of mice in the GKD2 group. Taken together, the above results indicated that L. reuteri GKD2 contributes to blood sugar regulation and physiological metabolism in those high-fat and high-sugar diets.
文章引用:陈雅君, 蔡侑珊, 林诗伟, 林静敏, 陈炎炼, 陈劲初. 罗伊氏乳酸杆菌(Lactobacillus reuteri) GKD2改善高脂高糖饮食动物模式之血糖调控[J]. 生物医学, 2024, 14(2): 212-220. https://doi.org/10.12677/hjbm.2024.142023

1. 引言

一般正常饭后血糖值应小于140 mg/dL,若大于200 mg/dL则为糖尿病(diabetes),而介于140 mg/dL与200 mg/dL之间可称为葡萄糖耐受不良(impaired glucose tolerance) [1] 。葡萄糖耐受不良是一种常见的健康问题,其说明生理对血糖调控的状况,虽其状况未达到世界卫生组织(WHO)定义的糖尿病标准,也无明显临床症状,但可视其为发展至糖尿病的前期警讯 [2] [3] [4] 。根据香港中文大学糖尿病及肥胖症研究所(Institute of Diabetes and Obesity, Chinese University of Hong Kong, China)整理的数据指出,葡萄糖耐受不良者在5年内演变成糖尿病病患的几率约有50% [5] 。除外,若不加以控制,亦会增加动脉粥状硬化(atherosclerosis)、冠心病(ischemic heart disease)、中风(stroke)等相关心血管疾病的机率 [6] [7] [8] 。

葡萄糖耐受不良者,除了先天性基因遗传外,大多数与不正常的饮食习惯有关,尤其是高脂、高糖的摄取 [9] [10] [11] 。因此本实验以高脂、高糖的饮食方式诱导小鼠发生葡萄糖耐受不良的状况,模拟临床常见之葡萄糖耐受不良成因 [12] 。透过探讨对人体机能有益的益生菌(probiotics)罗伊氏乳酸杆菌(Lactobacillus reuteri) GKD2作为补充保健品对血糖调控能力的影响,盼能提供葡萄糖耐受不良者更多的健康管理渠道,降低糖尿病、心血管疾病等疾病发生率。

2. 材料与方法

2.1. 菌株来源与培养

罗伊氏乳酸杆菌(Lactobacillus reuteri,新名:Limosilactobacillus reuteri)菌株GKD2分离自健康婴儿的肠道,并寄存于日本生物资源保存及研究中心(Biological Resource Center, NITE, Japan),寄存编号为NITE BP-03700。将菌株GKD2培养于1 L MRS培养基(Difco, BD, USA)中,培养温度为37℃,经16小时培养后,以25℃、5000 rpm (Heraeus Megafuge 40 R, Thermo Fisher Scientific Inc., USA)离心10分钟取得菌泥,混入10%脱脂奶粉,再冷冻干燥而取得活菌菌粉。每克活菌数约1010 CFU。菌粉保存于−20℃备用,供后续动物实验使用。

2.2. 试验动物

6周龄之雄性C57BL/6JNarl小鼠购自国家实验研究院实验动物中心(National Laboratory Animal Center, Taiwan)。试验动物进入鼠房后,皆经一周适应期后,再开始进行试验。动物饲养室之环境设定为温度23℃ ± 2℃、相对湿度50% ± 10%以及12小时的光暗周期。本实验之试验动物经台湾财团法人食品工业发展研究所(Food Industry Research and Development Institute, Taiwan)实验动物照护及使用委员(Institutional Animal Care and Use Committee, IACUC)审核通过(动管字第107-8号)。

2.3. 试验设计与分组

动物适应期后,将一般饲料改以高脂高糖饲料(high fat-high sugar diet, HF-HS)进行喂养(表1)。经4周后,以口服葡萄糖耐受性试验(oral glucose tolerance test, OGTT)确认HF-HS饮食与正常饮食相比,已造成血糖调控失衡后,将血糖调控失衡的HF-HS饮食小鼠取24只进行分组,分为HF-HS饮食组、HF-HS +低剂量菌株GKD2 (GKD2-L)、以及HF-HS + 高剂量菌株GKD2 (GKD2-H),每组8只。分组后之试验小鼠皆持续以HF-HS饮食进行,而益生菌组(GKD2-L、GKD2-H)之小鼠则每日新增菌株GKD2的摄入,持续8周(图1)。菌株GKD2给予小鼠之低、高剂量分别以成人每天摄取100、500 mg做换算。实验动物于第8周进行OGTT了解血糖调控状况,于第9周以剪尾采血进行血糖调控相关指标分析,于第10周牺牲采血、保留脏器,并进行血脂与肝脏组织病理学的分析。

