|
[1]
|
Pan, Y., Birdsey, R.A., Fang, J., et al. (2011) A Large and Persistent Carbon Sink in the World’s Forests. Science, 333, 988-993. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Beer, C., Reichstein, M., Tomelleri, E., et al. (2010) Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 329, 834-838. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Canadell, J.G. and Raupach, M.R. (2008) Managing Forests for Climate Change Mitigation. Science, 320, 1456-1457. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Montagu, K.D., Duttmer, K., Barton, C.V.M. and Cowie, A.L. (2005) Developing General Allometric Relationships for Regional Estimates of Carbon Sequestration—An Example Using ‘Eucalyptus Pilularis’ from Seven Contrasting Sites. Forest Ecology and Management, 204, 115-129. [Google Scholar] [CrossRef]
|
|
[5]
|
Houghton, R.A. (2005) Aboveground Forest Biomass and the Global Carbon Balance. Global Change Biology, 11, 945-958.
|
|
[6]
|
Fahey, T.J., Woodbury, P.B., Battles, J.J., et al. (2010) Forest Carbon Storage: Ecology, Management, and Policy. Frontiers in Ecology and the Environment, 8, 245-252. [Google Scholar] [CrossRef]
|
|
[7]
|
Davidson, E.A. AND Janssens, I.A. (2006) Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature, 440, 165-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lin, D., Lai, J., Muller-Landau, H.C., et al. (2012) Topographic Variation in Aboveground Biomass in a Subtropical Evergreen Broad-Leaved Forest in China. PLOS ONE, 7, e48244. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kloeppel, B., Harmon, M. AND Fahey, T. (2007) Estimating Aboveground Net Primary Productivity in Forest-Domi-nated Ecosystems. In: Kloeppel, B., Harmon, M. and Fahey, T., Eds., Principles and Standards for Measuring Primary Production, Oxford University Press, Oxford, 63-81. [Google Scholar] [CrossRef]
|
|
[10]
|
Houghton, R.A. (2005) Aboveground Forest Biomass and the Global Carbon Balance. Global Change Biology, 11, 945-958. [Google Scholar] [CrossRef]
|
|
[11]
|
Poorter, L., Van Der Sande, M.T., Thompson, J., et al. (2015) Diversity Enhances Carbon Storage in Tropical Forests. Global Ecology and Biogeography, 24, 1314-1328. [Google Scholar] [CrossRef]
|
|
[12]
|
Ali, A., Lin, S., He, J., et al. (2019) Elucidating Space, Climate, Edaphic, and Biodiversity Effects on Aboveground Biomass in Tropical Forests. Land Degradation & Development, 30, 918-927. [Google Scholar] [CrossRef]
|
|
[13]
|
Xu, Y., Franklin, S.B., Wang, Q., et al. (2015) Topographic and Biotic Factors Determine Forest Biomass Spatial Distribution in a Subtropical Mountain Moist Forest. Forest Ecology Management, 357, 95-103. [Google Scholar] [CrossRef]
|
|
[14]
|
Bordin, K.M., Esquivel-Muelbert, A., Bergamin, R.S., et al. (2021) Climate and Large-Sized Trees, but Not Diversity, Drive Above-Ground Biomass in Subtropical Forests. Forest Ecology and Management, 490, Article ID: 119126. [Google Scholar] [CrossRef]
|
|
[15]
|
Glatthorn, J., Feldmann, E., Pichler, V., et al. (2018) Biomass Stock and Productivity of Primeval and Production Beech Forests: Greater Canopy Structural Diversity Promotes Productivity. Ecosystems, 21, 704-722. [Google Scholar] [CrossRef]
|
|
[16]
|
Hilmers, T., Avdagić, A., Bartkowicz, L., et al. (2019) the Productivity of Mixed Mountain Forests Comprised of Fagus sylvatica, Picea abies, and Abies alba Across Europe. Forestry: An International Journal of Forest Research, 92, 512-522. [Google Scholar] [CrossRef]
|
|
[17]
|
Yuan, Z., Wang, S., Ali, A., et al. (2018) Aboveground Carbon Storage Is Driven by Functional Trait Composition and Stand Structural Attributes Rather than Biodiversity in Temperate Mixed Forests Recovering from Disturbances. Annals of Forest Science, 75, Article No. 67. [Google Scholar] [CrossRef]
