心房纤维化在房颤复发中的研究新进展
New Research Progress of Atrial Fibrosis in the Recurrence of Atrial Fibrillation
DOI: 10.12677/acm.2024.1441096, PDF, HTML, XML, 下载: 33  浏览: 55 
作者: 韩 莹, 张 娟*:山东大学第二医院心血管内科,山东 济南
关键词: 心房纤维化心房颤动复发Atrial Fibrosis Atrial Fibrillation Recurrence
摘要: 心房颤动(房颤)是目前临床上最常见的心律失常,随着我国老龄化问题日益加剧,房颤的患病率也呈现随年龄增长而上升的趋势。房颤发生发展的关键环节是心房解剖结构重塑和电生理机制的异常,而心房纤维化参与房颤的结构重塑和电重塑,是房颤发生和发展的病理基础。导管消融术已经成为房颤的一线治疗方法,但房颤术后存在复发现象。心房纤维化在房颤复发中有着举足轻重的作用,因此早期干预心房纤维化可能对房颤的预防、治疗及减少射频消融术后复发起到一定的作用。现对心房纤维化在房颤复发中的研究进展作一系统综述,为房颤术后复发的治疗找到更新的治疗靶点。
Abstract: Atrial fibrillation (AF) is the most common arrhythmia in clinic at present. With the increasing aging problem in China, the prevalence rate of AF increases with age. The key link in the occurrence and development of atrial fibrillation is atrial anatomical remodeling and abnormal electrophysiological mechanism, and atrial fibrosis is involved in structural remodeling and electrical remodeling of atrial fibrillation, which is the pathological basis of the occurrence and development of atrial fibrillation. Catheter ablation has become the first-line treatment of atrial fibrillation, but there is recurrence after atrial fibrillation. Atrial fibrosis plays an important role in recurrence, so early intervention of atrial fibrosis may play a certain role in the prevention and treatment of atrial fibrillation and reducing recurrence after radiofrequency ablation. This paper systematically reviews the research progress of atrial fibrosis in the recurrence of atrial fibrillation, in order to find a new therapeutic target for the treatment of recurrent atrial fibrillation after operation.
文章引用:韩莹, 张娟. 心房纤维化在房颤复发中的研究新进展[J]. 临床医学进展, 2024, 14(4): 835-840. https://doi.org/10.12677/acm.2024.1441096

1. 引言

房颤是全球最常见的心律失常之一,据估计其患病率在过去20年中已增加33%,随着全球人口老龄化和慢性病生存率的提升,预计未来30年房颤发病率及患病率将持续上升,预计2050年房颤负担可能会增加60%,这对社会健康和经济将构成严重挑战 [1] 。房颤发生发展的关键环节为心房的重塑,可分为电重塑、结构重塑和自主神经重塑。心房纤维化指成纤维细胞的异常活化、增殖及分化,并伴有心肌细胞外基质(ECM)蛋白的过度沉积和合成 [2] 。心房纤维化是房颤的重要病理改变,与心脏结构和功能的异常紧密相关,参与房颤的电重塑和结构重塑,为心房重塑的主要环节,纤维化程度的增加还会导致心房电生理特性发生改变,从而增加房颤的风险和复发率。因此,在房颤的治疗中,早期评估并干预治疗心房纤维化对于疾病管理具有关键意义。

2. 房颤的病理生理学

房颤是多种因素共同作用的结果,其主要表现为心房电活动紊乱。既往相关研究表明,房颤复杂的电生理及病理生理机制研究已存在普遍共识,其可描述为引发心律不齐的触发器、维持房颤发生发展的纤维化基质和通过多种潜在机制发挥作用的各种调制器 [3] 。房颤的发展和维持均需要触发和易感的基质,触发因素主要由源自肺静脉口的异位放电引起,这是由于钙稳态或自主神经激活的变化所致,可以触发涉及早期后去极化(EAD)和延迟后去极化(DAD)的活动,这些异位放电可通过过早的心房电激活来引发房颤 [4] 。房颤基质在维持房颤发生发展方面扮演着不可或缺的角色,其中左心房结构的重塑,特别是心房间质纤维化,被视为导致心律失常的主要因素。许多心房纤维化的动物模型证明,心房纤维化可引发局部传导障碍和传导阻滞,从而提高了重入回路的发生风险,并增加了房颤的易感性 [5] 。孤立性阵发性房颤患者的正常心房整体外观中可呈现弥漫性或斑片状的纤维化 [6] ,而心房性心动过速可产生ECM积聚 [7] ,说明心房纤维化既是房颤的触发因素,也是房颤的结果,在房颤发生和持续发展中存在关键作用。

