基于常规MRI特征的脑胶质瘤IDH1基因型预测模型的建立与验证
Establishment and Validation of a Predictive Model for IDH1 Genotype in Gliomas Based on Conventional MRI Features
DOI: 10.12677/acm.2024.1441090, PDF, HTML, XML, 下载: 50  浏览: 80 
作者: 李吉贤, 张 华, 刘学军*:青岛大学附属医院放射科,山东 青岛
关键词: 磁共振成像胶质瘤异柠檬酸脱氢酶1列线图Magnetic Resonance Imaging Glioma Isocitrate Dehydrogenase-1 Nomogram
摘要: 目的:基于常规MRI特征构建脑胶质瘤异柠檬酸脱氢酶1 (isocitrate dehydrogenase 1, IDH1)基因型的预测模型,并对模型进行验证。方法:回顾性分析254例脑胶质瘤患者的临床资料及术前MRI图像,采用随机分组的方法按约7:3比例分为训练集(n = 177)和验证集(n = 77)。收集其影像学特征,使用单因素分析、多因素逐步回归分析筛选特征后建立Logistic回归预测模型。采用受试者工作特征(receiver operating characteristic, ROC)曲线下面积(area under curve, AUC)检验模型的预测效能,并采用Hosmer-Lemeshow检验模型的拟合优度,同时绘制校准曲线及决策曲线。结果:单因素分析与多因素逐步回归分析显示T2-Flair错配、强化特点、皮层侵犯3个变量差异有统计学意义,采用3个MR特征构建多因素Logistic预测模型并进行验证,结果显示该模型在训练集和验证集的AUC分别为0.832和0.828,Hosmer-Lemeshow检验结果显示模型具有良好的拟合度(训练集χ2 = 4.568,p = 0.335,验证集χ2 = 2.744,p = 0.433),校准曲线显示模型的校准度较好,决策曲线分析表明模型具有较高的净收益。结论:基于常规MRI特征构建的预测模型可有效预测脑胶质瘤IDH1基因型。
Abstract: Objective: To develop and validate a predictive model for the genotype of isocitrate dehydrogenase 1 (IDH1) in gliomas based on MRI features. Methods: The clinical and preoperative MRI data of 254 patients with glioma were analyzed retrospectively. All patients were randomly divided into a training set (n = 177) and a validation set (n = 77) according to a ratio of 7:3. Imaging features were collected and utilized to establish a Logistic regression predictive model, following feature selection through univariate analysis and multivariate stepwise regression analysis. The model’s predictive performance was assessed using the area under the receiver operating characteristic (ROC) curve (AUC) and the Hosmer-Lemeshow test for goodness of fit, along with the generation of calibration and decision curves. Results: Univariate and multivariate stepwise regression analyses revealed statistically significant differences in three variables: T2-Flair mismatch sign, enhancement pattern, and cortical invasion. A multivariate Logistic predictive model was constructed using these three MRI features and subsequently validated. The results demonstrated that the model achieved AUCs of 0.832 and 0.828 in the training and validation sets, respectively. The Hosmer-Lemeshow test indicated a good model fit (training set χ2 = 4.568, p = 0.335; validation set χ2 = 2.744, p = 0.433). Calibration curves showed that the model was well-calibrated, and decision curve analysis indicated that the model had a high net benefit. Conclusion: The predictive model based on MRI features can effectively predict the IDH1 genotype in gliomas.
文章引用:李吉贤, 张华, 刘学军. 基于常规MRI特征的脑胶质瘤IDH1基因型预测模型的建立与验证[J]. 临床医学进展, 2024, 14(4): 787-796. https://doi.org/10.12677/acm.2024.1441090