Table 1. Nutritional differences between normal diet and HF-HS diet

表1. 正常饲料与高脂高糖饲料之营养差异

OGTT: oral glucose tolerance test; TG: triglyceride; TC: total cholesterol

Figure 1. Study design

图1. 试验设计

2.4. 口服葡萄糖耐受性试验(Oral Glucose Tolerance Test, OGTT)

小鼠禁食16小时后,自尾端采集空腹(0分钟)状态之血液样本后,管喂葡萄糖溶液(2 g/kg),再分别于葡萄糖溶液进入后30、60及120分钟时采集血液。以Glucosure II血糖机(ApexBio Inc., Taiwan)搭配血糖测试片(葡萄糖氧化酵素法)检测0、30、60、以及120分钟时之血糖浓度。

2.5. 瘦体素与胰岛素分析

于试验第9周以剪尾采血方式收集非禁食之血液样品至含有肝素(heparin 20 IU/ml)的采血管中,立刻混和后置于冰上。以1500 xg,4℃下离心30分钟,分离血浆并保存于−20℃冰箱。血浆中的胰岛素使用市售Mouse Insulin ELISA Kit (KSA448Mu11, Cloud-Clone Corp., USA)搭配分光亮度计进行分析。瘦体素(leptin)分析则使用DuoSet ELISA for Mouse Leptin (DY498, R&D Systems, USA)的检测套组。

2.6. 血脂分析

小鼠禁食16小时后牺牲采血,血液中的总胆固醇(Total Cholesterol, TG)及三酸甘油脂(Triglyceride, TC)分析分别以Abcam (Cambridge, UK)之检测套组Cholestrol/Cholesteryl Ester Ouantification Assay Kit (ab65359)、Triglyceride Quantification Assay Kit (ab65336)依据原厂操作指南进行分析。

2.7. 肝脏组织切片

小鼠牺牲后,取肝脏秤重纪录并制作组织切片。肝脏组织以Hematoxylin & Eosin (H & E)染色,于光学显微镜下观察脂肪肝状况。

2.8. 统计分析

本试验小鼠之体重、摄食量、饮水量以平均值 ± 标准差(mean ± SD)表示,其他分析所得数据则以平均值 ± 平均值标准误差(mean ± SEM)表示。统计分析以Student’s t-test比较高脂高糖组(HF-HS)与益生菌组(GKD2)的组间差异,并以p < 0.05为统计显着。

3. 结果

3.1. HF-HS饮食的血糖调控状况

图2为C57BL/6JNarl小鼠经4周高脂高糖饮食后的血糖调节能力。试验期间我们预留11只正常饮食之小鼠作为正常饮食对照组,以利挑选因饮食问题引起之血糖调节能力差之HF-HS小鼠。以挑选之24只HF-HS小鼠与正常饮食小鼠(n = 11)相比,在葡萄糖摄入后,其血糖明显于30分钟内快速上升,且血糖上升值(0~30 min)与正常组达显着差异(图2)。随后,HF-HS小鼠血糖虽呈现下降趋势,但不论是在葡萄糖摄入后30~60分钟,或是摄入后60~120分钟,其血糖上升值依然显着高于正常饮食组,说明本次试验HF-HS诱导后所挑选之小鼠已具生理代谢问题,尤其是具较差的血糖调节能力。

数据以mean ± SEM呈现。*p < 0.05表示与正常饮食组相比具显着差异。

Figure 2. The oral glucose tolerance after 4 weeks of HF-HS diet

图2. HF-HS饮食4周后(第0周)的口服葡萄糖耐受性

3.2. 菌株GKD2介入HF-HS饮食的血糖调控状况

依据图2结果,将HF-HS小鼠再随机分成三组(n = 8),包含对照的HF-HS组、以及HF-HS饮食且介入益生菌GKD2高(GKD2-H)或低(GKD2-L)剂量两组。分组后的小鼠体重并无显着差异(表2)。试验结束后,除了平均摄食量在GKD2-L组与HF-HS组具统计差异外,其余组别间的平均摄食量、平均饮水量、以及试验结束后之体重并无显着差异。

