与血友病抑制物形成相关遗传和非遗传因素的 最新进展
Recent Advances in Genetic and Non-Genetic Factors Related to the Development of Hemophilia Inhibitors
DOI: 10.12677/acm.2024.143978, PDF, HTML, XML, 下载: 31  浏览: 77 
作者: 李 庆*, 陈义文, 李沁航, 陈 姝#:重庆医科大学第二附属医院血液科,重庆;黄章伟:重庆医科大学第二附属医院血管腹壁疝外科,重庆
关键词: 血友病凝血因子抑制物危险因素基因Hemophilia Coagulation Factor Inhibitors Risk Factors Genes
摘要: 目的:抑制物形成是血友病治疗中面临的最大问题和挑战,识别抑制物形成的危险因素并早期干预,降低抑制物形成风险,对减轻血友病患者经济负担、提高血友病患者治疗效果及预后有重大意义。方法:我们检索了CNKI、CQVIP、万方数据、PubMed、EmBase、Web of Science和Cochrane Library数据库中过去12年中与抑制物相关的研究。结果:通过筛选后共纳入相关的中英文文献,这些文献对各种可能造成抑制物形成的因素进行了大量研究,主要包括遗传(基因突变、免疫应答、种族与家族史、血型)和非遗传(治疗相关、年龄相关、危险信号、血友病严重程度)两大类因素。结论:本文对与血友病抑制物形成有关的研究进行了最全面的总结,为临床医生提供了极大的参考价值和便利。
Abstract: Objective: The formation of inhibitors is the biggest problem and challenge in the treatment of hemophilia. Identifying risk factors for inhibitor development and early intervention to reduce the risk of inhibitor formation are of great significance to reduce the economic burden of hemophilia patients and improve the therapeutic effect of hemophilia patients. Methods: We searched CNKI, CQVIP, Wanfang Data, PubMed, EmBase, Web of Science and Cochrane Library databases for studies related to inhibitors in the past 12 years. Results: After screening, relevant Chinese and English literature was included. These literatures conducted a large number of studies on various factors that may cause the formation of inhibitors, mainly including genetic (gene mutation, immune response, race and family history, blood type) and non-genetic (Treatment-related, age-related, red flags, and hemophilia severity) factors. Conclusions: This article provides the most comprehensive summary of research related to the formation of hemophilia inhibitors, providing great reference value and convenience for clinicians.
文章引用:李庆, 黄章伟, 陈义文, 李沁航, 陈姝. 与血友病抑制物形成相关遗传和非遗传因素的 最新进展[J]. 临床医学进展, 2024, 14(3): 2322-2332. https://doi.org/10.12677/acm.2024.143978

1. 引言

凝血因子抑制物是多克隆中和性抗体,与凝血因子的表位结合,使其被免疫系统识别为非自身。它还倾向于破坏体内的天然凝血因子,使患者面临发病率和死亡率增加的风险 [1] 。重型血友病A (Hemophilia A, HA)患者终生形成抑制物的风险为25%~40%,而中/轻型HA患者终生形成抑制物的风险为5%~15% [2] 。血友病B (Hemophilia B, HB)患者终生形成抑制物的风险较低,一般见于重型HB患者 [2] ,目前的研究基本上基于HA患者。血友病抑制物的形成过程很复杂,包括遗传和环境因素的相互作用,涉及基因、细胞、细胞因子和其他免疫调节分子。而目前的研究已经对血友病抑制物形成的机制有了很深入的理解。凝血因子VIII (coagulation factor VIII, FVIII)同种异体免疫需要通过抗原呈递细胞(antigen present cells, APC)将FVIII肽与主要组织相容性复合物(primary histocompatibility complex, MHC)分子复合物呈递到T细胞上,活化的CD4+ T细胞转运到脾脏的B细胞滤泡,在那里它们激活FVIII特异性幼稚B细胞。然后,活化的B细胞增殖并最终分化为FVIII特异性记忆B细胞或分泌抗FVIII抗体的浆细胞 [3] 。本文综述了近12年来有关血友病抑制物形成的遗传和非遗传因素的研究。

2. 方法

我们检索了2012年至2022年的CNKI、CQVIP、WanFang Data、PubMed、EmBase、Web of Science和Cochrane图书馆数据库中关于“血友病”和“抑制物”的相关文献。在阅读了摘要和标题后,我们排除了综述、系统综述、病例报告和动物实验,并去除与本研究目的无关的研究。本文对目前血友病抑制物形成的相关因素进行了最全面的总结。

3. 遗传因素

3.1. 基因突变

基因突变是血友病抑制物形成的最重要因素之一。形成抑制物的风险因突变类型和突变位置而异。一般来说,抑制物形成的风险随基因的结构或功能破坏程度而变化。与抑制物形成风险相关的基因突变类型包括内含子22倒位 [4] [5] [6] ,内含子1倒位 [6] 、无义突变 [5] [6] 、大片段缺失或插入 [5] [6] 、剪接位点变异 [6] 、错义突变 [6] 和移码突变 [7] 。高风险基因突变类型是抑制物形成的高危因素 [8] 。无效突变的抑制物发生风险高于非无效突变 [6] [9] [10] 。22号和1号内含子倒位、大缺失、无义突变和剪接位点突变是无效突变的决定机制,表现出更高的抑制物发生率 [7] [11] 。在这些突变类型中,内含子22倒位是抑制物形成中最常见的突变 [12] 。在2022年Anwar E. Ahmed等人的研究中,FVIII基因内含子22倒位与其他大的结构变化的严重HA受试者中,抑制物风险没有差异 [13] 。此外,2022年一项在中国重型血友病A伴抑制物人群中的研究显示多个外显子的大片段缺失或插入,以及轻链的无义突变代表了更高的抑制物峰值滴度 [5] 。错义突变 [9] 和移码突变 [7] 是轻度分子缺陷,具有这些突变的患者以较低的的风险和速率形成抑制物 [7] 。然而,也有研究显示出不同的结果。Tucunduva,A.等人的研究显示与FVIII内含子22倒位(INV22)相比,FVIII无义突变和移码突变显示出更高的风险 [14] 。

