APAP诱导的肝损伤中的线粒体自噬
Mitochondrial Autophagy in APAP-Induced Liver Injury
DOI: 10.12677/acm.2024.143956, PDF, HTML, XML, 下载: 32  浏览: 52 
作者: 翟燕玲, 徐 强*:黑龙江中医药大学基础医学院,黑龙江 哈尔滨
关键词: 药物性肝损伤APAP线粒体自噬机制Drug-Induced Liver Injury APAP Mitochondrial Autophagy Mechanism
摘要: 药物性肝损伤是我国非感染性肝病中的第二大类别,也是美国肝衰竭和肝移植的主要原因。从机理上讲,药物性肝损伤可分为直接型(即剂量依赖型、内在型和可预测型)、特异型(大多数与剂量无关、特异型和不可预测型)两种主要类型。在临床前研究中,大多数药物引发的非特异性肝毒性通常会被及时发现,因此不会进一步用于临床应用,然而,有一个例外情况,那就是对乙酰氨基酚(扑热息痛,APAP)在正常治疗剂量下,这种药物是安全可靠的,但一旦超过建议用量,可能会对肝脏造成严重的危害,甚至有可能引发急性肝衰竭。在正确使用下,它对患者的健康有积极的影响,但滥用或过量使用则可能带来可怕的后果,特别是对肝脏健康的影响。在发达国家如欧美,过量服用APAP是引发急性肝衰竭的主要因素。氧化应激是APAP诱导的肝脏致病性中一个关键的起始事件,线粒体自噬已被证明可促进生存并在抗氧化反应中发挥关键作用。因此,深入探讨APAP所引发的肝损害机制,以及线粒体自噬在对乙酰氨基酚诱导的肝损害中的保护机制,有助于有针对性地开发用于干预肝损伤进程的治疗目标和计划。
Abstract: Drug-induced liver injury is the second largest category of non-infectious liver disease in China, and it is also the main cause of liver failure and liver transplantation in the United States. In terms of mechanism, drug-induced liver injury can be divided into two main types: direct type (dose-dependent, intrinsic and predictable) and specific type (mostly dose-independent, specific and unpredictable). In preclinical studies, non-specific hepatotoxicity caused by most drugs is usually detected in time, so it will not be further used in clinical applications. However, there is an exception that acetaminophen (APAP) is safe and reliable at normal therapeutic doses, but once it exceeds the recommended dose, it may cause serious harm to the liver and may even cause acute liver failure. When used correctly, it has a positive impact on the health of patients, but abuse or overuse may have dire consequences, especially on liver health. In developed countries such as Europe and the United States, excessive use of APAP is the main factor leading to acute liver failure. Oxidative stress is a key initial event in APAP-induced liver pathogenicity, and mitophagy has been shown to promote survival and play a key role in the antioxidant response. Therefore, in-depth study of the mechanism of liver damage caused by APAP and the protective mechanism of mitophagy in acetaminophen-induced liver damage will help to develop therapeutic targets and plans for intervening in the process of liver injury.
文章引用:翟燕玲, 徐强. APAP诱导的肝损伤中的线粒体自噬[J]. 临床医学进展, 2024, 14(3): 2151-2155. https://doi.org/10.12677/acm.2024.143956

