基于FXR信号通路探究肝主疏泄的科学内涵
To Explore the Scientific Connotation of Liver Governing Dispersion Based on FXR Signaling Pathway
DOI: 10.12677/tcm.2024.134092, PDF, HTML, XML, 下载: 29  浏览: 50  国家自然科学基金支持
作者: 黄钡钡, 官志杰*, 何春叶:广西中医药大学第一临床医学院,广西 南宁;陈月桥:广西中医大学第一附属医院肝病科,广西 南宁
关键词: 肝主疏泄FXR科学内涵Liver Controlling Dispersion FXR Scientific Connotation
摘要: 肝主疏泄指肝具有疏通、畅通、宣达功能,与现代医学中FXR在维持机体正常运作方面相似。近年来的中西医研究也印证了藏象肝与FXR在机体生理过程中存在一定相关性。文章归纳了FXR信号通路与肝主疏泄在对脾胃运化及胆汁分泌与排泄、机体津血运行和输布、调畅情志和促进性与生殖等方面具有相似作用,并通过对消化系统、水液代谢、周围血管、脑与精神情绪、生殖代谢功能等常见病与肝主疏泄进行对比分析,发现FXR与肝主疏泄在调节全身机体机能生理功能相似,功能失常后疾病表现方面相同。研究以此为揭示肝主疏泄的分子机制提供可靠依据,并为中西医治疗肝脏代谢相关疾病提供依据,这也可能成为从分子生物学层面科学理解中医理论的新思路。
Abstract: Liver governing dispersion refers to the liver has the function of dredging, unimpeded and publicity, which is similar to FXR in maintaining the normal operation of the body in modern medicine. In recent years, Chinese and Western medicine research has also confirmed that there is a certain correlation between the liver and FXR in the physiological process of the body. This paper summarizes that FXR signaling pathway and liver governing dispersion have similar effects on spleen and stomach transportation and transformation, bile secretion and excretion, body fluid and blood circulation and distribution, emotional regulation, and promotion and reproduction. Through the comparative analysis of common diseases such as digestive system, water metabolism, peripheral blood vessels, brain and mental emotion, reproductive metabolism function and liver governing dispersion, it is found that FXR and liver governing dispersion are similar in regulating the physiological function of the whole body and the disease performance after dysfunction. This study provides a reliable basis for revealing the molecular mechanism of liver governing dispersion, and provides a basis for the treatment of liver metabolism related diseases by Chinese and Western medicine. This may also become a new idea for scientific understanding of TCM theory from the perspective of molecular biology.
文章引用:黄钡钡, 官志杰, 陈月桥, 何春叶. 基于FXR信号通路探究肝主疏泄的科学内涵[J]. 中医学, 2024, 13(4): 598-604. https://doi.org/10.12677/tcm.2024.134092

1. 引言

肝主疏泄是肝重要的生理功能,肝主疏泄最早记载于《黄帝内经》,是藏象理论中对肝的疏通、畅通、宣达功能的高度概括,疏泄功能受全身气机是否通畅所影响,通过对气机的疏泄与调节,以影响脾胃之运化和胆汁分泌与排泄、人体精神情绪,男子排精与女子排卵等。正如《医阶辨证》提到肝气郁滞,可使“六腑传化失常”肝主疏泄涵盖了肝对全身器官的调控。现代医学认为法尼醇X受体(FXR; NR1H4)是受体(NR)超家族成员,被确定为胆汁酸(BAs)的受体 [1] [2] [3] 。作为配体激活的转录因子,FXR作为单体或作为异源二聚体与DNA (即FXR反应元件)结合,具有NR的共同伴侣,类视黄醇X受体(RXR; NR2B1) [4] [5] ,可以调节参与BA、质脂和碳水化合物代谢的各种基因表达 [5] [6] 。FXR主要在各种组织中表达,包括肝脏、肠道、肾脏和肾上腺以及心脏等 [5] [7] 。鉴于FXR的组织分布和生物功能,它是全身能量稳态的关键代谢调节,这与肝主疏泄的表现有诸多相似之处。因此本文采用中医学取象比类法,通过FXR信号通路探究肝主疏泄的科学内涵。