我们可以在许多患者中观察到,同一类型的突变也具有不同的抑制物形成风险,因为突变的位点在抑制物形成中也起着重要作用。既往也有研究指出,在某种特定基因突变中,抑制物的形成也有所区别。当无义突变或错义突变位于FVIII蛋白的C1、C2结构域时,抑制物的发生率高于突变发生在FVIII蛋白的其他区域时。C1和C2区域的错义突变更容易转变氨基酸的性质,从而增加抑制物的发生率 [15] 。Marcin M. Gorski证实了位于染色体2q21上乳糖酶(Lactase, LCT)位点周围的高度保守的单倍型区域中的rs3754689错义变异与抑制物开发的相关性 [16] 。Luca A. Lotta等人在2013年发现了与抑制物发生相关的8个基因:RHBG,CEACAM7,CTAGE6P,SEC22B,C5orf49,DAB1,SORL1,PKD1L1 [17] 。关于HB患者抑制物形成的研究较少。FIX突变导致丝氨酸蛋白酶结构域外的缺失,使HB抑制物形成的风险更高 [18] 。

3.2. 免疫应答基因多态性

3.2.1. 人类白细胞抗原

编码人类白细胞抗原(Human Leukocyte Antigen, HLA)的基因系统称为HLA复合体,是人类体内等位基因最丰富的基因系统,在免疫应答中起着重要的调控作用 [19] 。HLA等位基因与血友病患者抑制物形成风险之间存在显着相关性 [2] 。FVIII肽与HLA-DRB1的结合是非重度HA患者抑制物发展的一个组成部分,当存在FVIII突变时,更可能发生FVIII的HLA-DRB1结合和抑制物形成 [20] 。在一项研究中指出,对于众所周知的风险单倍型DQB1 * 06:02/DRB1 * 15:01,真正的HLA风险等位基因似乎是DRB1 * 15:01 [21] 。在后面的一项研究中,Samuel Lessard et al.也证实了DRB1 ∗ 15:01与FVIII抑制物的关联,并在携带FVIII内含子倒置的HA个体中确定了DQB1 ∗ 03:03与抑制物的新关联。此外,他们的研究结果将编码GRID2相互作用蛋白的GRID2IP与抑制物的形成联系起来 [5] 。Ferrante A.等人的研究表示DRB 1 * 15等位基因在抑制物患者中的频率较高[OR 2.57; P = 0.022] [22] 。H. PERGANTOU等人在希腊进行的一项研究得出结论,以下基因型促进抑制物的形成:DRB1 * 01、DRB1 * 01:01和DQB1 * 05:01;以下基因型可能阻止抑制物的形成:DRB1 * 11、DRB1 * 11:01、DQB1 * 03和DQB1 * 03:01 [23] 。同样的,一项伊朗的研究指出HA抑制物风险降低与HLA-DRB1 * 01:01相关,而与HLA-DRB1:1503或HLA - DRB1 * 11无关 [24] 。Naz,A等人指出,与使用抑制物的患者相比,无抑制物患者的HLA A3 A32、B40、DRB1 * 11等位基因频率较高。另外,与没有抑制物的患者相比,只有HLA B8等位基因与抑制物患者的关联性增强 [25] 。Joseph R. McGill等人表示携带1个HLA变异体(DPB1 ∗ 02:02)的患者发生抑制物的比率较高,而携带2个HLA变异体(DRB1 ∗ 04:07; DRB1 ∗ 11:04)的患者发生抑制物的比率较低 [9] 。另外有研究检测了FVIII抑制物阳性患者HLADQA1区的各等位基因,未发现该区各等位基因与抑制物发生具有相关性 [26] 。

3.2.2. 肿瘤坏死因子

B细胞活化因子(BAFF,也称为TNFSF13B,CD257),是肿瘤坏死因子(Tumor necrosis factor, TNF)配体家族的成员,在包括单核细胞、树突细胞和骨髓基质细胞在内的各种细胞类型上均有表达。Sanya Arshad等人分析HA伴抑制物患者中BAFF和B细胞成熟抗原(B cell maturation antigen, BCMA)的状态。他们认为,虽然细胞因子在发病机制中起作用,但它们似乎不会触发抑制物形成 [27] 。在最近的一项研究中,Hossam Hodeib et al.得出BAFF rs9514828(T)的风险等位基因在抑制物阳性患者中明显高于抑制物阴性患者(P = 0.003),CT + TT基因型与FVIII抑制物发生的风险增加有关。此外,BAFF水平升高可能是新诊断重度HA患儿发生FVIII抑制物的有益预后标志物,临界值为≥0.92,灵敏度为85.9%,特异性为80.2% [28] 。Shahrzad Soori等人表示TNFα rs1800629 A等位基因降低了抑制物形成的风险,而IL10 rs1800896 A > G、FV rs6025 G > A和FII rs1799963 G > A多态性与抑制物发生的风险无关 [29] 。Ferrante, A.等人指出在TNF-α中,−308G > A多态性的A等位基因在抑制物队列中的频率较高 [22] 。而随后在埃及的一项研究指出TNF-α基因多态性(−308 G/A)与埃及HA患者FVIII抑制物的形成无关 [30] 。

3.2.3. 白细胞介素

白细胞介素(Interleukin, IL) 10是由巨噬细胞、自然杀伤细胞、树突状细胞、淋巴细胞等分泌而来,在免疫调节和炎症中具有抑制作用。有研究表示IL-10参与了HA患者抑制物的形成 [31] 。Delphine Bachelet等人指出,对于免疫基因,只有IL-10和CD86与抑制物显示出显著的相关性。IL-10-1082G > A和CD86基因rs2681401 UTR区域的单核苷酸多态性(Single nucleotide polymorphism, SNP)与抑制物发生风险降低相关 [32] 。H. PERGANTOU等人表示,在IL-10多态性的单倍型ACC和ATA纯合子中,抑制物的检出率较高且有统计学意义 [23] 。对于IL-10,在具有抑制物的患者中更频繁地观察到-1082G等位基因 [22] 。同样地Bhavya S Doshi等人表示在IL10基因中具有-819TT和-592AA以及TNFA基因中具有“CG/CG”单倍型的患者具有较低的抑制物风险 [14] 。Mohamed-Rachid Boulassel等人表示HA伴抑制物患者表现出循环Breg细胞水平降低,IL-10形成不足,单核细胞上LPR/CD91过表达,以及Tfh细胞水平正常 [33] 。Hoda Sadek等人表示埃及血友病患者FVIII抑制物形成与IL10-1082A/G基因多态性无相关性 [34] 。TNFα rs 1800629 A等位基因降低抑制物形成的风险,而IL 10 rs 1800896 A > G、FV rs6025 G > A和FII rs 1799963 G > A多态性与抑制物形成的风险无关 [29] 。伊朗的一项研究表明,在TGF-β和IL-2基因的等位基因和基因型分析方面,抑制物和非抑制物患者之间没有统计学上的显着差异,与世界上一些关于TGF-β1和IL-2基因多态性与抑制物开发之间相关性的报道相反 [35] 。类似的,印度尼西亚的一项研究表示IL-2 (rs2069762)基因多态性不是重型HA患者发生FVIII抑制物的危险因素 [36] 。另有研究指出白细胞介素-6基因-174G/C和白细胞介素-10基因-1082G/A位点多态性与HA抑制物的形成无关,尽管既往研究报道抑制物形成患者中G等位基因频率较高 [37] 。