3. 房颤中心房纤维化的类型及机制

根据组织病理学,心房心肌纤维化的类型可分为修复性纤维化、反应性纤维化和血管周围组织纤维化 [8] 。修复性纤维化指死亡的心肌细胞被细胞外基质组织和成纤维细胞替代,这改变了心肌肌束的结构,并破坏了电传导 [9] 。反应性纤维化为细胞外基质异常积聚导致的肌内膜和肌周围组织间隙扩张,血管周围纤维化是微血管外膜的扩张,这两种类型的纤维化可能是长期纤维化刺激的结果,并没有从根本上改变心肌肌束的结构。房颤患者的左心房中可能同时存在反应性纤维化和修复性纤维化。

纤维化本质为ECM的沉积和变化,其中最关键的步骤是激活心脏中的成纤维细胞并将其转化为肌成纤维细胞,肌成纤维细胞的作用为增强ECM沉积及减弱ECM降解,导致纤维化形成。ECM作为心脏中的非细胞组分,包括多种基质蛋白,主要有胶原蛋白、细胞纤连蛋白和基底膜蛋白如层黏连蛋白等。胶原蛋白为人体中最丰富的蛋白质,占心脏ECM的85% [10] ,其中I型和III型胶原含量最高且与纤维化密切相关。

纤维化是通过多种途径激活并相互作用的结果,而房颤本身也可使多种信号通路参与心房纤维化形成 [11] 。目前经研究,主要心房纤维化途径有肾素–血管紧张素–醛固酮系统(RAAS)、PI3K/Akt和MAPK信号通路、核转录因子-κB信号通路。此外多种细胞因子的改变,如转化生长因子-β (transforming growth factor-β, TGF-β)、基质金属蛋白酶(MMPs)、金属蛋白酶组织抑制因子(TIMP)以及结缔组织生长因子等均参与心房纤维化的进程。

炎症和氧化应激是心房颤动的中枢介质,可加重心脏重塑并促进心房颤动的发生 [12] 。心脏损伤后,炎症信号分子会迅速增加,单核细胞和巨噬细胞是主要的炎性因子来源,它们会释放大量的促炎介质。其中,C反应蛋白(C-reactive protein, CRP)、肿瘤坏死因子-α (TNF-α)、白介素-6 (IL-6)和白介素-1 (IL-1)是常见的炎性细胞因子。这些炎性细胞因子可与上述激动纤维化的途径有协同作用。

4. 可预测房颤复发的心房纤维化指标

房颤本身可促进心房的重塑,引发并维持房颤的发生及发展,形成恶性循环,因此有必要进行早期的诊断并干预心房的纤维化以减少房颤的复发。下面将简单介绍近几年可预测房颤复发的心房纤维化指标物在房颤治疗中的研究进展。

4.1. 血液标志物

血液检测临床上多见且较易检测,可协同多种指标共同预测房颤复发。目前的临床研究表明,炎症反应在房颤的发生发展及心房纤维化中起着关键作用,炎症的循环标志物,如CRP和IL-6可作为房颤发作及射频消融术后房颤复发的生物标志物 [13] 。近几年临床研究不断进步深入,几种新型血液标志物被发现与房颤复发有密切相关性。可溶性致癌因子2 (soluble suppression of tumorigenicity 2, sST2)是IL-1受体家族的成员,通过炎症相关的通路参与纤心房纤维化及重塑 [14] ,并可反映纤维化的严重程度 [15] 。Chen等 [16] 进行的一项meta分析显示,复发的房颤患者sST2明显高于未复发患者,sST2每增加一个单位,房颤发生和复发的风险分别增加4%和9%。Tan等 [17] 进行的回顾性分析表明,sST2可预测持续性房颤患者射频消融术后的复发,ROC分析示sST2 ≥ 39.25 ng/ml的患者在术后1年内复发的可能性更大。半乳糖凝集-3 (Galectin-3)参与房颤炎症和组织纤维化过程。心房纤维化严重程度与低压区(LVA)相关。Aksan等 [18] 发现,在阵发性房颤患者中,中度及重度LVA患者的Gal-3水平高于轻度LVA患者。Hernández-Romero等 [19] 研究发现,Gal-3是房颤纤维化的独立预测因子。Ruan等 [20] 人分析153例患者射频消融术前Gal-3水平,术后房颤复发患者较未复发患者高,Gal-3可被认为是房颤术后复发的独立预测因子。脂多糖(LPS)为革兰氏阴性细菌的细胞壁成分,可通过提高炎性细胞因子的表达水促进房颤的发生,并激活心房NLRP3炎症小体促进心房的纤维化 [21] 。Wang等 [22] 研究表明,LPS与IL-6和hs-CRP显著相关,并可独立预测房颤术后复发。心外膜脂肪组织(EAT)通过主动分泌脂肪因子及多种促炎细胞因子参与房颤,其中C1q肿瘤坏死因子相关蛋白3 (CTRP3)与脂肪酸结合蛋白4 (fatty acid binding tissue, FABP4)为房颤消融术后复发的有效预测指标 [23] [24] 。