Table 2. Body weight (g), food intake (g), and water intake (mL) of experimental mice

表2. 试验小鼠之体重(g)、摄食量(g)、以及饮水量(mL)

数据(n = 8)以mean ± SD呈现。*p < 0.05表示与HF-HS组相比具显着差异。

于试验第8周再次进行OGTT检测,结果显示于图3。HF-HS组的空腹血糖为123.4 ± 6.0 mg/dL,与GKD2-L组(104.8 ± 4.5 mg/dL)或GKD2-H组(118.1 ± 4.9 mg/dL)的空腹血糖皆无显着差异。然而当葡萄糖摄入后,HF-HS组在30分钟后量测血糖值为315.4 ± 20.4 mg/dL;低剂量与高剂量益生菌组的血糖值则有较低的趋势,分别为295.9 ± 16.4 mg/dL与271.3 ± 9.0 mg/dL。随后30~120分钟的血糖值虽无组间显着差异,菌株GKD2的介入,仍具减少饮食过程中糖分快速进入血液的趋势意义。

数据(n = 8)以mean ± SEM呈现。*p < 0.05表示与HF-HS组相比具显着差异。

Figure 3. OGTT after 8 weeks of GKD2 consumption

图3. 菌株GKD2介入8周后的口服葡萄糖耐受性

3.3. 血糖调控相关指标分析结果

试验第9周小鼠并未进行禁食,故以取得非空腹的血液样品分析HF-HS饮食下瘦体素(leptin)与胰岛素(insulin)的浓度(图4)。在补充益生菌的组别中,非禁食瘦体素皆有低于HF-HS组的趋势,即便无统计上差异(图4(a))。非禁食胰岛素则在GKD2-L组中观察到与HF-HS组相比较低的趋势,而随着菌株GKD2摄入剂量提高(GKD2-H),可见其显着降低HF-HS饮食下非空腹时期的胰岛素浓度(图4(b))。

(a) (b)数据(n = 8)以mean ± SEM呈现。*p < 0.05表示与HF-HS组相比具显着差异。

Figure 4. Non-fasting leptin (a) and insulin (b) concentration

图4. 非禁食瘦体素(a)与胰岛素(b)浓度

3.4. 总胆固醇与三酸甘油脂浓度

试验第10周小鼠进行禁食并牺牲,收取之血液进行血脂分析(图5)。不论摄入高剂量或是低剂量的GKD2,其总胆固醇(TC)皆显着低于HF-HS组(图5(a));然而三酸甘油脂(TG)则无组间统计差异,仅高剂量的GKD2组有降低的趋势(图5(b))。

(a) (b)数据(n = 8)以mean ± SEM呈现。*p < 0.05表示与HF-HS组相比具显着差异。

Figure 5. TC (a) and TG (b) concentration

图5. 总胆固醇(a)与三酸甘油脂(b)浓度

3.5. 肝脏相对重量与组织病理学

HF-HS、GKD2-L、GKD2-H组的相对肝脏重分别为2.91 ± 0.16%、2.54 ± 0.05%、以及2.70 ± 0.08%。益生菌GKD2补充后,具降低相对肝脏重量的趋势。以肝脏组织切片观察结果可发现,HF-HS饮食下的肝脏组织具有多处脂肪堆积的现象;而菌株GKD2补充下的HF-HS饮食组,其观测到的脂肪堆积状况则较少(图6)。