3.2.4. 细胞毒性T淋巴细胞相关抗原-4

细胞毒性T淋巴细胞抗原4 (cytotoxic T lymphocyte antigen 4, CTLA-4)属于免疫球蛋白超家族,其基因与CD28和诱导性T细胞共刺激分子(inducible T-cell costimulator, ICOS)均位于2号染色体的q33带上,由4个外显子组成,编码223个氨基酸。CD28与CTLA-4分别为T细胞激活提供正性调控和负性调控。调节性T细胞(Treg)是免疫细胞的一小部分,专门用于抑制过度免疫激活和维持免疫稳态。KY Ding等人发现有抑制物患者的Treg细胞比例和T细胞细胞因子浓度高于非抑制物患者。Treg细胞数量的增加和T细胞细胞因子的增加可能与凝血因子VIII抑制物的开发和有效性有关 [38] 。Mohamed Abo El-Asrar等人指出年轻HA患者Tregs (CD4+/CD25+/CD127+)的低频率可能促进抑制物的形成,这在重型血友病患者中更为明显 [39] 。Li Yang等人也指出CTLA-4/CD28细胞百分比比值在FVIII抑制物阳性与阴性的HA患儿中存在差异,抑制物阳性组显著低于阴性组,并且这种差异主要由CTLA-4 + Th细胞表达的差异引起。CTLA-4的低表达可能是抑制物形成的原因之一 [40] 。Arandi等人的研究认为HA患者FVIII抑制物形成与外周血CD4+ CD25+ CD127-Treg细胞的水平有关,外周血CD4+ CD25+ CD127-Treg细胞水平降低,形成抑制物的风险增加。HA抑制物阳性患者IL-35表达的降低与抑制物的形成有关。HA患者外周血中Treg细胞的水平与IL-35表达水平呈正相关,但与疾病的严重程度无关 [8] 。Aranda等人首次证明CD4 + CD25 FOXP3 + Tregs可能与重度HA患者的抑制物形成有关 [41] 。

3.2.5. 其他单核苷酸多态性

V. BAFUNNO 等人在F8基因的3′UTR中发现了3个SNPs,即rs36101366 A > G、rs34683807 C > T、rs180360 C > A,在IL-10基因的3′UTR中发现了1个SNPs,即rs3024496 T > C,并表明这些多态性与抑制物的发生之间没有相关性 [42] 。另一研究检测到13个与抑制物形成有统计学意义的13个SNP,其中8个表现出保护作用(PDGFRB rs10072056、PCGF2 rs2879097、HSP90B1 rs1882019、F13A1 rs13206518、IGSF2 rs2296449、ALOX5AP rs4075131、MAP2K4 rs3826392、PTPRN2 rs12667537),而5个表现出潜在的抑制物形成风险(MAPK9 rs4147385 、DOCK2 rs1863993、CD44 rs927335、IQGAP2 rs17652304、CSF1R rs17725712) [43] 。一项在中国的研究探讨了8个SNP:MAPK9 rs4147385、CSF1R rs17725712、CD44 rs927335、STAT4 rs7574865、IKZF1 rs4917014、ETS1 rs6590330和BANK1 rs17266594和rs10516487。CSF1R的rs17725712 A等位基因和MAPK9的rs4147385 G等位基因在有抑制物的患者中更常见。CD44 rs927335、STAT4 rs7574865、IKZF1 rs4917014、ETS1 rs6590330和BANK1 rs17266594和rs10516487与抑制物形成无显著相关性 [44] 。Luciana W. Zuccherato等人在一小群意大利HA患者中发现了一组与抑制物风险相关的基因组变异。他们表明,LCT基因中SNP (rs3754689)的T等位基因位于保守的单倍型区域,与对FVIII同种异体抗体的保护有关。在他们的重型/中间型HA患者群体中,SNP rs3754689并没有表现出对抑制物形成的保护作用 [45] 。Mirbehbahani等人在2015的研究表示BclI/内含子18会增加伊朗人群形成抑制物的风险 [46] ,他们在2020的研究再次表示BclⅠ/内含子18基因多态性与抑制物水平及HA严重程度之间存在统计学关系 [47] 。İnanç Değer Fidancı等人评估了9个选定的与白细胞介素(IL-4、IL-5、IL-10)、转化生长因子β 1 (TGF-β1)和干扰素γ (IFn-γ)相关的SNP在携带FVIII基因无义突变的HA患者中抑制物形成的可能性。结果显示IL-5基因启动子区rs2069812的T等位基因与抑制物患者显著相关(p = 0.0251)。TT基因型也与该组显著相关,p值为0.0082,提示其为隐性易感等位基因,C等位基因为显性保护等位基因。他们并表示rs2069812可能是一个调节性SNP,可能在B淋巴细胞发育中发挥作用,构成抑制物形成的遗传风险因素 [48] 。J. B. DE ALENCAR等人的研究表明INFG的+874T等位基因和TGFB1基因的+ 869 TT和TG/TG与抑制物的风险有关 [49] 。Aveen M. Raouf Abdulqader等人对48例患者的VWF基因第18~23外显子进行测序,以确定其单核苷酸多态性(SNP)特征,结果未发现CTLA-4-318C > T T等位基因与重度或轻/中度HA患者抑制物的形成有显著相关性,但CTLA-4 α α α 49A > G SNP是抑制物形成的潜在风险 [50] 。在阿富汗人群中,rs3754689多态性与抑制物的发生风险有关,该SNP的T等位基因可能起到保护作用。然而,在伊朗患者中未发现抑制物开发风险与rs3754689 SNP之间的显著关联 [51] 。最近的一项研究显示,lncRNA和甲基化修饰可能在抑制物形成中发挥重要作用。这些发现有可能为抑制物的预防和治疗揭示新的治疗靶点 [52] 。对HB患者的研究比少,J. ZHOU等人的研究显示等位基因TinCD4495102 (A/T)可能对中国HB患者的抑制物发展起到保护作用 [11] 。