|
|
[18]
|
Kumar, L. and Mutanga, O. (2017) Remote Sensing of Above-Ground Biomass. Remote Sensing, 9, Article 935. [Google Scholar] [CrossRef]
|
|
[19]
|
Su, Y., Guo, Q., Xue, B., et al. (2015) Spatial Distribution of Forest Aboveground Biomass in China: Estimation through Combination of Spaceborne Lidar, Optical Imagery, and Forest Inventory Data. Remote Sensing of Environment, 173, 187-199. [Google Scholar] [CrossRef]
|
|
[20]
|
Fang, J., Chen, A., Peng, C., et al. (2001) Changes in Forest Biomass Carbon Storage in China between 1949 and 1998. Science, 292, 2320-2322. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Dong, L.H., Zhang, L. and Li, F. (2016) Developing Two Additive Biomass Equations for Three Coniferous Plantation Species in Northeast China. Forests, 7, Article 136. [Google Scholar] [CrossRef]
|
|
[22]
|
Tadese, S., Soromessa, T., Bekele, T., et al. (2020) Above Ground Biomass Estimation Methods and Challenges: A Review. International Journal of Energy Technology and Policy, 9, 12-25.
|
|
[23]
|
Návar, J. (2009) Allometric Equations for Tree Species and Carbon Stocks for Forests of Northwestern Mexico. Forest Ecology and Management, 257, 427-434. [Google Scholar] [CrossRef]
|
|
[24]
|
Picard, N., Saint-André, L. and Henry, M. (2012) Manual for Building Tree Volume and Biomass Allometric Equations: From Field Measurement to Prediction. Food and Agricultural Organization of the United Nations and Centre de Coopération Internationale en Recherche Agronomique Pour le Développement, Rome, Montpellier.
|
|
[25]
|
Montès, N., Gauquelin, T., Badri, W., et al. (2000) A Non-Destructive Method for Estimating Above-Ground Forest Biomass in Threatened Woodlands. Forest Ecology and Management, 130, 37-46. [Google Scholar] [CrossRef]
|
|
[26]
|
Zeng, W., Tomppo, E., Healey, S.P., et al. (2015) The National Forest Inventory in China: History-Results-International Context. Forest Ecosystems, 2, 23-39. [Google Scholar] [CrossRef]
|
|
[27]
|
Tomppo, E., Gschwantner, T., Lawrence, M., et al. (2010) National Forest Inventories: Pathways for Common Reporting. Springer, Dordrecht. [Google Scholar] [CrossRef]
|
|
[28]
|
Lu, D., Chen, Q., Wang, G., et al. (2016) A Survey of Remote Sensing-Based Aboveground Biomass Estimation Methods in Forest Ecosystems. International Journal of Digital Earth, 9, 63-105. [Google Scholar] [CrossRef]
|
|
[29]
|
赵敏, 周广胜. 中国森林生态系统的植物碳贮量及其影响因子分析[J]. 地理科学, 2004, 24(1): 50-54.
|
|
[30]
|
Lu, D. (2006) The Potential and Challenge of Remote Sensing–Based Biomass Estimation. International Journal of Remote Sensing, 27, 1297-1328. [Google Scholar] [CrossRef]
|
|
[31]
|
Mutanga, O., Shoko, C., Adelabu, S., et al. (2016) Remote Sensing of Aboveground Forest Biomass: A Review. Tropical Ecology, 57, 125-132.
|
|
[32]
|
Bortolot, Z.J. and Wynne, R.H. (2005) Estimating Forest Biomass Using Small Footprint LiDAR Data: An Individual Tree-Based Approach That Incorporates Training Data. ISPRS Journal of Photogrammetry and Remote Sensing, 59, 342-360. [Google Scholar] [CrossRef]
|
|
[33]
|
Kumar, L., Sinha, P., Taylor, S., et al. (2015) Review of the Use of Remote Sensing for Biomass Estimation to Support Renewable Energy Generation. Journal of Applied Remote Sensing, 9, Article ID: 097696. [Google Scholar] [CrossRef]
|
|
[34]
|
St-Onge, B., Hu, Y. and Vega, C. (2008) Mapping the Height and Above-Ground Biomass of a Mixed Forest Using Lidar and Stereo Ikonos Images. International Journal of Remote Sensing, 29, 1277-1294. [Google Scholar] [CrossRef]
|
|
[35]
|
Li, D., Wang, C., Hu, Y., et al. (2012) General Review on Remote Sensing-Based Biomass Estimation. Geomatics and Information Science of Wuhan University, 37, 631-635.