1. APAP诱导肝损伤的机制

APAP在常规安全剂量下时,通过血液循环进入肝脏 [1] 。APAP的代谢主要发生在肝脏的微粒体内。约90% APAP在UDP-葡萄糖醛基转移酶和磺基转移酶的催化下生成无毒性的葡萄糖醛基化和硫酸化的代谢物,这些代谢物通过尿液被排出体外 [2] 。大约2%的APAP在没有任何代谢的情况下通过尿液排出。其余10%以下的APAP经细胞色素P450酶2E1 (CYP2E1)代谢,产生毒性代谢产物N-乙酰苯醌亚胺(NAPQI) [3] ,NAPQI在谷胱甘肽硫转移酶的催化作用下,与谷胱甘肽(GSH)结合生成无毒性的硫醇尿酸,通过泌尿系统排出体外 [4] 。在APAP过量的情况下,NAPQI会大量积累,并迅速消耗肝脏内的谷胱甘肽(GSH)。当肝细胞内GSH被耗竭,过量的NAPQI会与带有巯基的细胞蛋白质共价结合,尤其是线粒体蛋白质 [5] 。线粒体中谷胱甘肽过氧化物酶(GSH-Px)和腺嘌呤核苷三磷酸合成酶a亚基等都是毒性产物NAPQI结合的靶点,有关研究发现NAPQI对ATP酶进行共价修饰后导致ATP酶活性总体下降35% [6] 。NAPQI与GSH-Px的结合导致后者活性降低了60%,甚至导致ATP合成的停止 [7] 。此外,NAPQI还可干扰线粒体电子传递链(ETC)中的复合物I和II,导致电子泄漏,形成超氧自由基 [8] 。生理情况下,超氧化物歧化酶(Superoxide Dismutase, SOD)可催化超氧自由基分解为H2O2和O2从而保护细胞免受超氧自由基的破坏,H2O2进一步与GSH反应或被过氧化氢酶和GPx分解 [9] 。如果不经过SOD分解,超氧自由基和一氧化氮(NO)会相互作用,生成过氧亚硝酸盐是触发线粒体氧化应激的重要起始步骤之一,它可能诱导蛋白质发生硝化反应。然而,当存在NAPQI (N-乙酰对氨基苯酚)时,情况则会有所不同,无论是GSH的储备还是GPx的活性都会被下调,除此之外,复合体II在电子传递链上也可能会受到NAPQI的特定抑制,这可能导致电子从线粒体泄漏到细胞质中,进一步增加超氧自由基的产生。这些多重因素的相互作用共同引发了线粒体内的氧化应激反应。

线粒体内的氧化应激反应会导致肝细胞坏死,但肝损伤的第二步是作为对坏死肝细胞的反应的无菌性炎症 [1] 。线粒体在APAP代谢物作用下发生的氧化应激,最终导致线粒体通透性增加,内切酶G和凋亡诱导因子从线粒体中释放出来,然后转移到细胞核中,诱导DNA断裂 [10] 。最终,广泛的线粒体功能紊乱和核DNA损伤导致细胞坏死 [11] 。坏死细胞破裂会释放损伤相关分子模式(DAMPs),其中包括高迁移率族蛋白1 (HMGB1)、线粒体和核DNA、ATP。DAMP主要与巨噬细胞上的TLRs结合,导致细胞因子和趋化因子基因表达的转录激活,大量细胞炎症因子和趋化因子得以释放,产生炎症反应 [12] [13] 。

2. 线粒体自噬在APAP诱导的肝损伤中的保护性作用

由以上可知线粒体损伤是导致APAP诱导的肝毒性的关键细胞事件,线粒体功能障碍是APAP诱导的细胞死亡的核心,而APAP-AD的形成是线粒体损伤的关键起始事件,这对于决定APAP诱导的坏死和肝损伤的细胞死亡信号事件的放大至关重要 [14] 。因此,及时清除APAP-AD和受损的线粒体以维持正常的线粒体功能并提供足够的ATP是小鼠和人类从APAP中毒中恢复的关键过程 [15] [16] 。

线粒体自噬(mitophagy)作为线粒体质量控制系统的一个重要组成部分,扮演着至关重要的角色。线粒体膜电位较低部分通过分裂裂解下来并被自噬体包裹,最终被溶酶体清除的过程即线粒体自噬 [17] 。

3. 自噬的诱导及过程

肝细胞暴露于过量APAP后,由于氧化应激导致ATP合成障碍,加上可去除磷酸基团的碱性磷酸酶水平升高,导致ATP浓度降低 [18] [19] 。当细胞能量供应受到限制或不足时,细胞内的AMPK (AMP-Activated Protein Kinase)能量感应蛋白将会被激活。这一过程在细胞代谢调节中扮演着关键的角色。众所周知,哺乳动物自噬调节的分子机制涉及unK51like激酶1 (ulK1),即酵母蛋白激酶atg1的哺乳动物同源物。ulK1通过磷酸化beclin1和激活vps34脂质激酶诱导自噬 [20] 。AMP激活蛋白激酶(AMPK)被激活后,通过磷酸化Ser317和Ser777直接激活ulK1来刺激自噬或线粒体自噬 [21] [22] 。另一方面,AMPK可以磷酸化mTOR的上游TSC2 [23] 和mTORC1的RAPTOR亚基 [24] ,mTOR通过磷酸化ULK1 Ser757来阻止ULK1的激活,这种磷酸化作用可降低mTOR的活性,从而启动自噬。近年的研究发现AMPK的α2亚基可以通过磷酸化PINK1的Ser495启动线粒体自噬 [25] 。