3.3. 种族和家族史

目前已有很多研究支持有抑制物家族史是抑制物形成的高危因素 [32] ,另有研究指出,抑制物阳性组与阴性组比较,血友病家族史[p < 0.001, OR = 3.299 (95% CI 1.743~5.983)]与抑制物产生有关 [53] 。Maria Elisa Mancuso等人指出FVIII抑制物家族史是从低滴度抑制物进展到高滴度抑制物的预测因素 [10] 。然而在另外两项研究中没有发现VIII抑制物的发展与FVIII抑制物的家族史存在相关性 [8] [30] 。不同种族之间抑制物风险形成差别也引起了广泛的讨论。在一个小型队列中,A. LOCHAN et al.发现黑人患者的抑制物发生频率比白人显著更高 [54] 。Devi Gunasekera等人表示患有严重HA的非裔美国患者比白人患者有更高的抑制物发生率,并且发现具有最常见的HA致病突变-内含子22倒位的非裔美国人的抑制物发生率是白人患者的2~3倍 [55] 。Bhavya S Doshi等人的研究表示在非黑人群体中,与白种人相比,具有土著背景的患者的抑制物发生率显着较低 [14] 。最近的一项研究也指出不同种族之间抑制物形成的风险形成差异,他们表示黑人和西班牙裔重度HA受试者的抑制物风险高于非西班牙裔白人 [12] 。有抑制物阳性家族史的贵州省HA患儿更容易形成抑制物,而民族与抑制物的形成无统计学意义 [8] 。

3.4. ABO血型

对血型的研究主要集中在A型血和O型血中。Massimo Franchini的研究表示O血型似乎可以保护抑制物的发展,并且独立于其他协变量的影响 [56] 。在2021的一项研究也支持O型血对HA患者的抑制物形成风险的保护作用 [57] 。Delphine Bachelet的研究也表示非O血型患者较O血型患者更易出现抑制物 [32] 。另有人表示A型血是抑制物发生的危险因素 [58] 。血型对抑制物发生的影响主要是通过VWF⁃FVIII复合物,O型血患者的VWF⁃FVIII复合物被巨噬细胞上的低密度脂蛋白受体相关蛋白受体清除的速度比非O血型患者更快,这使得血浆中FVIII无法稳定维持适当的浓度。也有研究表示,FVIII分子和ABO抗原之间的交叉模拟可能参与抗FVIII抗体的形成 [57] 。

4. 非遗传因素

4.1. 治疗相关影响

治疗的频率和强度、产品、暴露日时间都可能影响抑制物的形成。在较早的研究中,多项指出高强度替代治疗是抑制物形成的危险因素 [58] [59] [60] 。在已形成抑制物的患者中,高强度暴露也可增加HA患者发生高滴度抑制物的风险 [53] 。Susi Susannah等人指出替代疗法的频率是抑制物发展的危险因素,且血清TNF-α水平可用于区分重型HA高、低抑制物水平,为重型HA抑制物治疗方案的选择提供决策支持 [61] 。按需治疗是抑制物形成的高危因素 [8] ,而凝血因子VIII预防治疗可以降低抑制物形成的风险 [62] 。关于凝血因子产品类型对抑制物风险形成的差异一直存在争议,虽然有少部分研究显示使用含有血管性血友病因子的血浆衍生因子VIII治疗的患者,其抑制物发生率低于使用重组因子VIII治疗的患者 [32] ,但更多的研究显示重组和血浆衍生的VIII因子产品具有相似的抑制物发生风险,且不同FVIII产品的数量和产品的转换均不影响多次输血患者的抑制物发生率 [30] [60] 。相关性分析显示抑制物形成与累积暴露日相关 [63] 。在前50个暴露日期间接受强化峰值治疗的既往未治疗患者发生抑制物的风险较高,暴露天数 > 50天后抑制物形成危险减低 [62] 。一项大型研究显示日本的血友病患者的抑制物发生集中在25个暴露日之前 [64] 。但是,一组在埃及血友病患者的研究显示FVIII抑制物形成与治疗变量(接受FVIII的类型、治疗方案、替代治疗的频率)无相关性 [34] 。El Demerdash et al.也没有发现VIII抑制物的发展与首次暴露年龄、暴露频率、预防策略、替代FVIII类型有关 [30] 。

4.2. 年龄和初次接触时的年龄

年龄对抑制物的影响存在较大的争议。Sanya Arshad等人表示抑制物阳性与第一次替代治疗的年龄显著相关,第一次替代治疗的年龄越小,发生抑制物的风险越大,但是与第一次出血年龄无关 [58] 。Nyanchama等人的研究也表示首次治疗年龄小于1岁的人获得抑制物的可能性是15岁以上首次接受治疗的患者的5倍 [65] 。另外几项研究也表示抑制物阳性与首次接受治疗的年龄显著相关 [58] 。但是,也有研究得出首次暴露年龄与抑制物的形成无相关性的结论 [63] 。Van Velzen等人表示与年轻时输注相比,老年人输注因子VIII似乎会带来更高的抑制物风险 [66] 。相比之下,来自Astermark等人的数据没有发现老年血友病患者抑制物发展的第二个高峰 [67] 。Marrugo等人表示成人的抑制物出现率低于婴幼儿 [60] 。年龄对抑制物的影响不是独立的,还与其他因素相关,比如有的患者随着年龄的增大,各种并发症越来越多,面临损伤和外界刺激的变化也更多,共同影响着抑制物的形成(此处无文献支持,是根据客观事实说明年龄对抑制物的影响并非独立因素)。