4.2. 左心房相关指标

心房压力和/或容量负荷过重、炎症及氧化应激、有害的代谢终产物等刺激心房,使心房结构产生适应性的改变,最终可导致心房结构重塑及电重塑而引发房颤。左心室结构重塑是间质纤维化增加的结果,间质纤维化导致心脏结构改变,表现为左心室扩张。LA纤维化是AF发生和维持的基础,与消融术后AF的复发密切相关。LVA代表了左心房结构改变的电生理表现,也代表了纤维化。Ikoma等 [25] 回顾性分析了359例行射频消融房颤患者,分析结果为患者的年龄、持续性房颤以及较大的左心房体积都预测着LVA存在。Masuda等 [26] 对147例阵发性房颤患者随访发现多次行射频消融术后LVA患者术后复发率显著高于无LVA患者,这表明了LVA与房颤复发独立相关。多项研究已经表明 [27] [28] ,左心房的前后径、直径为房颤术后复发的预测因素。我们可通过左心房相关指标来预测房颤术后复发,进行患者个体化评估,比如在手术前预测LVA的存在及面积有助于规划合适的手术方法,以减少术后房颤的复发。

4.3. 心电图相关参数

心电图是一种简单、非侵入性且应用最广泛的临床心脏检查,可识别代表电解剖异常的参数,这些异常可能预测房颤的发生与复发,但目前在临床实践中未得到充分地利用。心电图中P波指心房的活动,代表心房电活动的激活及传导路径。P波持续时间(PWD)的延长,与房颤患者心房纤维化形成密切相关 [29] 。Miao等 [30] 人证明,术后测量的PWD与房颤复发风险呈正相关,术后PWD ≥ 125 ms是预测复发的临界值。Creta等 [31] 研究显示,在持续性房颤及长程持续性房颤患者中,与APW < 150 ms的患者相比,APW ≥ 150 ms的患者消融后复发率显著更高,APW ≥ 150 ms是消融后房颤复发的唯一独立预测因子。P波离散度(PD)为12导联心电图中各导联测定的P波最长持续时间和最短时间的差值,反映了心房内有不均一的电活动。Marks等 [32] 研究表明PD高者有助于筛查出房颤高风险人群,PD > 40 ms是房颤唯一独立预测因子。

5. 总结及展望

随着我国老龄化日益加重,房颤发病率也逐年增加,房颤导管消融术作为目前房颤患者首选治疗手段迅速发展,也逐渐体现出术后房颤复发率高的缺点。房颤中左心房重构的病理特点早期表现为以电生理和离子通道特征发生变化的电重构,而随着时间推移,出现心房肌和细胞外基质的纤维化、淀粉样变、细胞凋亡等组织结构改变,进而形成结构性重构,最终导致间质纤维化及左心房增大,因此及时对左心房纤维化及严重程度做出诊断尤为重要,最关键的还是对于导管消融术后房颤复发的预防、争取使复发率降到最低,这就需要对房颤的发生机制进行更深层次的研究。对于可导致房颤消融术后复发的相关因素进行准确的预测,在临床工作中,这有助于对高危人群进行早期识别,从而采取相关的预防措施。