2. 助脾胃运化并分泌胆汁

人体的消化器官主要在脾胃,肝主疏泄是保持脾胃正常消化吸收的必要条件。促进脾胃消化吸收功能,肝通过对脾胃气机升的降协调,并分泌、排泄胆汁而实现的。脾胃属土,肝胆属木,土得木而达。如《血证论·脏腑病机论》所言“木之性主乎疏泄。食气入胃,全赖肝木之气以疏泄之,则水谷乃化。设肝不能疏泄水谷,渗泄中满之证在所难免”。由此可以推断出,饮食的消化和吸收与肝脏的疏泄功能密切相关,故肝的疏泄功能,既可以助胃之受纳腐熟,又能助脾之运化。

胆汁又名“精汁”,来源于肝,受肝的余气而成,储存在胆中,经过排泄下行,到达肠中,协助胃酸对饮食的消化,是脾胃得以正常发挥消化和吸收功能的重要条件。足少阳胆经与厥阴肝经相互络属,互为表里关系,肝之疏泄正常,胆则能正常储藏并排泄胆汁,而胆汁的排泄正常,也有利于肝脏发挥正常的疏泄功能。诚如戴起宗在《脉诀刊误·卷上》所言“胆之精气,则因肝之余气溢人胆,故胆藏在短叶间,相并而居,内藏精汁三合,其汁清净”。又如《医原》所言“凡人食后,小肠饱满,肠头上逼胆囊,胆汁渍入人肠内,利传渣滓”。

肝疏泄功能正常,胆汁才能正常地由肝脏分泌并排泄到肠中,它有助于脾胃的消化和吸收功能。研究表明,肠道细菌中的羟基类固醇脱氢酶不仅可以将次级胆汁酸LCA转化为3-oxoLCA和isoLCA,而且还会对Th17细胞的分化产生影响 [8] 。此外,胆汁酸还会对肠道细菌的稳态和生长产生影响,例如,当次级胆汁酸DCA和LCA的浓度累积达到500 μmol/L时,会抑制艰难梭菌的生长 [9] 。通过代谢胆汁酸,肠道菌群使其具有生物活性,并激活胆汁酸受体以发挥其生理功能。同时,胆汁酸也维持着肠道菌群的稳定状态。因此,在生理状态下,胆汁酸与肠道菌群之间的相互作用有助于维持稳定状态。肝气郁结,影响到胆汁分泌和排泄,可使脾胃的消化吸收障碍,出现胁肋疼痛,纳食不化,胆汁上逆于口,见口苦,溢出皮肤,则见黄疸等。脾为阴中至阴,非阴中之阳不升,土有敦厚之性,非曲直之木不达。肝气升发,疏达中土,以助脾胃之升清运化,胃之受纳腐熟。

从功能和分布上来看,西医所说的胆汁与中医之“精汁”相同。胆汁酸(BAs)是胆汁中最重要的成分,胆汁酸是参与脂质代谢,葡萄糖代谢和能量消耗的重要信号分子。1999年,BAs被发现是FXR受体的内源性配体 [10] [11] [12] ,广泛表现在肝脏、肠道和肾脏 [3] [13] 。BAs在肝脏中产生,储存在胆囊中。在餐后,BAs分泌到肠道并有肠道菌群代谢。95%的BA在回肠中被重吸收并返回肝脏进入肠肝循环,另外5%的BA由粪便排泄 [14] [15] 。ABs失调和BAs受体传导受损与肝脏和肠道疾病有关,如脂肪性肝炎,肝细胞癌,肠炎和直肠癌 [16] [17] [18] 。BA可以通过调节FXR和相关途径参与自身的合成与代谢并维持自身稳态 [19] [20] 。FXR密切参与胆汁酸的合成,运输和重吸收 [21] [22] 。在相关配体结合时,FXR调控与胆汁酸合成,运输和重吸收代谢过程中的关键基因,并且还参与碳水化合物和脂质的代谢 [23] 。肝脏是协调营养输入和输出的代谢中心。摄入食物之后释放胆汁酸这个过程可以通过肝脏和肠道中的胆汁酸受体FXR来感知 [24] 。FXR在胃肠轴富集,在肝脏和肠道中具有最高的表达水平。肠道上皮细胞中的FXR可以增加肠成纤维细胞生长因子15 (FGF15)的释放。这种分泌蛋白与肝细胞中的FGF受体4 (FGFR4)结合后,能够抑制肝细胞合成胆汁酸 [23] [25] 。