4.3. 危险信号

一个有趣的环境风险因素是在FVIII给药期间存在“危险信号”,如感染、手术、创伤、出血。根据“危险理论”,这些免疫系统警报信号导致抗原呈递细胞(APC)上的共刺激分子上调,使它们能够完全激活幼稚的CD4 T细胞,从而为形成抗体的B细胞提供帮助,并最终导致抗FVIII抗体的形成。已有多项研究显示手术和创伤是抑制物形成的风险因素 [59] [65] 。感染也会增加抑制物形成风险:Eduarda Bolina-Santos等人分析了565名A型血友病患者,得出HCV是与抑制物病史独立相关的因素之一。此外,抗HCV反应性也与低抑制物水平密切相关,这一结果表明,病毒感染引发的免疫反应可能会影响导致抑制物形成 [68] 。Enzo Miranda Santos等人也指出HCV感染可能参与诱导抑制物的形成 [69] 。一些研究表明,严重出血也影响抑制物形成 [58] [64] 。但是也有研究显示抑制物形成与严重出血事件无相关性,可能是受其他因素的影响 [63] 。

4.4. 血友病的严重程度

虽然有研究显示血友病严重程度与抑制物的形成无统计学意义 [8] [30] [34] [63] ,但大多数研究仍表示血友病严重程度与抑制物的形成存在显著相关性,重型血友病患者抑制物的发生率高于轻、中型血友病患者 [58] ,可能与跟多的暴露强度有关。