Figure 6. Liver tissue in HF-HS diet mice

图6. HF-HS饮食小鼠之肝脏组织

4. 讨论

胰岛素(insulin)为一种蛋白质激素,由胰脏β细胞分泌,参与血糖调控,主要作用为增加肝脏和肌肉细胞对葡萄糖的吸收,促进肝醣合成并减少细胞内的葡萄糖释放至血液,达降血糖的作用 [13] 。在第二型糖尿病(type 2 diabetes)的自然发展史中,胰岛素抗性(insulin resistance)会随之增加,意即细胞对正常浓度的胰岛素反应不佳,这可起因于不正常的饮食、肥胖(obesity)等因子,使体内胰岛素持续处于高浓度的状态 [14] [15] 。胰脏β细胞接着分泌更多胰岛素以激发细胞对胰岛素的反应,因此在糖尿病诊断前期(餐后血糖值小于200 mg/dL)会观察到体内胰岛素的增加,随后因胰脏细胞过度分泌而疲乏,导致胰脏细胞数量与功能衰退,胰岛素浓度下降,故长久糖尿病患的胰岛素浓度呈现缺乏状态 [16] 。在HF-HS饮食诱导下类似于糖尿病诊断前期,具有相对高浓度的胰岛素,而菌株GKD2的补充有助于体内胰岛素浓度的调节,减少胰脏细胞过度分泌而疲乏(图4(b))。

瘦体素(leptin)为脂肪细胞(adipocytes)所分泌的一种神经激素(neuroendocrine),可作用于下视丘(hypothalamus)抑制食欲,且具有促进肌肉代谢、燃烧脂肪、血糖稳定等生理调控功能 [17] ;然而其特性与胰岛素相似,当分泌过多时具有阻抗效应(leptin resistance) [18] 。因此,临床上可观察到肥胖者体内的瘦体素比正常人的浓度高 [19] 。在台湾高雄医学大学公共卫生学研究所(Department of Public Health, Kaohsiung Medical University, Taiwan)的一项研究中指出,非糖尿病族群中,瘦体素浓度越高,其胰岛素阻抗的程度也越高 [20] 。HF-HS饮食诱导下的糖尿病前期小鼠试验中,补充菌株GKD2的组别具有降低体内瘦体素的趋势(图4(a)),此趋势也与观察到显著降低的体内胰岛素相符,说明菌株GKD2的摄取具有改善生理代谢机能的潜力,尤其透过影响血糖调控的相关因子,降低HF-HS饮食习惯的餐后血糖不稳定状态(图3)。

体内维持血糖恒定的机制相当复杂,上述体内贺尔蒙透过调节细胞对于葡萄糖的生成与利用来维持血糖恒定,因此血糖调控失调者,其体内也容易有过多能量摄入、堆积的现象,造成肥胖 [21] [22] 。根据研究显示,约有80%~90%的第二型糖尿病患同时具有过重或肥胖的状况,胰岛素阻抗也与血脂呈正相关 [23] [24] 。本试验HF-HS饮食诱导小鼠模式与糖尿病前期状况类似,可观察到脂肪堆积于肝脏组织(图6)。菌株GKD2的摄取,可观察到总胆固醇含量下降(图5(a)),但对于三酸甘油脂的减少效果有限(图5(b))。比对临床常见第二型糖尿病合并血脂异常者,多为三酸甘油脂异常增加,以及高密度胆固醇(high density lipoprotein cholesterol)下降,而低密度胆固醇(low density lipoprotein cholesterol)则与正常人差异不大,因此关于菌株GKD2对于血脂的影响尚需更多的试验确认 [25] 。

5. 结论

本实验以高脂、高糖的饮食方式诱导小鼠发生葡萄糖耐受不良的状况,模拟临床常见之葡萄糖耐受不良成因。藉由8周的益生菌罗伊氏乳酸杆菌(Lactobacillus reuteri) GKD2补充介入,高脂、高糖饮食下所造成的葡萄糖耐受不良小鼠,其餐后血糖上升值有下降的趋势。经血糖调节因子分析数据结果,推论菌株GKD2可藉由调节宿主胰岛素分泌量达调节血糖的作用。且菌株GKD2的补充可降低体内总胆固醇含量与减少脂肪于肝组织的推积,降低心血管的发生率。针对因饮食引起之血糖耐受不良者,在饮食控制或运动治疗方针外,补充L. reuteri GKD2可为改善生理代谢机能之一对策。