3. 调畅情志

《柳州医话》有曰“七情之病,必由肝起”其阐述了肝的生理功能对情绪的重要性,但“肝主疏泄”理论所阐发生理功能应需要从科学内涵理论去推断,古人直观观察和临床经验,还不能全面解释其确切内涵。有团队通过大鼠和猴模型等等动物实验,证实了“肝主疏泄定位在脑”假说 [26] [27] [28] 。Siamak等发现阿尔茨海默症(AD)代表与认知相关的肠–肝–脑轴有密切联系 [29] ,许多有FXR介导的肠道菌群变化会引起多种疾病如自闭症、抑郁症、精神分裂症和帕金森病 [27] [28] [29] ,越来越多证据证明,肝病可能会影响认知功能障碍 [30] 。

西医所说的脑和中医中的脑同名且同物,中医对脑的认识有个过程,脑的记载最早始见于《内经》,《素问·脉要精微论》“头者,精明之腑”,到明代,医家对脑才有更进一步的认识,据李时珍在《本草纲目》中记载“脑为元神之腑”主宰着人多精神活动。清代王昂《本草备药》中“人之记性,皆在脑中”强调了脑主思维的生理活动。中医藏象学说提出脑的功能分五藏,与心、肝、肾尤为重要,《素问·宣明五气篇》“肝藏魂,主疏泄……”肝的疏泄作用对胆汁的产生、储藏、和排泄起到调节、控制的作用,从而影响胆主决断的功能。因而当人发生精神、神志方面疾患时,就不能单纯责之与脑。

4. 调畅血和津液的运行和输布

中医认为机体津液、血液的运行与输布离不开肝主疏泄这一生理功能,如《黄帝内经素问集注》中有云“木乃水中之生阳,故肝主疏泄水液”清代医家唐容川在《血证论·脏腑病机论》“肝属木,木气冲和条达,不致遏郁,则血脉得畅”这些均表明在肝的疏泄作用下,津液、血液才能在全身畅通无阻运行。现代研究也证明,肝在水液代谢方面发挥着重要作用,在临床上,肝疏泄太过或不及会导致水液代谢失常,因此肝主疏泄与肾主水存在必然联系,在治疗肝气疏泄不足时出现的小便淋漓不尽等症状,常以舒肝养肝,行气活血之法,方选逍遥散等;当肝疏泄太过时,肾主水功能失调,则 “肝木侮土,则土衰而水浊”(《金匮要略论注》)导致臌胀、水肿等,常治以疏肝泄肝、理气活血,方选一贯煎、柴胡疏肝散等方 [31] 。

现代医学中,尿量的多少取决于肾小管上皮细胞顶端和基地外侧膜中的水通道蛋白(AQPs)的功能,FXR虽是胆汁酸受体,但在肾脏中非常丰富,FXRmRNA在皮层表达最高,在肾脏中,FXR对尿液浓度有影响,实验中,FXR基因敲除的老鼠比对照组尿量更少,尿液渗透压增高,由此可见,FXR调节尿量方面起着重要作用 [32] 。对于肝主对血液运行和输布,《内经》指出“诸血者,皆属于心”,“心主身之血脉”,但只有气机调畅,才能让心主血脉功能充分发挥,如《风劳臌膈四大证治》“血水气行,周流不停”。血的病因在于气,气行则血行,气滞则血瘀。若肝失于疏泄,气机不畅,气血的运行就会受到影响。如气机阻滞,则气滞血瘀,会引发许多血管疾病。动脉粥样硬化是脑梗死、冠心病、外周血管疾病的主要致病因素,《黄帝内经》从“木曰敷和”理论论治动脉粥样硬化 [33] 。现代研究中,Miyazaki等发现通过INT-767同时激活FXR和G蛋白偶联胆汁酸受体1 (TGR5)可显著减少动脉粥样硬化形成 [34] 。