5. 结论

FVIII的耐受性和免疫之间的微妙平衡涉及许多因素,van Helden等人的模型所提出,遗传因素设定了抑制物发展的个体阈值。随后的环境因素决定了免疫激活是否超过抑制物形成的免疫阈值,该模型可以更好地理解为什么所有血友病患者中只有一小部分人会形成抑制物 [70] 。目前已有大量的研究对抑制物形成的原因进行了分析,从中可以看出抑制物形成并不是某一单一因素的影响,从内在基因的表型到外界的环境刺激,各种因素混杂在一起共同影响着血友病患者体内抗凝血因子抗体的变化。现在我们已经可以基本掌握抑制物形成的风险因素,识别这些危险因素,可以帮助我们制定抑制物形成的风险模型,个体化量化患者的抑制物形成风险。希望本篇综述对后面的模型制定以及临床治疗策略的改变有重要的参考意义。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Ehrenforth, S., Kreuz, W., Scharrer, I., et al. (1992) Incidence of Development of Factor VIII and Factor IX Inhibitors in Hemophiliacs. The Lancet, 339, 594-598.
https://doi.org/10.1016/0140-6736(92)90874-3
[2] Tieu, P., Chan, A. and Matino, D. (2020) Molecular Mechanisms of Inhibitor Development in Hemophilia. Mediterranean Journal of Hematology and Infectious Diseases, 12, e2020001.
https://doi.org/10.4084/mjhid.2020.001
[3] Georgescu, MT., Lai, J.D., Hough, C. and Lillicrap, D. (2016) War and Peace: Factor VIII and the Adaptive Immune Response. Cellular Immunology, 301, 2-7.
https://doi.org/10.1016/j.cellimm.2015.11.008
[4] Hariti, G., Ferhat, Y., Cherif, N. and Messadi, W. (2023) The Correlation of Type F8 Gene Mutation on Inhibitor Development in a Single Centre Cohort of Severe Hemophilia a Patients. Haemophilia, 29, 29.
[5] Sun, J., Li, Z., Huang, K., et al. (2022) F8 Gene Mutation Spectrum in Severe Hemophilia A with Inhibitors: A Large Cohort Data Analysis from a Single Center in China. Research and Practice in Thrombosis and Haemostasis, 6, e12723.
https://doi.org/10.1002/rth2.12723
[6] Shinozawa, K., Yada, K., Kojima, T., et al. (2021) Spectrum of F8 Genotype and Genetic Impact on Inhibitor Development in Patients with Hemophilia A from Multicenter Cohort Studies (J-HIS) in Japan. Thrombosis and Haemostasis, 121, 603-615.
https://doi.org/10.1055/s-0040-1721385
[7] Nasirnejad Sola, F., Morovvati, S., Sabetghadam Moghadam, M. and Entezari, M. (2020) Mutation Detection and Inhibitor Risk in Iranian Patients with Hemophilia A: Six Novel Mutations. Clinical Case Reports, 8, 2976-2985.
https://doi.org/10.1002/ccr3.3294
[8] 龚鑫, 何志旭, 李燕, 等. 贵州省血友病A患儿治疗后抑制物形成的影响因素[J]. 贵州医科大学学报, 2023, 48(1): 77-81.
[9] McGill, J.R., Simhadri, V.L. and Sauna, Z.E. (2021) HLA Variants and Inhibitor Development in Hemophilia A: A Retrospective Case-Controlled Study Using the ATHN Dataset. Frontiers in Medicine (Lausanne), 8, Article 663396.
https://doi.org/10.3389/fmed.2021.663396
[10] Mancuso, M.E., Fischer, K., Santagostino, E., et al. (2017) Risk Factors for the Progression from Low to High Titres in 260 Children with Severe Haemophilia A and Newly Developed Inhibitors. Thrombosis and Haemostasis, 117, 2274-2282.
https://doi.org/10.1160/TH17-01-0059
[11] Zhou, J., Ding, Q., Chen, Z., et al. (2015) Risk Factors Associated with Inhibitor Development in Chinese Patients with Haemophilia B. Haemophilia, 21, e286-e293.
https://doi.org/10.1111/hae.12684
[12] 王稳, 崔东艳, 蒋丽娟, 等. 20例抑制物阳性的血友病A患者的临床分析[J]. 临床血液学杂志, 2021, 34(1): 31-34.
[13] Ahmed, A.E. and Pratt, K.P. (2023) Race, Ethnicity, F8 Variants, and Inhibitor Risk: Analysis of the “My Life Our Future” Hemophilia A Database. Journal of Thrombosis and Haemostasis, 21, 800-813.
https://doi.org/10.1016/j.jtha.2022.12.017
[14] Tucunduva, A., Prezotti, A.N., Siqueira, L.H., et al. (2017) Lower Risk of Factor VIII Inhibitors among Severe Hemophilia A Patients with Indigenous Background from Brazil. Research and Practice in Thrombosis and Haemostasis, 1, 732-733.
[15] Schwaab, R., Pavlova, A., Albert, T., Caspers, M. and Oldenburg, J. (2013) Significance of F8 Missense Mutations with Respect to Inhibitor Formation. Thrombosis and Haemostasis, 109, 464-470.
https://doi.org/10.1160/TH12-07-0521
[16] Gorski, M.M., Blighe, K., et al. (2016) Whole-Exome Sequencing to Identify Genetic Risk Variants Underlying Inhibitor Development in Severe Hemophilia A Patients. Blood, 127, 2924-2933.
https://doi.org/10.1182/blood-2015-12-685735
[17] Lotta, L.A., Fornili, M., Ambrogi, F., et al. (2013) Rare Genetic Variants of the Protein-Coding Area of the Genome and the Risk of Inhibitor Development: An Exome-Sequencing Study of 28 Patients with Severe Hemophilia A. Blood, 122, 571.
https://doi.org/10.1182/blood.V122.21.571.571
[18] Liu, G., Sun, J., Li, Z., Chen, Z., Wu, W. and Wu, R. (2023) F9 Mutations Causing Deletions Beyond the Serine Protease Domain Confer Higher Risk for Inhibitor Development in Hemophilia B. Blood, 141, 677-680.
https://doi.org/10.1182/blood.2022017871
[19] Álvaro-Benito, M. and Freund, C. (2020) Revisiting Nonclassical HLAII Functions in Antigen Presentation: Peptide Editing and Its Modulation. HLA, 96, 415⁃429.
https://doi.org/10.1111/tan.14007
[20] Kempton, C.L. and Payne, A.B. (2018) HLA-DRB1-Factor VIII Binding Is a Risk Factor for Inhibitor Development in Nonsevere Hemophilia: A Case-Control Study. Blood Advances, 2, 1750-1755.
https://doi.org/10.1182/bloodadvances.2018019323
[21] Diego, V.P., Luu, B.W., Garza, A., et al. (2020) Disentangling the Effects of HLA DRB1*15:01 and DQB1*06:02 to Establish the True HLA Risk Allele for Inhibitor Development in Treating Hemophilia A. Blood, 136, 1-2.
https://doi.org/10.1182/blood-2020-142716
[22] Ferrante, A., Mosher, B. and Hoffman, M. (2015) Immune-Related Gene Polymorphisms as Risk Factors for the Development of Factor VIII Inhibitors in Hemophilia A Patients: A Sibling-Pair Association Analysis (HUM1P.257). The Journal of Immunology, 194, 52.6.
https://doi.org/10.4049/jimmunol.194.Supp.52.6
[23] Pergantou, H., Moraloglou, V.O., Economou, M., et al. (2013) Impact of HLA Alleles and Cytokine Polymorphisms on Inhibitors Development in Children with Severe Haemophilia A. Haemophilia, 19, 706-710.
https://doi.org/10.1111/hae.12168
[24] Hosseinia, S., Arabib, S., Yaric, F., et al. (2019) HLA-DRB1*01:01, but Not HLA-DRB1:1503 or HLA-DRB1*11, Is Associated with Decreased Inhibitor Risk in Iranian Hemophilia A Patients. Transfusion and Apheresis Science, 58, 669-673.
https://doi.org/10.1016/j.transci.2019.08.019