1. 引言

胶质瘤是最常见的中枢神经系统原发性恶性肿瘤,具有较高的发病率和极高的复发率与死亡率 [1] 。自2016年《世界卫生组织中枢神经系统肿瘤分类》更新以来,分子诊断指标已成为脑肿瘤诊断的一部分,特别是IDH基因 [2] [3] 。研究表明,IDH1/2基因突变的脑胶质瘤患者通常具有更好的预后 [4] ,但IDH2基因突变频率较低,因此临床工作中一般以检测IDH1基因突变为主。

由于具有便捷、无创等优点,MRI检查现已成为胶质瘤术前诊断、术后监测及预后评估的重要手段 [5] ,通过术前MRI判断胶质瘤的IDH1基因型,可以更好的辅助临床医生完善治疗方案、药物选择及预后判断。近年来,已有多项国内外研究探索通过MRI以无创的方式术前预测脑胶质瘤IDH1突变状态,主要集中在人工智能及MRI新技术领域 [6] [7] [8] [9] ,然而,此类研究目前仍处于探索阶段,现阶段仍未应用于临床,临床工作中胶质瘤的术前评估仍然依赖于常规MRI。T2/FLAIR错配征是近年来发现的在常规MRI中易于识别的一种影像学征象,此征象对胶质瘤IDH1预测具有较高的特异度 [10] ,但其敏感度欠佳且存在假阳性等情况。

本研究旨在联合T2/FLAIR错配征及其他常规影像学特征,构建术前脑胶质瘤IDH1突变的预测模型,为临床决策提供更多的依据。

2. 资料与方法

2.1. 一般资料

选取2013年10月至2020年10月于我院经手术病理证实的脑胶质瘤患者,纳入标准如下:1) 患者手术前2周内在我院行颅脑MR检查,至少包括T1WI、T2WI、液体反转回复序列(fliud attenuated inversion recovery, FLAIR)、弥散加权成像(diffusion weighted imaging, DWI)、T1WI增强扫描序列;2) 患者行颅脑MR检查前未接受任何治疗;3) IDH1基因型明确。排除标准:1) 合并其他肿瘤;2) 图像质量较差(信噪比 < 1),干扰影像学特征评估。经过筛选纳入254名患者,其中IDH1野生型胶质瘤患者144例,IDH1突变型胶质瘤患者110例。将纳入研究的患者按照随机法以7:3的比例分为训练集(n = 177)和验证集(n = 77)。本研究为回顾性研究,经青岛大学附属医院伦理委员会审核批准,豁免患者知情同意,批准文号:WZLL 28165。

2.2. 检查方法

使用GE 1.5T/3.0T磁共振仪获得MRI图像。扫描序列包括T1WI、T2WI、FLAIR、DWI及T1WI增强等。GE 3.0T扫描参数:T1WI,:TR 1800 ms,TE 24 ms;T2WI,TR 3000 ms,TE 100 ms;T2WI-FLAIR,TR 8000 ms,TE 165 ms;DWI:TR 5100 ms,TE 76 ms;T1WI增强扫描:TR 2250 ms,TE 24 ms;层厚5 mm,层间距 1 mm,FOV 230 mm × 230 mm。GE 1.5T扫描参数:T1WI,TR 2600 ms,TE 20 ms;T2WI,TR 3500 ms,TE 110 ms;T2WI-FLAIR,TR 6000 ms,TE 130 ms;DWI:TR 4600 ms,TE 82 ms;T1WI增强扫描:TR 1800 ms,TE 24 ms;层厚5 mm,层间距1 mm,FOV 230 mm × 230 mm。T1WI增强描对比剂使用Gd-DTPA,静脉团注,注射剂量为0.2 ml/kg,流率为3.0 ml/s。