5. 调节排精行精

肝的疏泄可以调控冲任二脉的生理活动。肝疏泄功能的正常,足厥肝阴经之气调畅,冲任二脉得其所助,则任脉通利,太冲脉盛,月经以时下。男性的精室开合、精液的藏泄,与肝肾功能相关,《格致余论·阳有余阴不足论》“主闭藏者,肾也,司疏泄者,肝也”。肝之疏泄与肾的闭藏协调平衡,则精室开合有度,精液排泄有节,使男子的性与生殖机能正常。肝疏泄失常,必致开合失度,其不及,可见性欲低下,阳痿,精少,不孕等;太过,则性欲亢奋、阳强、梦遗等。

多囊卵巢综合征(PCOS)育龄妇女常见的内分泌疾病,被广泛认为以月经周期不规律、排卵功能障碍、内分泌紊乱和多囊卵巢的形态外观为主要特征,会引起不孕、月经不调、高雄激素血症、胰岛素抵抗等一系列问题 [35] 。还有研究人员发现 [36] 发现肠道菌群可能通过FXR信号通路在PCOS的发病机制和胰岛素抵抗中起重要作用,PCOS的关键肠道微生物拟杆菌,它可能通过拟杆菌–胆汁酸–肠道FXR信号通路促进PCOS的葡萄糖代谢紊乱,FXR激活可能对PCOS葡萄糖代谢具有有益而非有害的影响。有研究者发现 [35] PCOS患者血清胆汁酸与雄性激素有正相关关系。最近研究表明揭示了FXR在睾丸和男性生育能力中的功能的证据 [37] [38] ,也证明了女性卵巢颗粒细胞中存在FXR信号传导,对生殖和代谢密切相关,代谢综合征通过胰岛素抵抗的关联诱发卵巢功能障碍,例如月经异常和排卵障碍等 [39] 。

FXR是一种代谢核受体,在维持全身能量稳态和许多器官包括肝脏、肠道等的完整性起着关键作用。饮食入胃,随着胆汁进入十二指肠,它促进了肠道对脂质的吸收。胆汁酸通过被动扩散和主动运输在回肠末端被转运吸收,并经过门静脉返回肝脏,这个过程被称为胆汁酸的肠肝循环。最近的研究发现,胆汁酸不仅仅是乳化剂,它还扮演着重要的信号传递分子的角色,调节宿主的代谢过程,影响糖脂代谢和维持能量稳定 [37] [40] 。它调节胆汁酸、脂质和葡萄糖的代谢,通过胆汁酸与成纤维细胞生长因子(FGF-15/19)促进器官间通讯,特别是肠肝信号通路。FXR代谢作用也参与肠道微生物群。此外,FXR在肾脏、脂肪组织、胰腺、心血管系统和肿瘤的发生方面具有多种功能。因此,肝失疏泄导致的多种疾病中,均存在一定程度的FXR信号通路的抑制或激活 [37] 。上文所阐述的几个经典疾病中,中医理论“肝”的功能和现代理论FXR信号通路都参与脾胃运化及胆汁分泌与排泄、机体津血运行和输布、调畅情志、和促进性与生殖等过程,在维持机体正常运作方面都发挥了重要作用。