|
|
[36]
|
Vashum, K. and Jayakumar, S. (2012) Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests: A Review. Journal of Ecosystem & Ecography, 2, 4-11. [Google Scholar] [CrossRef]
|
|
[37]
|
Lefsky, M.A., Cohen, W.B., Harding, D.J., et al. (2002) Lidar Remote Sensing of Above-Ground Biomass in Three Biomes. Global Ecology and Biogeography, 11, 393-399. [Google Scholar] [CrossRef]
|
|
[38]
|
Zolkos, S.G., Goetz, S.J. and Dubayah, R. (2013) A Meta-Analysis of Terrestrial Aboveground Biomass Estimation Using Lidar Remote Sensing. Remote Sensing of Environment, 128, 289-298. [Google Scholar] [CrossRef]
|
|
[39]
|
Sullivan, M.J.P., Lewis, S.L., Affum-Baffoe, K., et al. (2020) Long-Term Thermal Sensitivity of Earth’s Tropical Forests. Science, 368, 869-874. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Chu, C., Bartlett, M., Wang, Y., et al. (2016) Does Climate Directly Influence NPP Globally? Global Change Biology, 22, 12-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Coomes, D.A., Flores, O., Holdaway, R., et al. (2014) Wood Production Response to Climate Change Will Depend Critically on Forest Composition and Structure. Global Change Biology, 20, 3632-3645. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
O’brien, E.M. (2006) Biological Relativity to Water-Energy Dynamics. Journal of Biogeography, 33, 1868-1888. [Google Scholar] [CrossRef]
|
|
[43]
|
Alvarez-Davila, E., Cayuela, L., González-Caro, S., et al. (2017) Forest Biomass Density across Large Climate Gradients in Northern South America Is Related to Water Availability but Not with Temperature. PLOS ONE, 12, e0171072. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Allen, C.D., Macalady, A.K., Chenchouni, H., et al. (2010) A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. Forest Ecology and Management, 259, 660-684. [Google Scholar] [CrossRef]
|
|
[45]
|
Vilanova, E., Ramírez-Angulo, H., Torres-Lezama, A., et al. (2018) Environmental Drivers of Forest Structure and Stem Turnover across Venezuelan Tropical Forests. PLOS ONE, 13, e0198489. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
乐荣武, 张娜, 王晶杰, 等. 2000-2019 年内蒙古草地地上生物量的时空变化特征[J]. 中国科学院大学学报, 2022, 39(1): 21-33.
|
|
[47]
|
陈德祥, 李意德, Liu Heping, 等. 尖峰岭热带山地雨林生物量及碳库动态[J]. 中国科学C辑, 2010, 40(7): 596-609.
|
|
[48]
|
郭屹立, 王斌, 向悟生, 等. 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应[J]. 生物多样性, 2016, 24(1): 30-39.