2.3. 影像学特征评估

影像学特征评估由一名具有4年经验的放射科医师与一名具有8年经验的放射科医师在未知病理结果的前提下对MR图像进行评估,两人评估结果不一致时由第三名具有21年经验的放射科医师重新评估。参考伦勃朗实践感受图像(visually accessible rembrandt images, VASARI)特征集 (https://wiki.nci.nih.gov/display/CIP/VASARI)与既往其他研究 [11] [12] [13] ,本研究纳入的MRI特征包括:肿瘤部位、肿瘤长径、肿瘤短径、出血、坏死、囊变、中线移位程度(>1 cm;<1 cm)、水肿形态(无水肿;类圆形水肿;不规则水肿)、水肿程度(无水肿;轻度水肿,水肿最大径/肿瘤最大径的比值 < 1/2;中度水肿,1/2 < 比值 < 1;重度水肿,比值 > 1/2)、肿瘤跨中线、瘤周水肿跨中线、T1/FLAIR比例、皮层受累、深部皮质受累、弥散受限(弥散受限、无弥散受限、弥散受限不明确)、T2/FLAIR错配、强化程度(无强化、轻度强化、明显强化)、强化边界(不适用;清晰;模糊)、强化特点(无强化或仅少量轻度强化;薄壁强化;厚壁强化;实性强化)、卫星灶、多灶性、软脑膜受累、室管膜受累。

2.4. 统计学方法

采用R 4.3.0软件对数据进行统计分析。符合正态分布的计量资料则以X ± S表示,采用t检验进行组间比较;分类变量以例数(百分比)表示,用χ2检验或Fisher确切概率法进行两组间比较。使用单因素和多因素logistic回归进行变量筛选,将单因素Logistic回归中p < 0.1的变量纳入多因素logistic回归模型,应用向后逐步回归法筛选变量。基于多因素logistic回归结果构建列线图,并绘制ROC曲线、校准曲线以及DCA曲线验证模型效能。以p < 0.05 (双侧)为差异有统计学意义。

3. 结果

3.1. 训练集与验证集基线资料比较

训练集和验证集中分别有70、40例IDH1突变型胶质瘤和107、37例IDH1野生型胶质瘤,差异无统计学意义(p > 0.05)。两数据集之间患者年龄(p = 0.272)、性别(p = 0.483)及WHO分级(p = 0.133)差异均无统计学意义,见表1

Table 1. Comparison of clinical data between train and validation dataset

表1. 训练集与验证集基线资料对比

3.2. 单因素Logistic回归分析及多因素Logistic逐步回归分析

将单因素logistic回归分析p < 0.1的影像学特征纳入多因素logistic逐步回归分析,采用向后逐步回归分析,按照最小赤池信息准则(Akaike information criterion, AIC)选择最优模型,最终获得3个MR特征:肿瘤强化特点、皮层受累、T2/FLAIR错配,见表2

Table 2. Univariate and multivariate logistic regression analysis of IDH1 mutation in brain gliomas

表2. 脑胶质瘤IDH1突变的单因素及多因素Logistic回归分析结果

3.3. 预测模型的构建与可视化

经过logistic回归分析得出联合预测因子Y = −1.43 + 1.48 T2/FLAIR错配 − 1.77皮层受累(无) + 2.37无强化 + 0.43薄壁强化 + 0.69实性强化。根据上述预测模型构建列线图对模型进行可视化,见图1,参照每个影像学特征上方的标准量尺,可以得到该特征所得到的分数,各个特征的分数相加得到最终的总分,从总分向下对应,即可得到患者脑胶质瘤IDH1突变的概率。

Figure 1. Nomogram for predicting IDH1 mutation in brain gliomas

图1. 脑胶质瘤IDH1突变的预测模型列线图

Figure 2. The ROC curve and AUC of the prediction model on the training and validation sets

图2. 预测模型在训练集和验证集的ROC曲线及AUC值

3.4. 预测模型的验证

通过绘制ROC曲线、校准曲线及DCA曲线并进行Hosmer-Lemeshow检验对模型进行验证。结果显示:训练集AUC为0.832 (0.767~0.897),验证集AUC为0.828 (0.735~0.920),表明预测模型具有较好的区分度,见图2;Hosmer-Lemeshow检验结果显示模型具有良好的拟合度(训练集χ2 = 4.568,p = 0.335,验证集χ2 = 2.744,p = 0.433);校准曲线显示训练集与验证集中预测值与理论值走行一致、接近,表明模型具有较高的校准度,见图3;DCA曲线表明模型曲线具有较高的净收益,见图4