6. 小结

肝主疏泄是中医脏象学中肝最重要的生理功能,我们总结了大量肝主疏泄的生理功能在多种疾病中的病理表现及肝主疏泄的古代文献,发现FXR信号通路能部分揭示肝主疏泄的科学内涵,FXR是现代医学揭示肝主疏泄的切入点,这可能成为从分子生物学层面科学理解中医理论的新思路。此外,目前广泛使用的FXR激动剂和新型FXR的药物开发时,应考虑FXR的全身表达和功能,FXR调节对代谢紊乱和肿瘤的发生显示出多方面的影响,可能是由于组织、疾病状态、能量状态或实验室条件差异等,这还需要进一步的实验研究佐证。目前,脏象肝生理功能的分子本质未明晰,如何结合现代医学更深入地理解肝的生理功能以便指导临床用药仍需要进一步研究和探析。

基金项目

国家自然科学基金项目(82160888)、国家自然科学基金项目(82060848)。

NOTES

*通讯作者。

参考文献

[1] Makishima, M., Okamoto, A.Y., Repa, J.J., et al. (1999) Identification of a Nuclear Receptor for Bile Acids. Science, 284, 1362-1365.
https://doi.org/10.1126/science.284.5418.1362
[2] Parks, D.J., Blanchard, S.G., Bledsoe, R.K., et al. (1999) Bile Acids: Natural Ligands for an Orphan Nuclear Receptor. Science, 284, 1365-1368.
https://doi.org/10.1126/science.284.5418.1365
[3] Wang, H., Chen, J., Hollister, K., Sowers, L.C. and Forman, B.M. (1999) Endogenous Bile Acids Are Ligands for the Nuclear Receptor FXR/BAR. Molecular Cell, 3, 543-553.
https://doi.org/10.1016/S1097-2765(00)80348-2
[4] Forman, B.M., Goode, E., Chen, J., et al. (1995) Identification of a Nuclear Receptor That Is Activated by Farnesol Metabolites. Cell, 81, 687-693.
https://doi.org/10.1016/0092-8674(95)90530-8
[5] Teodoro, J.S., Rolo, A.P. and Palmeira, C.M. (2011) Hepatic FXR: Key Regulator of Whole-Body Energy Metabolism. Trends in Endocrinology & Metabolism, 22, 458-466.
https://doi.org/10.1016/j.tem.2011.07.002
[6] Wang, Y.D., Chen, W.D., Moore, D.D. and Huang, W.D. (2008) FXR: A Metabolic Regulator and Cell Protector. Cell Research, 18, 1087-1095.
https://doi.org/10.1038/cr.2008.289
[7] Lee, F.Y., Lee, H., Hubbert, M.L., et al. (2006) FXR, a Multipurpose Nuclear Receptor. Trends in Biochemical Sciences, 31, 572-580.
https://doi.org/10.1016/j.tibs.2006.08.002
[8] Paik, D., Yao, L., Zhang, Y., et al. (2022) Human Gut Bacteria Produce ΤΗ17-Modulating Bile Acid Metabolites. Nature, 603, 907-912.
https://doi.org/10.1038/s41586-022-04480-z
[9] Funabashi, M., Grovet, L., Wang, M., et al. (2020) A Metabolic Pathway for Bile Acid Dehydroxylation by the Gut Microbiome. Nature, 582, 566-570.
https://doi.org/10.1038/s41586-020-2396-4
[10] Arab, J.P., Karpen, S.J., Dawson, P.A., et al. (2017) Bile Acids and Nonalcoholic Fatty Liver Disease: Molecular Insights and Therapeutic Perspectives. Hepatology, 65, 350-362.
https://doi.org/10.1002/hep.28709
[11] Joyce, S.A. and Gahan, C.G. (2017) Disease-Associated Changes in Bile Acid Profiles and Links to Altered Gut Microbiota. Digestive Diseases, 35, 169-177.
https://doi.org/10.1159/000450907
[12] Xie, X., Dong, J., Lu, G., et al. (2020) Increased Circulating Total Bile Acid Levels Were Associated with Organ Failure in Patients with Acute Pancreatitis. BMC Gastroenterology, 20, Article No. 222.
https://doi.org/10.1186/s12876-020-01243-w
[13] Ahmad, T.R. and Haeusler, R.A. (2019) Bile Acids in Glucose Metabolism and Insulin Signalling—Mechanisms and Research Needs. Nature Reviews Endocrinology, 15, 701-712.