|
|
[49]
|
Mcewan, R.W., Lin, Y.C., Sun, I.F., et al. (2011) Topographic and Biotic Regulation of Aboveground Carbon Storage in Subtropical Broad-Leaved Forests of Taiwan. Forest Ecology and Management, 262, 1817-1825. [Google Scholar] [CrossRef]
|
|
[50]
|
Jucker, T., Bongalov, B., Burslem, D.F.R.P., et al. (2018) Topography Shapes the Structure, Composition and Function of Tropical Forest Landscapes. Ecology Letters, 21, 989-1000. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Chadwick, K.D. and Asner, G.P. (2016) Tropical Soil Nutrient Distributions Determined by Biotic and Hillslope Processes. Biogeochemistry, 127, 273-289. [Google Scholar] [CrossRef]
|
|
[52]
|
Paoli, G.D. (2006) Divergent Leaf Traits among Congeneric Tropical Trees with Contrasting Habitat Associations on Borneo. Journal of Tropical Ecology, 22, 397-408. [Google Scholar] [CrossRef]
|
|
[53]
|
Tanner, E.V.J., Rodriguez-Sanchez, F., Healey, J.R., et al. (2014) Long-Term Hurricane Damage Effects on Tropical Forest Tree Growth and Mortality. Ecology, 95, 2974-2983. [Google Scholar] [CrossRef]
|
|
[54]
|
Ferry, B., Morneau, F., Bontemps, J.D., et al. (2010) Higher Treefall Rates on Slopes and Waterlogged Soils Result in Lower Stand Biomass and Productivity in a Tropical Rain Forest. Journal of Ecology, 98, 106-116. [Google Scholar] [CrossRef]
|
|
[55]
|
Werner, F.A. and Homeier, J. (2015) Is Tropical Montane Forest Heterogeneity Promoted by a Resource-Driven Feedback Cycle? Evidence from Nutrient Relations, Herbivory and Litter Decomposition along a Topographical Gradient. Functional Ecology, 29, 430-440. [Google Scholar] [CrossRef]
|
|
[56]
|
Quesada, C.A., Phillips, O.L., Schwarz, M., et al. (2012) Basin-Wide Variations in Amazon Forest Structure and Function Are Mediated by Both Soils and Climate. Biogeosciences, 9, 2203-2246. [Google Scholar] [CrossRef]
|
|
[57]
|
Wright, S.J., Yavitt, J.B., Wurzburger, N., et al. (2011) Potassium, Phosphorus, or Nitrogen Limit Root Allocation, Tree Growth, or Litter Production in a Lowland Tropical Forest. Ecology, 92, 1616-1625. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Coomes, D.A., Kunstler, G., Canham, C.D., et al. (2009) A Greater Range of Shade-Tolerance Niches in Nutrient-Rich Forests: An Explanation for Positive Richness-Productivity Relationships? Journal of Ecology, 97, 705-717. [Google Scholar] [CrossRef]
|
|
[59]
|
Becknell, J.M. and Powers, J.S. (2014) Stand Age and Soils as Drivers of Plant Functional Traits and Aboveground Biomass in Secondary Tropical Dry Forest. Canadian Journal of Forest Research, 44, 604-613. [Google Scholar] [CrossRef]
|
|
[60]
|
Yuan, Z., Ali, A., Jucker, T., et al. (2019) Multiple Abiotic and Biotic Pathways Shape Biomass Demographic Processes in Temperate Forests. Ecology, 100, e02650. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Malhi, Y., Wood, D., Baker, T.R., et al. (2006) The Regional Variation of Aboveground Live Biomass in Old-Growth Amazonian Forests. Global Change Biology, 12, 1107-1138. [Google Scholar] [CrossRef]
|
|
[62]
|
Malhi, Y. (2012) The Productivity, Metabolism and Carbon Cycle of Tropical Forest Vegetation. Journal of Ecology, 100, 65-75. [Google Scholar] [CrossRef]
|
|
[63]
|
Prado-Junior, J.A., Schiavini, I., Vale, V.S., et al. (2016) Conservative Species Drive Biomass Productivity in Tropical Dry Forests. Journal of Ecology, 104, 817-827. [Google Scholar] [CrossRef]
|
|
[64]
|
朱杰, 吴安驰, 邹顺, 等. 南亚热带常绿阔叶林树木多样性与生物量和生产力的关联及其影响因素[J]. 生物多样性, 2021, 29(11): 1435-1446.