Figure 3. The calibration curves of the prediction model on the training and validation sets

图3. 预测模型在训练集和验证集的校准曲线

Figure 4. The DCA curves of the prediction model on the training and validation sets

图4. 预测模型在训练集和验证集的临床决策曲线

4. 讨论

胶质瘤的IDH1基因分型是临床诊疗及预后判断的重要因素,IDH1突变型的胶质瘤较IDH1野生型胶质瘤具有更好的预后 [4] [14] 。在临床工作中,MRI检查是胶质瘤辅助诊断和术前评估最主要的检查方法。尽管高级MR序列、影像组学及深度学习等新技术的发展为胶质瘤的术前诊断提供了新方法,但现阶段其尚未广泛应用于临床,常规MRI序列仍然是目前胶质瘤临床诊疗的主要依据。因此在本研究中我们收集了常规的MRI特征,经单因素及多因素logistic回归分析,按照最小AIC原则保留了预测脑胶质瘤IDH1基因型的3个独立预测因素:T2/FLAIR错配征、强化特点、皮层侵犯。

T2/FLAIR错配征阳性是指在肿瘤T2WI上显示为均匀的高信号,而在T2-FLAIR图像中表现为中心区域相对低的信号,仅边缘区域表现为高信号 [10] ,既往多项研究 [15] [16] [17] 已表明,T2/FLAIR错配征是预测脑胶质瘤IDH1突变的特异度较高(93%~100%)但敏感度较低(18%~53%)的影像学标志物,在本研究中,T2/FLAIR错配预测胶质瘤IDH1突变的特异度为98.6%,灵敏度为31.0%,与既往研究结果相似。在Deguchi等 [18] 的研究表明,T2/FLAIR错配胶质瘤中心信号减低区域在与病理HE染色检查显示出微囊结构,T2WI的分辨率不足以识别此类微观结构,故表现为均匀的高信号,但此类结构会使得肿瘤内部的自由水含量增加,故在T2-FLAIR中表现为相对低信号,这有可能是T2/FLAIR错配征产生的病理基础。Kickingerederdeng等 [19] 报道,IDH1野生型胶质瘤缺氧诱导因子-1α激活增多,从而增加血管内皮生长因子(vascular endothelial growth factor, VEGF)的表达,导致肿瘤在增强扫描表现为更加明显的强化,在本研究中,IDH1突变型胶质瘤多表现为无强化或仅少量轻度强化,IDH1野生型胶质瘤多表现为厚壁明显强化,与既往研究理论相符。本研究还观察到皮层侵犯是脑胶质瘤IDH1突变的独立预测因素,这在同类研究中报道较少,结合既往研究 [20] [21] ,笔者推测这可能是由IDH突变型胶质瘤较好发于脑表面、且较少累深部区域(如间脑、脑干等)所致。

本研究基于T2/FLAIR错配征、强化特点与皮层侵犯3个常规MRI特征构建了预测模型,并进行模型验证,结果发现训练集与验证集ROC曲线的AUC分别为0.832和0.828,表明该预测模型具有较高的区分度,达到了既往同类研究 [22] [23] 的诊断效能,校准曲线与理想曲线走行一致、贴合较好,DCA曲线概率阈值位于0.2~0.9之间时净收益率大于0,表明该预测模型具有较高的校准度与临床适用性,对术前无创性预测脑胶质瘤IDH1基因型具有一定临床参考价值。本研究将该预测模型可视化为列线图,相较复杂的回归模型更为直观、具有更高的可读性,在临床应用中更加简单、容易操作。