AMPK在APAP所致肝损伤过程中能灭活mTORC1和磷基化物,激活ULK1,自噬因此被诱导。ULK1/2复合物的形成触发了双膜自噬体的形成。在成核阶段,自噬前体结构由亚细胞膜发育而成,在单独的膜中形成吞噬小体。在哺乳动物中,将LC3-I (非偶联细胞质形式)转换为LC3-II (偶联自噬体膜结合磷脂酰乙醇胺形式)被认为是自噬小体形成的标志 [26] [27] 。LC3的脂质化促进了其与形成的自噬体膜的相互作用,从而促进了货物向自噬体的募集,并允许分离膜发生扩张和关闭 [28] 。当启动、成核和伸长完成后,膨胀膜围绕其货物闭合,形成一个完整的自吞噬体,与溶酶体融合形成自溶酶体。一旦融合完成,自溶酶体的内容被降解,产生的分子被释放回细胞质中,作为细胞生存的新能源。

4. 线粒体自噬的途径

线粒体自噬在哺乳动物中的一个主要调控机制是PINK1­Pakin信号通路。PINK1是一种丝氨酸/苏氨酸蛋白激酶,它作为一个分子传感器,监测线粒体状态并保护细胞免受压力引起的线粒体功能障碍。在健康的线粒体中,线粒体跨膜电位驱动PINK1通过线粒体外膜(OMM)的易位酶导入到线粒体内膜(IMM) [29] ,PINK1随后被线粒体加工肽酶和前蛋白相关菱形样蛋白酶连续蛋白水解切割并发生泛素化降解,因而生理条件下细胞PINK1并不会聚集在线粒体外膜,此时PINK1-Parkin通路处于非激活状态 [30] 。线粒体受损会导致内膜电位消散,即膜电位发生去极化或其内有错误折叠蛋白堆积时,PINK1由线粒体外膜转运至内膜的过程被阻断,PINK1聚集在线粒体外膜自身磷酸化并募集胞质中的Parkin蛋白至线粒体激活 [31] 。Parkin也可被AMPK激活,诱导Parkin的E3泛素化连接酶活性 [32] 。因为Parkin拥有E3酶活性,它具有能力将泛素分子与线粒体上的底物蛋白结合,从而引发膜上蛋白质的泛素化修饰。发生泛素化的线粒体则可以被接头蛋白P62 (通过其泛素相关结构域结合泛素化蛋白)识别,LC3通过与P62 (LIR区域与LC3相互作用)结合将泛素化的线粒体募集到自噬小泡膜上,随后形成线粒体自噬体 [33] 。线粒体自噬体与溶酶体融合,最终在溶酶体内水解酶的作用下发生降解。这个过程有助于清除受损的线粒体,是细胞中线粒体质量控制的一个关键机制,有助于维护线粒体的稳定健康和正常功能。

5. 总结

在西方发达国家,过度使用APAP是导致药物性肝损害和急性肝功能衰竭最普遍的诱因之一。在临床实践中,常常采用一种名为N-乙酰半胱氨酸(N-Acetyl-Cysteine, NAC)的合成谷胱甘肽(GSH)前体物质来对抗由APAP过量引起的急性肝损伤。然而,需要特别注意的是,NAC的治疗窗口期相对较短,通常在8到12小时之间,而且高剂量的NAC可能会引发不良反应,包括过敏等。因此,在使用NAC时,医务人员需要仔细权衡风险和益处,以确保有效而安全的治疗。因此,迫切需要深入研究APAP引发的损伤的深层分子机制,以及线粒体自噬在对乙酰氨基酚引发的肝损伤中如何发挥保护作用。这种研究有望为我们找到新的治疗APAP引起的药物性肝损伤的方法,发现新的治疗靶点,甚至开发新的药物,从而提高治疗效果和患者的生活质量。这些努力将有望减轻APAP过量使用带来的潜在健康风险,为患者提供更好的治疗选择。