|
|
[65]
|
Frank, D., Reichstein, M., Bahn, M., et al. (2015) Effects of Climate Extremes on the Terrestrial Carbon Cycle: Concepts, Processes and Potential Future Impacts. Global Change Biology, 21, 2861-2880. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Huang, K., Wang, S., Zhou, L., et al. (2013) Effects of Drought and Ice Rain on Potential Productivity of a Subtropical Coniferous Plantation from 2003 to 2010 Based on Eddy Covariance Flux Observation. Environmental Research Letters, 8, Article ID: 035021. [Google Scholar] [CrossRef]
|
|
[67]
|
Zhang, C., Ju, W., Chen, J.M., et al. (2015) Disturbance-Induced Reduction of Biomass Carbon Sinks of China’s Forests in Recent Years. Environmental Research Letters, 10, Article ID: 114021. [Google Scholar] [CrossRef]
|
|
[68]
|
Yao, W., Ma, Y., Chen, F., et al. (2020) Analysis of Ice Storm Impact on and Post-Disaster Recovery of Typical Subtropical Forests in Southeast China. Remote Sensing, 12, Article 164. [Google Scholar] [CrossRef]
|
|
[69]
|
Zhang, F., Zhou, G., Hiratsuka, M., et al. (2012) Influence of An Ice Storm on Aboveground Biomass of Subtropical Evergreen Broadleaf Forest in Lechang, Nanling Mountains of Southern China. International Journal of Forestry Research, 2012, Article ID: 467848. [Google Scholar] [CrossRef]
|
|
[70]
|
曼兴兴, 米湘成, 马克平. 雪灾对古田山常绿阔叶林群落结构的影响[J]. 生物多样性, 2011, 19(2): 197-205.
|
|
[71]
|
Sun, Y., Gu, L., Dickinson, R., et al. (2012) Forest Greenness after the Massive 2008 Chinese Ice Storm: Integrated Effects of Natural Processes and Human Intervention. Environmental Research Letters, 7, Article ID: 035702. [Google Scholar] [CrossRef]
|
|
[72]
|
Song, X., Hogan, J.A., Lin, L., et al. (2018) Canopy Openness and Topographic Habitat Drive Tree Seedling Recruitment after Snow Damage in an Old-Growth Subtropical Forest. Forest Ecology and Management, 429, 493-502. [Google Scholar] [CrossRef]
|
|
[73]
|
王云泉. 雪灾对密度制约维持森林群落生物多样性的影响[D]: [硕士学位论文]. 金华: 浙江师范大学, 2015.
|
|
[74]
|
Barrufol, M., Schmid, B., Bruelheide, H., et al. (2013) Biodiversity Promotes Tree Growth during Succession in Subtropical Forest. PLOS ONE, 8, e81246. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Castro-Izaguirre, N., Chi, X., Baruffol, M., et al. (2016) Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest. PLOS ONE, 11, e0167771. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Tilman, D. (1999) The Ecological Consequences of Changes in Biodiversity: A Search for General Principles. Ecology, 80, 1455-1474. [Google Scholar] [CrossRef]
|
|
[77]
|
Hooper, D.U., Chapin Iii, F.S., Ewel, J.J., et al. (2005) Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. Ecological Monographs, 75, 3-35. [Google Scholar] [CrossRef]
|
|
[78]
|
Huston, M.A. (1997) Hidden Treatments in Ecological Experiments: Re-Evaluating the Ecosystem Function of Biodiversity. Oecologia, 110, 449-460. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Gamfeldt, L., Snäll, T., Bagchi, R., et al. (2013) Higher Levels of Multiple Ecosystem Services Are Found in Forests with More Tree Species. Nature Communications, 4, Article No. 1340. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Paquette, A. and Messier, C. (2011) The Effect of Biodiversity on Tree Productivity: From Temperate to Boreal Forests. Global Ecology and Biogeography, 20, 170-180. [Google Scholar] [CrossRef]
|
|
[81]
|
Vilà, M., Carrillo-Gavilán, A., Vayreda, J., et al. (2013) Disentangling Biodiversity and Climatic Determinants of Wood Production. PLOS ONE, 8, e53530. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Forrester, D.I. and Bauhus, J. (2016) A Review of Processes Behind Diversity—Productivity Relationships in Forests. Current Forestry Reports, 2, 45-61. [Google Scholar] [CrossRef]
|
|
[83]
|
Szwagrzyk, J. and Gazda, A. (2007) Above-Ground Standing Biomass and Tree Species Diversity in Natural Stands of Central Europe. Journal of Vegetation Science, 18, 555-562. [Google Scholar] [CrossRef]
|
|
[84]
|