本研究尚存在以下不足之处:1) 本研究是单中心、回顾性研究,可能存在一定的信息偏倚,下一步将进行多中心研究扩大样本量,并进行多中心、前瞻性的验证;2) 本研究的影像学特征是人为评估,虽然经过3名医师核对,但无法完全避免存在主观判断的偏差;3) 本研究使用免疫组织化学染色检测患者的IDH1突变状态(IDH1-R132H突变型),少数具有其他类型的IDH1突变状态(R132C、R132S和R132G等)的胶质瘤会被归类为IDH1野生型,但胶质瘤发生其他类型的IDH1突变的概率非常低 [24] ,因我们认为该因素对本研究结果无明显影响。

5. 研究结论

本研究基于T2/FLAIR错配征、皮层侵犯、强化特点这3个常规MRI特征构建的预测模型预测效能良好,能够有效术前预测脑胶质瘤的IDH1基因型,在一定程度上辅助临床医生优化诊疗方案。

利益冲突

所有作者声明不存在利益冲突。

NOTES

*通讯作者。

参考文献

[1] Ostrom, Q.T., Bauchet, L., Davis, F.G., et al. (2014) The Epidemiology of Glioma in Adults: A “State of the Science” Review. Neuro-Oncology, 16, 896-913.
https://doi.org/10.1093/neuonc/nou087
[2] Louis, D.N., Perry, A., Reifenberger, G., et al. (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathologica, 131, 803-820.
https://doi.org/10.1007/s00401-016-1545-1
[3] Louis, D.N., Perry, A., Wesseling, P., et al. (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology, 23, 1231-1251.
https://doi.org/10.1093/neuonc/noab106
[4] Yan, H., Parsons, D.W., Jin, G., et al. (2009) IDH1 and IDH2 Mutations in Gliomas. The New England Journal of Medicine, 360, 765-773.
https://doi.org/10.1056/NEJMoa0808710
[5] Weller, M., Van Den Bent, M., Preusser, M., et al. (2021) EANO Guidelines on the Diagnosis and Treatment of Diffuse Gliomas of Adulthood. Nature Reviews Clinical Oncology, 18, 170-186.
https://doi.org/10.1038/s41571-020-00447-z
[6] Choi, Y., Nam, Y., Lee, Y.S., et al. (2020) IDH1 Mutation Prediction Using MR-Based Radiomics in Glioblastoma: Comparison between Manual and Fully Automated Deep Learning-Based Approach of Tumor Segmentation. European Journal of Radiology, 128, Article ID: 109031.
https://doi.org/10.1016/j.ejrad.2020.109031
[7] Tan, Y., Zhang, S.T., Wei, J.W., et al. (2019) A Radiomics Nomogram May Improve the Prediction of IDH Genotype for Astrocytoma before Surgery. Eurpean Radiology, 29, 3325-3337.
https://doi.org/10.1007/s00330-019-06056-4
[8] Wang, J., Hu, Y., Zhou, X., et al. (2022) A Radiomics Model Based on DCE-MRI and DWI May Improve the Prediction of Estimating IDH1 Mutation and Angiogenesis in Gliomas. European Journal of Radiology, 147, Article ID: 110141.
https://doi.org/10.1016/j.ejrad.2021.110141
[9] Wang, N., Xie, S.Y., Liu, H.M., et al. (2019) Arterial Spin Labeling for Glioma Grade Discrimination: Correlations with IDH1 Genotype and 1p/19q Status. Translational Oncology, 12, 749-756.
https://doi.org/10.1016/j.tranon.2019.02.013
[10] Patel, S.H., Poisson, L.M., Brat, D.J., et al. (2017) T2-FLAIR Mismatch, an Imaging Biomarker for IDH and 1p/19q Status in Lower-Grade Gliomas: A TCGA/TCIA Project. Clinical Cancer Research, 23, 6078-6085.
https://doi.org/10.1158/1078-0432.CCR-17-0560
[11] 林坤, 王晓明. Nomogram在脑胶质瘤MR术前病理分级中的应用[J]. 中国医学影像学杂志, 2023, 31(5): 442-447.