NOTES

*通讯作者。

参考文献

[1] Lippi, G., Sanchis-Gomar, F. and Cervellin, G. (2020) Global Epidemiology of Atrial Fibrillation: An Increasing Epidemic and Public Health Challenge. International Journal of Stroke, 16, 217-221.
https://doi.org/10.1177/1747493019897870
[2] Ding, Y., Wang, Y., Zhang, W., et al. (2024) Roles of Biomarkers in Myocardial Fibrosis. Aging and Disease, 11, 1157-1174.
https://doi.org/10.14336/AD.2020.0604
[3] Benjamin, E.J., et al. (2017) Atrial Fibrillation Epidemiology, Pathophysiology, and Clinical Outcomes. Circulation Research: A Journal of the American Heart Association, 120, 1501-1517.
[4] Chen, B. and Frangogiannis, N.G. (2021) Chemokines in Myocardial Infarction. Journal of Cardiovascular Translational Research, 14, 35-52.
https://doi.org/10.1007/s12265-020-10006-7
[5] Bernstein, K.E. (2004) Mice with Cardiac-Restricted Angiotensin-Converting Enzyme (ACE) Have Atrial Enlargement, Cardiac Arrhythmia, and Sudden Death. American Journal of Pathology, 165, 1019-1032.
https://doi.org/10.1016/S0002-9440(10)63363-9
[6] Frustaci, A., Chimenti, C., Bellocci, F., et al. (1997) Histological Substrate of Atrial Biopsies in Patients with Lone Atrial Fibrillation. Circulation, 96, 1180-1184.
https://doi.org/10.1161/01.CIR.96.4.1180
[7] Burstein, B. and Nattel, S. (2008) Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation. Journal of the American College of Cardiology, 51, 802-809.
https://doi.org/10.1016/j.jacc.2007.09.064
[8] Yao, C., Veleva, T., Scott, L., et al. (2018) Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation, 138, 2227-2242.
[9] Li, G.L., Yang, J., Zhang, D.M., et al. (2022) Research Progress of Myocardial Fibrosis and Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 9, Article ID: 889706.
[10] Kallergis, E.M., Manios, E.G., Kanoupakis, E.M., et al. (2008) Extracellular Matrix Alterations in Patients with Paroxysmal and Persistent Atrial Fibrillation: Biochemical Assessment of Collagen Type-I Turnover. Journal of the American College of Cardiology, 52, 211-215.
https://doi.org/10.1016/j.jacc.2008.03.045
[11] Chang, Y.L., Jing, R.Z., Wan, N.H., et al. (2021) Atrial Fibrosis Underlying Atrial Fibrillation (Review). International Journal of Molecular Medicine, 47, Article No. 9.
https://doi.org/10.3892/ijmm.2020.4842
[12] Karam, B.S., Chavez-Moreno, A., Koh, W., et al. (2017) Oxidative Stress and Inflammation as Central Mediators of Atrial Fibrillation in Obesity and Diabetes. Cardiovascular Diabetology, 16, Article No. 120.
https://doi.org/10.1186/s12933-017-0604-9
[13] Branimir, P., Janko, S., Aleksandar, B., et al. (2023) The N-Glycosylation of Total Plasma Proteins and IgG in Atrial Fibrillation. Biomolecules, 13, Article No. 605.
https://doi.org/10.3390/biom13040605
[14] Pascual-Figal, D.A. and Januzzi, J.L. (2015) The Biology of ST2: The International ST2 Consensus Panel. American Journal of Cardiology, 115, 3B-7B.
https://doi.org/10.1016/j.amjcard.2015.01.034
[15] Liu, Y., Niu, X.H., Yin, X., et al. (2018) Elevated Circulating Fibrocytes Is a Marker of Left Atrial Fibrosis and Recurrence of Persistent Atrial Fibrillation. Journal of the American Heart Association, 7, e008083.
https://doi.org/10.1161/JAHA.117.008083
[16] Aimo, A., Vergaro, G., Passino, C., et al. (2016) Prognostic Value of Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure: A Meta-Analysis. JACC: Heart Failure, 5, 280-286.
https://doi.org/10.1016/j.jchf.2016.09.010
[17] Tan, R., Yu, H., Han, X., et al. (2021) Circulating Soluble Suppression of Tumorigenicity 2 Predicts Recurrence after Radiofrequency Ablation of Persistent Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 8, Article ID: 653312.
[18] Gökhan, A., Ahmet, Y., Can, O.Y., et al. (2022) The Predictive Value of Galectin-3 Levels on Left Atrial Low Voltage Areas Assessed by High-Density Mapping in Patients with Paroxysmal Atrial Fibrillation. Journal of Arrhythmia, 38, 353-362.