[25] Naz, A., Ahmed, S., Nadeem, M. and Shamsi, T. (2013) Development of Factor VIII Inhibitors and Its Association with HLA Class I and II Alleles in Pakistani Hemophilia A Patients. Journal of Thrombosis and Haemostasis, 11, 926.
[26] Liang, H., Yang, L.-H and Liu, X.-E. (2013) Correlation between Presence of Factor VIII Inhibitor and HLA-DQA1 Gene Polymorphisms. Chinese Remedies & Clinics, 13, 833-836.
[27] Aytac, S., Altan, I., Üzümcügil, A., Gumruk, F. and Cetin, M. (2016) Combined Administration of FVIII and Bypassing Agents in the Management of Difficult Hemophilia A Patients with Inhibitor. Haemophilia, 22, 105-106.
[28] Hodeib, H., El Amrousy, D., Youssef, A., Elaskary, E. and Fouda, M. (2022) BAFF rs9514828 Gene Polymorphism and the Risk of the Development of Inhibitors in Children with Severe Haemophilia A. Haemophilia, 28, 472-479.
https://doi.org/10.1111/hae.14555
[29] Soori, S., Dadashizadeh, G., Dorgalaleh, A., et al. (2019) Relationship between Single-Nucleotide Polymorphisms of Tumor Necrosis Factor Alpha, Interleukin-10, Factor II and Factor V with Risk of Inhibitor Development in Patients with Severe Hemophilia A. Cardiovascular & Hematological Disorders-Drug Targets, 19, 228-232.
https://doi.org/10.2174/1871529X19666190206152315
[30] El Demerdash, D., Ayad, A., Mohamed, D., Mattar, M. and Sadek, H. (2018) Study the Polymorphism of Tumor Necrosis Factor Alpha (TNF-α) Gene and the Risk of Development of FVIII Inhibitors in Egyptian Hemophilia A Patients: A Single Center Experience. Research and Practice in Thrombosis and Haemostasis, 2, 356-357.
[31] Lu, Y., Ding, Q., Dai, J., Wang, H. and Wang, X. (2012) Impact of Polymorphisms in Genes Involved in Autoimmune Disease on Inhibitor Development in Chinese Patients with Haemophilia A. Thrombosis and Haemostasis, 107, 30-36.
https://doi.org/10.1160/TH11-06-0425
[32] Bachelet, D., Albert, T., Mbogning, C., et al. (2019) Risk Stratification Integrating Genetic Data for Factor VIII Inhibitor Development in Patients with Severe Hemophilia A. PLOS ONE, 14, e0218258.
https://doi.org/10.1371/journal.pone.0218258
[33] Boulassel, M.-R., Al-Ghonimi, M., Al-Balushi, B., et al. (2018) Regulatory B Cells Are Functionally Impaired in Patients Having Hemophilia A with Inhibitors. Clinical and Applied Thrombosis/Hemostasis, 24, 618-624.
https://doi.org/10.1177/1076029617702244
[34] Sadek, H., Youssry, I., Ibrahim, N.S.E., Abou-Elalla, A.A., Atef, G. and Mousa, S.M. (2017) The Development of FVIII Inhibitors in Relation to IL10 Gene Polymorphism in Hemophilia A Egyptian Pediatric Patients. Fetal and Pediatric Pathology, 36, 184-189.
https://doi.org/10.1080/15513815.2017.1281363
[35] Naderi, N., Ebrahimzadeh, F., Jazebi, M., Namvar, A., Hashemi, M. and Bolhassani, A. (2018) Polymorphisms in the TGF-β1 (rs1982037) and IL-2 (rs2069762, rs4833248) Genes Are Not Associated with Inhibitor Development in Iranian Patients with Hemophilia A. Hematology, 23, 839-843.
https://doi.org/10.1080/10245332.2018.1498168
[36] Marwanta, S., Muhammad, F., Maryono, S., et al. (2022) Association between Interleukin-2 (rs2069762) Gene Polymorphism and FVIII Inhibitor Development in Indonesian Patients with Severe Hemophilia A. Medical Journal of Indonesia, 31, 213-217.
https://doi.org/10.13181/mji.oa.236439
[37] Hassab, H., Hanafi, M., Abdelmaksoud, A. and ElSayed, S. (2018) Impact of Interleukin-6 and Interleukin-10 Gene Polymorphisms on Inhibitor Development in Patients with Moderate and Severe Hemophilia A. Blood, 132, 5026.
https://doi.org/10.1182/blood-2018-99-117479
[38] Ding, K.Y., Ji, W.C., Wu, J.S., Li, T. and Sheng, Y.Y. (2014) Higher Frequency of CD4 CD25High Treg Cells in Hemophilia Patients with Factor VIII Inhibitor. Genetics and Molecular Research, 13, 1774-1781.
https://doi.org/10.4238/2014.March.17.5
[39] El-Asrar, M.A., Hamed, A.E.S., Darwish, Y.W., Ismail, E.A.R. and Ismail, N.A. (2016) Assessment of the Frequency of Regulatory T Cells (CD4 CD25 CD127) in Children with Hemophilia A: Relation to Factor VIII Inhibitors and Disease Severity. Blood Coagulation & Fibrinolysis, 27, 42-46.
https://doi.org/10.1097/MBC.0000000000000377
[40] Li, Y., Chen, Z., Li, G., et al. (2018) Expression of CTLA-4 and CD28 in Hemophilia A Children with FVIII Inhibitor. Journal of Capital Medical University, 3, 309-313.
[41] Arandi, N., Zekavat, O.R., Shokrgozar, N., Shahsavani, A., Golmoghaddam, H. and Kalani, M. (2023) Altered Frequency of FOXP3 Regulatory T Cells Is Associated with Development of Inhibitors in Patients with Severe Hemophilia A. International Journal of Laboratory Hematology, 45, 953-960.
https://doi.org/10.1111/ijlh.14139
[42] Bafunno, V., Santacroce, R., Chetta, M., et al. (2012) Polymorphic miRNA-Mediated Gene Contribution to Inhibitor Development in Haemophilia A. Haemophilia, 18, 1003-1007.
https://doi.org/10.1111/j.1365-2516.2012.02882.x
[43] Astermark, J., Donfield, S.M., Gomperts, E.D., et al. (2013) The Polygenic Nature of Inhibitors in Hemophilia A: Results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort. Blood, 121, 1446-1454.
https://doi.org/10.1182/blood-2012-06-434803
[44] Chen, A.C., Cai, X., Li, C., Khoryati, L., Gavin, M.A. and Miao, C.H. (2020) A Treg-Selective IL-2 Mutein Prevents the Formation of Factor VIII Inhibitors in Hemophilia Mice Treated with Factor VIII Gene Therapy. Frontiers in Immunology, 11, Article 638.
https://doi.org/10.3389/fimmu.2020.00638
[45] Zuccherato, L.W., Elói-Santos, S.M., Jardim, L.L., et al. (2019) Variation of rs3754689 at Lactase Gene and Inhibitors in Admixed Brazilian Patients with Hemophilia A. Haematologica, 104, e527-e529.
https://doi.org/10.3324/haematol.2019.220608
[46] Mirbehbahani, N.B., Rashidbaghan, A., Livani, S. and Khosravi, A. (2015) Relation between Inhibitor Production and BclI/Intron 18 and VNTR ST14 Polymorphisms in an Iranian Population with Hemophilia A. Haematologica, 100, 672.
[47] Mirbehbahani, N., Khosravi, A., Livani, S., Rashidbaghan, A., Jahazi, A. and Ebneghasem, R. (2020) The Role of Genetic and Environmental Factors in the Development of Inhibitors in Patients with Hemophilia A in the North of Iran. Egyptian Journal of Haematology, 45, 197-201.