[12] Hartmann, M., Jansen, O., Egelhof, T., et al. (1998) Effect of Brain Edema on the Recurrence Pattern of Malignant Gliomas. Der Radiologe, 38, 948-953.
https://doi.org/10.1007/s001170050447
[13] 周小焙. 磁共振影像组学、常规特征与DWI量化特征对脑胶质瘤分级诊断的初步研究[D]: [硕士学位论文]. 衡阳: 南华大学衡阳医学院, 2021.
[14] Berzero, G., Di Stefano, A.L., Ronchi, S., et al. (2021) IDH-Wildtype Lower-Grade Diffuse Gliomas: The Importance of Histological Grade and Molecular Assessment for Prognostic Stratification. Neuro-Oncology, 23, 955-966.
https://doi.org/10.1093/neuonc/noaa258
[15] Do, Y.A., Cho, S.J., Choi, B.S., et al. (2022) Predictive Accuracy of T2-FLAIR Mismatch Sign for the IDH-Mutant, 1p/19q Noncodeleted Low-Grade Glioma: An Updated Systematic Review and Meta-Analysis. Neuro-Oncology Advances, 4, vdac010.
https://doi.org/10.1093/noajnl/vdac010
[16] Adamou, A., Beltsios, E.T. and Papanagiotou, P. (2021) The T2-FLAIR Mismatch Sign as an Imaging Indicator of IDH-Mutant, 1p/19q Non-Codeleted Lower Grade Gliomas: A Systematic Review and Diagnostic Accuracy Meta-Analysis. Diagnostics (Basel, Switzerland), 11, Article No. 1620.
https://doi.org/10.3390/diagnostics11091620
[17] 郗艳, 曹胜男, 舒政. T2-T2 FLAIR错配征预测胶质瘤IDH1突变状态的价值[J]. 临床放射学杂志, 2023, 42(3): 391-395.
[18] Deguchi, S., Oishi, T., Mitsuya, K., et al. (2020) Clinicopathological Analysis of T2-FLAIR Mismatch Sign in Lower-Grade Gliomas. Scientific Reports, 10, Article No. 10113.
https://doi.org/10.1038/s41598-020-67244-7
[19] Kickingereder, P., Sahm, F., Radbruch, A., et al. (2015) IDH Mutation Status Is Associated with a Distinct Hypoxia/Angiogenesis Transcriptome Signature Which Is Non-Invasively Predictable with rCBV Imaging in Human Glioma. Scientific Reports, 5, Article No. 16238.
https://doi.org/10.1038/srep16238
[20] Qi, S., Yu, L., Li, H., et al. (2014) Isocitrate Dehydrogenase Mutation Is Associated with Tumor Location and Magnetic Resonance Imaging Characteristics in Astrocytic Neoplasms. Oncology Letters, 7, 1895-1902.
https://doi.org/10.3892/ol.2014.2013
[21] Nishiyama, Y., Sasaki, H., Nagahisa, S., et al. (2014) Radiological Features of Supratentorial Gliomas Are Associated with Their Genetic Aberrations. Neurosurgical Review, 37, 291-299.
https://doi.org/10.1007/s10143-013-0515-5
[22] Cao, M., Suo, S., Zhang, X., et al. (2021) Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach. BioMed Research International, 2021, Article ID: 1235314.
https://doi.org/10.1155/2021/1235314
[23] 夏晓亮, 夏云宝, 陈利华, 等. 基于MRI特征的脑胶质瘤异柠檬酸脱氢酶1表达预测研究[J]. 东南国防医药, 2020, 22(3): 262-267.
[24] Balss, J., Meyer, J., Mueller, W., et al. (2008) Analysis of the IDH1 Codon 132 Mutation in Brain Tumors. Acta Neuropathologica, 116, 597-602.
https://doi.org/10.1007/s00401-008-0455-2