https://doi.org/10.1002/joa3.12703
[19] Hernández-Romero, D., Vílchez, J.A., Lahoz, Á., et al. (2017) Galectin-3 as a Marker of Interstitial Atrial Remodelling Involved in Atrial Fibrillation. Scientific Reports, 7, Article No. 40378.
https://doi.org/10.1038/srep40378
[20] Ruan, Z.-B., Gao, R.-F., Wang, F., et al. (2022) Circulating Galectin-3 and Aldosterone for Predicting Atrial Fibrillation Recurrence after Radiofrequency Catheter Ablation. Cardiovascular Therapeutics, 2022, Article ID: 6993904.
https://doi.org/10.1155/2022/6993904
[21] Zhang, Y., Zhang, S., Li, B.L., et al. (2022) Gut Microbiota Dysbiosis Promotes Age-Related Atrial Fibrillation by Lipopolysaccharide and Glucose-Induced Activation of NLRP3-Inflammasome. Cardiovascular Research, 118, 785-797.
https://doi.org/10.1093/cvr/cvab114
[22] Wang, M., Xiong, H., Lu, L., et al. (2022) Serum Lipopolysaccharide Is Associated with the Recurrence of Atrial Fibrillation after Radiofrequency Ablation by Increasing Systemic Inflammation and Atrial Fibrosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2405972.
https://doi.org/10.1155/2022/2405972
[23] Wang, Z., Liang, C., Gao, Y.F., et al. (2022) Predictive Value of CTRP3 for the Disease Recurrence of Atrial Fibrillation Patients after Radiofrequency Ablation. American Journal of Translational Research, 14, 1892-1900.
[24] Nicolás, J.L., Marinela, C., Teba, G., et al. (2022) The Role of Fatty Acid-Binding Protein 4 in the Characterization of Atrial Fibrillation and the Prediction of Outcomes after Catheter Ablation. International Journal of Molecular Sciences, 23, Article No. 11107.
https://doi.org/10.3390/ijms231911107
[25] Takenori, I., Yoshihisa, N., Yutaro, K., et al. (2022) Pre-Procedural Predictors of Left Atrial Low-Voltage Zones in Patients Undergoing Catheter Ablation of Atrial Fibrillation. PLOS ONE, 17, e0266939.
https://doi.org/10.1371/journal.pone.0266939
[26] Mitran, E.R., Fotea, P.M.N., Iorgulescu, C., et al. (2023) Left Atrial Low-Voltage Areas Predict the Risk of Atrial Fibrillation Recurrence after Radiofrequency Ablation. Biomedicines, 11, Article No. 3261,
https://doi.org/10.3390/biomedicines11123261
[27] Antonio, B., David, T., Lluis, M., et al. (2007) Pre-Procedural Predictors of Atrial Fibrillation Recurrence after Circumferential Pulmonary Vein Ablation. European Heart Journal, 28, 836-841.
https://doi.org/10.1093/eurheartj/ehm027
[28] Laura, U., Andreas, B., Benjamin, M.S., et al. (2013) Genetic ACE I/D Polymorphism and Recurrence of Atrial Fibrillation after Catheter Ablation. Circulation. Arrhythmia and Electrophysiology, 6, 732-737.
https://doi.org/10.1161/CIRCEP.113.000253
[29] Luisa, C., Vanesa, B., Manuel, M., et al. (2020) Association between Interatrial Block, Left Atrial Fibrosis, and Mechanical Dyssynchrony: Electrocardiography-Magnetic Resonance Imaging Correlation. Journal of Cardiovascular Electrophysiology, 31, 1719-1725.
https://doi.org/10.1111/jce.14608
[30] Miao, Y.X., Xu, M., Yang, L., et al. (2021) Investigating the Association between P Wave Duration and Atrial Fibrillation Recurrence after Radiofrequency Ablation in Early Persistent Atrial Fibrillation Patients. International Journal of Cardiology, 351, 48-54.
[31] Antonio, C., Sandrine, V., Konstantinos, T., et al. (2023) Amplified Sinus-P-Wave Analysis Predicts Outcomes of Cryoballoon Ablation in Patients with Persistent and Long-Standing Persistent Atrial Fibrillation: A Multicentre Study. Frontiers in Cardiovascular Medicine, 10, Article ID: 1110165.
[32] Daniel, M., Rady, H., Ryna, T., et al. (2020) Real-World Experience with Implantable Loop Recorder Monitoring to Detect Subclinical Atrial Fibrillation in Patients with Cryptogenic Stroke: The Value of P Wave Dispersion in Predicting Arrhythmia Occurrence. International Journal of Cardiology, 327, 86-92.
https://doi.org/10.1016/j.ijcard.2020.11.019