Seidel, D., Leuschner, C., Scherber, C., et al. (2013) the Relationship between Tree Species Richness, Canopy Space Exploration and Productivity in a Temperate Broad-Leaf Mixed Forest. Forest Ecology and Management, 310, 366-374. [Google Scholar] [CrossRef]
|
|
[85]
|
Ali, A., Yan, E., Chen, H.Y, H., et al. (2016) Stand Structural Diversity Rather than Species Diversity Enhances Aboveground Carbon Storage in Secondary Subtropical Forests in Eastern China. Biogeosciences, 13, 4627-4635. [Google Scholar] [CrossRef]
|
|
[86]
|
Dănescu, A., Albrecht, A.T. and Bauhus, J. (2016) Structural Diversity Promotes Productivity of Mixed, Uneven-Aged Forests in Southwestern Germany. Oecologia, 182, 319-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Morin, X. (2015) Species Richness Promotes Canopy Packing: A Promising Step towards a Better Understanding of the Mechanisms Driving the Diversity Effects on Forest Functioning. Functional Ecology, 29, 993-994. [Google Scholar] [CrossRef]
|
|
[88]
|
Zhang, Y. and Chen, H.Y.H. (2015) Individual Size Inequality Links Forest Diversity and Above-Ground Biomass. Journal of Ecology, 103, 1245-1252. [Google Scholar] [CrossRef]
|
|
[89]
|
Chen, G., Cai, Q., Ma, S., et al. (2023) Climate and Forest Attributes Influence Above-Ground Biomass of Deciduous Broadleaf Forests in China. Journal of Ecology, 111, 495-508. [Google Scholar] [CrossRef]
|
|
[90]
|
Macgillivray, C.W., Grime, J.P. and the Integrated Screening Programme (ISP) Team (1995) Testing Predictions of the Resistance and Resilience of Vegetation Subjected to Extreme Events. Functional Ecology, 9, 640-649. [Google Scholar] [CrossRef]
|
|
[91]
|
Lepš, J., Osbornová-Kosinová, J. and Rejmánek, M. (1982) Community Stability, Complexity and Species Life History Strategies. Vegetatio, 50, 53-63. [Google Scholar] [CrossRef]
|
|
[92]
|
Lian, Z., Wang, J., Fan, C., et al. (2022) Structure Complexity Is the Primary Driver of Functional Diversity in the Temperate Forests of Northeastern China. Forest Ecosystems, 9, Article ID: 100048. [Google Scholar] [CrossRef]
|
|
[93]
|
Chiu, C.H. and Chao, A. (2014) Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers. PLOS ONE, 9, e100014. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Petchey, O.L. and Gaston, K.J. (2002) Functional Diversity (FD), Species Richness and Community Composition. Ecology Letters, 5, 402-411. [Google Scholar] [CrossRef]
|
|
[95]
|
Huang, Y., Chen, Y., Castro-Izaguirre, N., et al. (2018) Impacts of Species Richness on Productivity in a Large-Scale Subtropical Forest Experiment. Science, 362, 80-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Wu, X., Wang, X., Wu, Y., et al. (2015) Forest Biomass Is Strongly Shaped by Forest Height across Boreal to Tropical Forests in China. Journal of Plant Ecology, 8, 559-567. [Google Scholar] [CrossRef]
|
|
[97]
|
Webb, C.O. (2000) Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. American Society of Naturalists, 156, 145-155. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Cadotte, M.W., Cardinale, B.J. and Oakley, T.H. (2008) Evolutionary History and the Effect of Biodiversity on Plant Productivity. Proceedings of the National Academy of Sciences of the United States of America, 105, 17012-17017. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Srivastava, D.S., Cadotte, M.W., Macdonald, A.A.M., et al. (2012) Phylogenetic Diversity and the Functioning of Ecosystems. Ecology Letters, 15, 637-648. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Cadotte, M.W., Cavender-Bares, J., Tilman, D., et al. (2009) Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity. PLOS ONE, 4, e5695. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Venail, P., Gross, K., Oakley, T.H., et al. (2015) Species Richness, but Not Phylogenetic Diversity, Influences Community Biomass Production and Temporal Stability in a Re-Examination of 16 Grassland Biodiversity Studies. Functional Ecology, 29, 615-626. [Google Scholar] [CrossRef]
|
|
[102]
|
Maherali, H. and Klironomos, J.N. (2007) Influence of Phylogeny on Fungal Community Assembly and Ecosystem Functioning. Science, 316, 1746-1748. [Google Scholar] [CrossRef] [PubMed]
|