NOTES

*通讯作者。

参考文献

[1] Rao, S.S., Disraeli, P. and McGregor, T. (2004) Impaired Glucose Tolerance and Impaired Fasting Glucose. American Family Physician, 69, 1961-1968.
[2] World Health Organization (1999) Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications: Report of a WHO Consultation. Part 1, Diagnosis and Classification of Diabetes Mellitus (No. WHO/NCD/NCS/99.2). Geneva.
[3] Weiss, R., Dufour, S., Taksali, S.E., Tamborlane, W.V., Petersen, K.F., Bonadonna, R.C., Boselli, L., Barbetta, G., Allen, K., Rife, F., Savoye, M., Dziura, J., Sherwin, R., Shulman, G.I. and Caprio, S. (2003) Prediabetes in Obese Youth: A Syndrome of Impaired Glucose Tolerance, Severe Insulin Resistance, and Altered Myocellular and Abdominal Fat Partitioning. The Lancet, 362, 951-957.
https://doi.org/10.1016/S0140-6736(03)14364-4
[4] Bock, G., Dalla Man, C., Campioni, M., Chittilapilly, E., Basu, R., Toffolo, G., Cobelli, C. and Rizza, R. (2006) Pathogenesis of Pre-Diabetes: Mechanisms of Fasting and Postprandial Hyperglycemia in People with Impaired Fasting Glucose and/or Impaired Glucose Tolerance. Diabetes, 55, 3536-3549.
https://doi.org/10.2337/db06-0319
[5] Ko, G.T., Li, J.K., Cheung, A.Y. and Yeung, V.T. (1999) Two-Hour Post-Glucose Loading Plasma Glucose Is the Main Determinant for the Progression from Impaired Glucose Tolerance to Diabetes in Hong Kong Chinese. Diabetes Care, 22, 2096-2097.
https://doi.org/10.2337/diacare.22.12.2096
[6] Gong, Q., Zhang, P., Wang, J., Ma, J., An, Y., Chen, Y., Zhang, B., Feng, X., Li, H., Chen, X., Cheng, Y.J., Gregg, E.W., Hu, Y., Bennett, P.H. and Li, G. (2019) Morbidity and Mortality after Lifestyle Intervention for People with Impaired Glucose Tolerance: 30-Year Results of the Da Qing Diabetes Prevention Outcome Study. The Lancet Diabetes & Endocrinology, 7, 452-461.
https://doi.org/10.1016/S2213-8587(19)30093-2
[7] Cai, X., Zhang, Y., Li, M., Wu, J.H., Mai, L., Li, J., Yang, Y., Hu, Y. and Huang, Y. (2020) Association between Prediabetes and Risk of All Cause Mortality and Cardiovascular Disease: Updated Meta-Analysis. BMJ, 370, m2297.
https://doi.org/10.1136/bmj.m2297
[8] Neves, J.S., Newman, C., Bostrom, J.A., Buysschaert, M., Newman, J.D., Medina, J.L., Goldberg, I.J. and Bergman, M. (2022) Management of Dyslipidemia and Atherosclerotic Cardiovascular Risk in Prediabetes. Diabetes Research and Clinical Practice, 190, Article 109980.
https://doi.org/10.1016/j.diabres.2022.109980
[9] Feskens, E.J., Virtanen, S.M., Räsänen, L., Tuomilehto, J., Stengard, J., Pekkanen, J., Nissinen, A. and Kromhout, D. (1995) Dietary Factors Determining Diabetes and Impaired Glucose Tolerance: A 20-Year Follow-Up of the Finnish and Dutch Cohorts of the Seven Countries Study. Diabetes Care, 18, 1104-1112.
https://doi.org/10.2337/diacare.18.8.1104
[10] Saxena, R., Hivert, M.F., Langenberg, C., et al. (2010) Genetic Variation in GIPR Influences the Glucose and Insulin Responses to an Oral Glucose Challenge. Nature Genetics, 42, 142-148.
https://doi.org/10.1038/ng.521
[11] Crapo, P.A., Kolterman, O.G. and Olefsky, J.M. (1980) Effects of Oral Fructose in Normal, Diabetic, and Impaired Glucose Tolerance Subjects. Diabetes Care, 3, 575-581.
https://doi.org/10.2337/diacare.3.5.575