https://doi.org/10.1038/s41574-019-0266-7
[14] Qiu, Y., Shen, L., Fu, L., et al. (2020) The Glucose-Lowering Effects of α-Glucosidase Inhibitor Require a Bile Acid Signal in Mice. Diabetologia, 63, 1002-1016.
https://doi.org/10.1007/s00125-020-05095-7
[15] Van De Wiel, S.M.W., Bijsmans, I.T.G.W., Van Mil, S.W.C., et al. (2019) Identification of FDA-Approved Drugs Targeting the Farnesoid X Receptor. Scientific Reports, 9, Article No. 2193.
https://doi.org/10.1038/s41598-019-38668-7
[16] Wan, Y.D., Zhu, R.X., Pan, X.T. and Sun, T.W. (2020) Bile Acid Supplementation Improves Murine Pancreatitis in Association with the Gut Microbiota. Frontiers in Physiology, 11, Article 650.
https://doi.org/10.3389/fphys.2020.00650
[17] Martinot, E., Sèdes, L., Baptissart, M., et al. (2017) Bile Acids and Their Receptors. Molecular Aspects of Medicine, 56, 2-9.
https://doi.org/10.1016/j.mam.2017.01.006
[18] Taoka, H., Yokoyama, Y., Morimoto, K., et al. (2016) Role of Bile Acids in the Regulation of the Metabolic Pathways. World Journal of Diabetes, 7, 260-270.
https://doi.org/10.4239/wjd.v7.i13.260
[19] Gonzalez, F.J. (2012) Nuclear Receptor Control of Enterohepatic Circulation. Comprehensive Physiology Nuclear Receptor Control of Enterohepatic Circulation, 2, 2811-2828.
https://doi.org/10.1002/cphy.c120007
[20] Ovadia, C., Perdones-Montero, A., Spagou, K., et al. (2019) Enhanced Microbial Bile Acid Deconjugation and Impaired Ileal Uptake in Pregnancy Repress Intestinal Regulation of Bile Acid Synthesis. Hepatology, 70, 276-293.
https://doi.org/10.1002/hep.30661
[21] Cao, Y., Xiao, Y., Zhou, K., et al. (2019) FXR Agonist GW4064 Improves Liver and Intestinal Pathology and Alters Bile Acid Metabolism in Rats Undergoing Small Intestinal Resection. American Journal of Physiology-Gastrointestinal and Liver Physiology, 317, G108-G115.
https://doi.org/10.1152/ajpgi.00356.2017
[22] Jiang, L., Zhang, H., Xiao, D., et al. (2021) Farnesoid X Receptor (FXR): Structures and Ligands. Computational and Structural Biotechnology Journal, 19, 2148-2159.
https://doi.org/10.1016/j.csbj.2021.04.029
[23] Panzitt, K. and Wagner, M. (2021) FXR in Liver Physiology: Multiple Faces to Regulate Liver Metabolism. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1867, Article ID: 166133.
https://doi.org/10.1016/j.bbadis.2021.166133
[24] 高冬梅, 乔明琦, 张惠云, 等. 经前期综合征肝气郁证猕猴模型评价指标[J]. 中医杂志, 2005, 46(12): 931-933.
https://doi.org/10.13288/J.11-2166/R.2005.12.036
[25] 王海军, 乔明琦, 张惠云. 经前期综合征(PMS)肝气逆证猕猴造模及用药血清中性激素检测与分析[J]. 中药药理与临床, 2006, 22(5): 58-59.
[26] Jia, W., Xie, G. and Jia, W. (2018) Bile Acid-Microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis. Nature Reviews Gastroenterology & Hepatology, 15, 111-128.
https://doi.org/10.1038/nrgastro.2017.119
[27] 张惠云, 乔明琦, 孙丽. 肝气郁证模型大鼠下丘脑单胺类神经递质分析[J]. 中医杂志, 2008, 49(2): 150-152.