https://doi.org/10.4103/ejh.ejh_16_20
[48] Fidancı, İ.D., Zülfikar, B., Kavaklı, K., et al. (2014) A Polymorphism in the IL-5 Gene Is Associated with Inhibitor Development in Severe Hemophilia A Patients. Turkish Journal of Haematology, 31, 17-24.
https://doi.org/10.4274/Tjh.2012.0197
[49] De Alencar, J.B., Macedo, L.C., De Barros, M.F., et al. (2015) New Associations: INFG and TGFB1 Genes and the Inhibitor Development in Severe Haemophilia A. Haemophilia, 21, e312-e316.
https://doi.org/10.1111/hae.12685
[50] Abdulqader, A.M.R., Mohammed, A.I. and Rachid, S. (2019) Polymorphisms in the Cytotoxic T Lymphocyte-Associated Protein-4 Immune Regulatory Gene and Their Impact on Inhibitor Development in Patients with Hemophilia A. Journal of International Medical Research, 47, 4981-4992.
https://doi.org/10.1177/0300060519860329
[51] Bahrami Zadegan, S., Mousavi, S.H., Damavandi, N., Samiee Aref, M.H. and Zeinali, S. (2020) Investigating the Influence of LCT rs3754689 Polymorphism on Inhibitor Development in Iranian and Afghan Patients with Severe Hemophilia A. Blood Coagulation & Fibrinolysis, 31, 11-15.
https://doi.org/10.1097/MBC.0000000000000860
[52] Liu, W., Lyu, C., Wang, W., et al. (2022) Risk Factors for Inhibitors in Hemophilia A Based on RNA-Seq and DNA Methylation. Research and Practice in Thrombosis and Haemostasis, 6, e12794.
https://doi.org/10.1002/rth2.12794
[53] Shang, B., Yang, S., Lei, P., et al. (2020) Clinical Study on Factor VIII Inhibitor in Children with Hemophilia A. Chinese Journal of Hematology, 41, 138-142.
[54] Lochan, A., Macaulay, S., Chen, W., Mahlangu, J. and Krause, A. (2014) Genetic Factors Influencing Inhibitor Development in a Cohort of South African Haemophilia A Patients. Haemophilia, 20, 687-692.
https://doi.org/10.1111/hae.12436
[55] Gunasekera, D., Ettinger, R.A., Fletcher, S.N., et al. (2015) Factor VIII Gene Variants and Inhibitor Risk in African American Hemophilia A Patients. Blood, 126, 895-904.
https://doi.org/10.1182/blood-2014-09-599365
[56] Franchini, M., Coppola, A., Mengoli, C., et al. (2017) Blood Group O Protects against Inhibitor Development in Severe Hemophilia A Patients. Seminars in Thrombosis and Hemostasis, 43, 69-74.
https://doi.org/10.1055/s-0036-1592166
[57] Franchini, M., Coppola, A., Santoro, C., et al. (2021) ABO Blood Group and Inhibitor Risk in Severe Hemophilia A Patients: A Study from the Italian Association of Hemophilia Centers. Seminars in Thrombosis and Hemostasis, 47, 84-89.
https://doi.org/10.1055/s-0040-1718870
[58] Arshad, S., Singh, A., Awasthi, N.P., Kumari, S. and Husain, N. (2018) Clinicopathological Parameters Influencing Inhibitor Development in Patients with Hemophilia A Receiving On-Demand Therapy. Therapeutic Advances in Hematology, 9, 213-226.
https://doi.org/10.1177/2040620718785363
[59] Abdi, A., Eckhardt, C.L., Van Velzen, A.S., et al. (2021) Treatment-Related Risk Factors for Inhibitor Development in Non-Severe Hemophilia A after 50 Cumulative Exposure Days: A Case-Control Study. Journal of Thrombosis and Haemostasis, 19, 2171-2181.
https://doi.org/10.1111/jth.15419
[60] Marrugo, A.C., Noriega, N., Elles, R., Fontalvo, R., Florez, Tanus, A. and Alvis-Guzman, N. (2020) PRO40 Factors Associated with the Formation of Inhibitors in Patients with Hemophilia of the Subsidized Regime in Colombia. Value in Health, 23, S335-S336.
https://doi.org/10.1016/j.jval.2020.04.1266
[61] Susanah, S., Raspati, H., Sari, N.M., et al. (2021) Serum TNF-α Level as a Possible Predictor of Inhibitor Levels in Severe Hemophilia A. BioMed Research International, 2021, Article ID: 6483490.
https://doi.org/10.1155/2021/6483490
[62] Blatný, J., Kardos, M., Miljic, P., et al. (2021) Incidence of Inhibitor Development in PUPs with Severe Haemophilia A in the CEE Region between 2005 and 2015. Thrombosis Research, 198, 196-203.
https://doi.org/10.1016/j.thromres.2020.12.004
[63] Zhang, Q., Yang, X. and Liu, X. (2019) Study on Risk Factors and Follow-Up of Coagulation Factor VIII Inhibitor in Children with Hemophilia A. Chinese Journal of Thrombosis and Hemostasis, 25, 4-7.
[64] Yada, K. (2021) Risk Factors of Inhibitor Development among Hemophilia Patients Revealed in a 10-Year Prospective Cohort Study in Japan, J-HIS2 (Japan Hemophilia Inhibitor Study 2). Rinsho Ketsueki, 62, 790-800.
[65] Nyanchama, L., Magutu, V., Shikuku, K. and Ongondi, M. (2023) The Prevalence of and Risk Factors Associated with Factor VIII Inhibitors in Patients with Hemophilia A Seen at the Kenyatta National Hospital. International Journal of Laboratory Hematology, 45, 131-131.
[66] van Velzen, A.S., Eckhardt, C.L., Peters, M., et al. (2013) Clinical Risk Factors in the Development of Inhibitors in Non-Severe Hemophilia A Patients: The First Results of the INSIGHT Case-Control Study. Journal of Thrombosis and Haemostasis, 11, 91.
[67] Astermark, J., Ay, C., Carvalho, M., et al. (2022) New Inhibitors in the Ageing Population: A Retrospective, Observational, Cohort Study of New Inhibitors in Older People with Hemophilia. Thrombosis and Haemostasis, 122, 905-912.
https://doi.org/10.1055/a-1642-4067
[68] Bolina-Santos, E., Chaves, D.G., Da Silva-Malta, M.C.F., et al. (2022) HCV Infection in Hemophilia A Patients Is Associated with Altered Cytokines and Chemokines Profile and Might Modulate the Levels of FVIII Inhibitor. Journal of Medical Virology, 94, 683-691.
https://doi.org/10.1002/jmv.27432
[69] Santos, E.M., de Melo Silva, J., Barbosa, A.N. and Pontes, G.S. (2022) Clinico-Epidemiological and Sociodemographic Profile of Patients with Hemophilia in the Brazilian Amazon: High Prevalence of Hepatitis C Infection and Its Possible Corrrelation with Inhibitor Development. Frontiers in Public Health, 10, Article 963790.
https://doi.org/10.3389/fpubh.2022.963790
[70] Van Helden, P.M., Van Haren, S.D., Fijnvandraat, K., Van Den Berg, H.M. and Voorberg, J. (2010) Factor VIII-Specific B Cell Responses in Hemophilia A Patients with Inhibitors. Haemophilia, 16, 35-43.
https://doi.org/10.1111/j.1365-2516.2010.02215.x