[12] La Fleur, S., Luijendijk, M.C.M., Van Rozen, A.J., Kalsbeek, A. and Adan, R.A.H. (2011) A Free-Choice High-Fat High-Sugar Diet Induces Glucose Intolerance and Insulin Unresponsiveness to a Glucose Load Not Explained by Obesity. International Journal of Obesity, 35, 595-604.
https://doi.org/10.1038/ijo.2010.164
[13] Rahman, M.S., Hossain, K.S., Das, S., Kundu, S., Adegoke, E.O., Rahman, M.A., Hannan, M.A., Uddin, M.J. and Pang, M.G. (2021) Role of Insulin in Health and Disease: An Update. International Journal of Molecular Sciences, 22, Article 6403.
https://doi.org/10.3390/ijms22126403
[14] Abdul-Ghani, M.A., Tripathy, D. and Defronzo, R.A. (2006) Contributions of β-Cell Dysfunction and Insulin Resistance to the Pathogenesis of Impaired Glucose Tolerance and Impaired Fasting Glucose. Diabetes Care, 29, 1130-1139.
https://doi.org/10.2337/dc05-2179
[15] Cañete, R., Gil-Campos, M., Aguilera, C.M. and Gil, A. (2007) Development of Insulin Resistance and Its Relation to Diet in the Obese Child. European Journal of Nutrition, 46, 181-187.
https://doi.org/10.1007/s00394-007-0648-9
[16] Tanenberg, R.J. (2004) Transitioning Pharmacologic Therapy from Oral Agents to Insulin for Type 2 Diabetes. Current Medical Research and Opinion, 20, 541-553.
https://doi.org/10.1185/030079903125003134
[17] Obradovic, M., Sudar-Milovanovic, E., Soskic, S., Essack, M., Arya, S., Stewart, A.J., Gojobori, T. and Isenovic, E.R. (2021) Leptin and Obesity: Role and Clinical Implication. Frontiers in Endocrinology, 12, Article 585887.
https://doi.org/10.3389/fendo.2021.585887
[18] Gruzdeva, O., Borodkina, D., Uchasova, E., Dyleva, Y. and Barbarash, O. (2019) Leptin Resistance: Underlying Mechanisms and Diagnosis. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 191-198.
https://doi.org/10.2147/dmso.s182406
[19] Kumar, R., Mal, K., Razaq, M.K., Magsi, M., Memon, M.K., Memon, S., Afroz, M.N., Siddiqui, H.F. and Rizwan, A. (2020) Association of Leptin with Obesity and Insulin Resistance. Cureus, 12, e12178.
https://doi.org/10.7759/cureus.12178
[20] Lee, C.Y. (2007) Relationship between Adipocytokines and Insulin Resistance in Non-Diabetic Women. Master’s Thesis, Kaohsiung Medical University, Kaohsiung.
[21] Johnson, J.D. (2021) On the Causal Relationships between Hyperinsulinaemia, Insulin Resistance, Obesity and Dysglycaemia in Type 2 Diabetes. Diabetologia, 64, 2138-2146.
https://doi.org/10.1007/s00125-021-05505-4
[22] London, E. and Stratakis, C.A. (2022) The Regulation of PKA Signaling in Obesity and in the Maintenance of Metabolic Health. Pharmacology & Therapeutics, 237, Article 108113.
https://doi.org/10.1016/j.pharmthera.2022.108113
[23] Nianogo, R.A. and Arah, O.A. (2022) Forecasting Obesity and Type 2 Diabetes Incidence and Burden: The ViLA-Obesity Simulation Model. Frontiers in Public Health, 10, Article 818816.
https://doi.org/10.3389/fpubh.2022.818816
[24] Cui, J., Sun, J., Wang, W., Xin, H., Qiao, Q., Baloch, Z. and Ma, A. (2017) The Association of Triglycerides and Total Cholesterol Concentrations with Newly Diagnosed Diabetes in Adults in China. Oncotarget, 8, Article 103477.
https://doi.org/10.18632/oncotarget.21969
[25] Ren, X., Chen, Z.A., Zheng, S., Han, T., Li, Y., Liu, W. and Hu, Y. (2016) Association between Triglyceride to HDL-C Ratio (TG/HDL-C) and Insulin Resistance in Chinese Patients with Newly Diagnosed Type 2 Diabetes Mellitus. PLOS ONE, 11, e0154345.
https://doi.org/10.1371/journal.pone.0154345