[28] Mahmoudian Dehkordi, S., Arnold, M., Nho, K., et al. (2019) Altered Bile Acid Profile Associates with Cognitive Impairment in Alzheimer’s Disease—An Emerging Role for Gut Microbiome. Alzheimers & Dementia, 15, 76-92.
[29] Holmqvist, S., Chutna, O., Bousset, L., et al. (2014) Direct Evidence of Parkinson Pathology Spread from the Gastrointestinal Tract to the Brain in Rats. Acta Neuropathologica, 128, 805-820.
https://doi.org/10.1007/s00401-014-1343-6
[30] Kim, D.G., Krenz, A., Toussaint, L.E., et al. (2016) Non-Alcoholic Fatty Liver Disease Induces Signs of Alzheimer’s Disease (AD) in Wild-Type Mice and Accelerates Pathological Signs of AD in an AD Model. Journal of Neuroinflammation, 13, Article No. 1.
https://doi.org/10.1186/s12974-015-0467-5
[31] Zhang, X., Huang, S., Gao, M., et al. (2014) Farnesoid X Receptor (FXR) Gene Deficiency Impairs Urine Concentration in Mice. Proceedings of the National Academy of Sciences of the United States of America, 111, 2277-2282.
https://doi.org/10.1073/pnas.1323977111
[32] 高慧, 王帅. 基于《内经》“木曰敷和”理论对动脉粥样硬化性疾病微探[J/OL]. 辽宁中医药大学学报: 1-8.
https://doi.org/10.13194/j.issn.1673-842x.2023.03.017, 2022-10-27.
[33] Miyazaki-Anzai, S., Masuda, M., Kohno, S., et al. (2018) Simultaneous Inhibition of FXR and TGR5 Exacerbates Atherosclerotic Formation. Journal of Lipid Research, 59, 1709-1713.
https://doi.org/10.1194/jlr.M087239
[34] Lauritsen, M.P., Bentzen, J.G., Pinborg, A., et al. (2014) The Prevalence of Polycystic Ovary Syndrome in a Normal Population According to the Rotterdam Criteria versus Revised Criteria Including Anti-Mullerian Hormone. Human Reproduction, 29, 791-801.
https://doi.org/10.1093/humrep/det469
[35] Yang, Y.L., Zhou, W.W., Wu, S., et al. (2021) Intestinal Flora Is a Key Factor in Insulin Resistance and Contributes to the Development of Polycystic Ovary Syndrome. Endocrinology, 162, bqab118.
https://doi.org/10.1210/endocr/bqab118
[36] 李云, 刘天宇, 张文军. 肝肠法尼酯X受体在代谢性疾病中的作用研究进展[J]. 天津药学, 2023, 35(1): 71-78.
[37] Kaeding, J., Bouchaert, E., Bélanger, J., et al. (2008) Activators of the Farnesoid X Receptor Negatively Regulate Androgen Glucuronidation in Human Prostate Cancer LNCAP Cells. Biochemical Journal, 410, 245-253.
https://doi.org/10.1042/BJ20071136
[38] Takae, K., Nakata, M., Watanabe, T., et al. (2019) Evidence for the Involvement of FXR Signaling in Ovarian Granulosa Cell Function. The Journal of Reproduction and Development, 65, 47-55.
https://doi.org/10.1262/jrd.2018-054
[39] Han, C.Y. (2018) Update on FXR Biology: Promising Therapeutic Target? International Journal of Molecular Sciences, 19, Article 2069.
https://doi.org/10.3390/ijms19072069
[40] Thomas, C., Pellicciari, R., Pruzanski, M., et al. (2008) Targeting Bile-Acid Signalling for Metabolic Diseases. Nature Reviews Drug Discovery, 7, 678-693.
https://doi.org/10.1038/nrd2619