NOTES

*通讯作者。

参考文献

[1] 崔本文. 对乙酰氨基酚所致肝损伤炎症机制及竹节参皂苷V的干预作用研究[D]: [博士学位论文]. 延吉: 延边大学, 2020: 4-5.
[2] McGill, M.R. and Jaeschke, H. (2013) Metabolism and Disposition of Acetaminophen: Recent Advances in Relation to Hepatotoxicity and Diagnosis. Pharmaceutical Research, 30, 2174-2187.
https://doi.org/10.1007/s11095-013-1007-6
[3] Cohen, S.D., Pumford, N.R., Khairallah, E.A., et al. (1997) Selective Protein Covalent Binding and Target Organ Toxicity. Toxicology and Applied Pharmacology, 143, 1-12.
https://doi.org/10.1006/taap.1996.8074
[4] Iverson, S.V., Eriksson, S., Xu, J., et al. (2013) A Txnrd1-Dependent Metabolic Switch Alters Hepatic Lipogenesis, Glycogen Storage, and Detoxification. Free Radical Biology and Medicine, 63, 369-380.
https://doi.org/10.1016/j.freeradbiomed.2013.05.028
[5] Yuan, L. and Kaplowitz, N. (2013) Mechanisms of Drug-Induced Liver Injury. Clinics in Liver Disease, 17, 507-518.
https://doi.org/10.1016/j.cld.2013.07.002
[6] Qiu, Y., Benet, L.Z. and Burlingame, A.L. (1998) Identification of the Hepatic Protein Targets of Reactive Metabolites of Acetaminophen in Vivo in Mice Using Two-Dimensional Gel Electrophoresis and Mass Spectrometry. Journal of Biological Chemistry, 273, 17940-17953.
https://doi.org/10.1074/jbc.273.28.17940
[7] Tirmenstein, M.A. and Nelson, S.D. (1990) Acetaminophen-Induced Oxidation of Protein Thiols. Contribution of Impaired Thiol-Metabolizing Enzymes and the Breakdown of Adenine Nucleotides. Journal of Biological Chemistry, 265, 3059-3065.
https://doi.org/10.1016/S0021-9258(19)39733-9
[8] Du, K., Ramachandran, A., Weemhoff, J.L., et al. (2016) Editor’s Highlight: Metformin Protects against Acetaminophen Hepatotoxicity by Attenuation of Mitochondrial Oxidant Stress and Dysfunction. Toxicological Sciences, 154, 214-226.
https://doi.org/10.1093/toxsci/kfw158
[9] Yan, M., Huo, Y., Yin, S., et al. (2018) Mechanisms of Acetaminophen-Induced Liver Injury and Its Implications for Therapeutic Interventions. Redox Biology, 17, 274-283.
https://doi.org/10.1016/j.redox.2018.04.019
[10] Woolbright, B.L. and Jaeschke, H. (2017) Mechanisms of Acetaminophen-Induced Liver Injury. In: Ding, W.-X. and Yin, X.-M., Eds., Cellular Injury in Liver Diseases, Springer, Berlin, 55-76.
https://doi.org/10.1007/978-3-319-53774-0_3
[11] Gujral, J.S., Knight, T.R., Farhood, A., et al. (2002) Mode of Cell Death after Acetaminophen Overdose in Mice: Apoptosis or Oncotic Necrosis? Toxicological Sciences, 67, 322-328.
https://doi.org/10.1093/toxsci/67.2.322
[12] Jaeschke, H. and Ramachandran, A. (2024) Acetaminophen Hepatotoxicity: Paradigm for Understanding Mechanisms of Drug-Induced Liver Injury. Annual Review of Pathology: Mechanisms of Disease, 19, 453-478.
https://doi.org/10.1146/annurev-pathmechdis-051122-094016
[13] Yang, G., Zhang, L., Ma, L., et al. (2017) Glycyrrhetinic Acid Prevents Acetaminophen-Induced Acute Liver Injury via the Inhibition of CYP2E1 Expression and HMGB1-TLR4 Signal Activation in Mice. International Immunopharmacology, 50, 186-193.
https://doi.org/10.1016/j.intimp.2017.06.027
[14] Jaeschke, H., McGill, M.R. and Ramachandran, A. (2012) Oxidant Stress, Mitochondria, and Cell Death Mechanisms in Drug-Induced Liver Injury: Lessons Learned from Acetaminophen Hepatotoxicity. Drug Metabolism Reviews, 44, 88-106.
https://doi.org/10.3109/03602532.2011.602688
[15] McGill, M.R., Lebofsky, M., Norris, H.R.K., et al. (2013) Plasma and Liver Acetaminophen-Protein Adduct Levels in Mice after Acetaminophen Treatment: Dose-Response, Mechanisms, and Clinical Implications. Toxicology and Applied Pharmacology, 269, 240-249.
https://doi.org/10.1016/j.taap.2013.03.026
[16] Heard, K.J., Green, J.L., James, L.P., et al. (2011) Acetaminophen-Cysteine Adducts during Therapeutic Dosing and Following Overdose. BMC Gastroenterology, 11, Article No. 20.
https://doi.org/10.1186/1471-230X-11-20
[17] Shi, R., Guberman, M. and Kirshenbaum, L.A. (2018) Mitochondrial Quality Control: The Role of Mitophagy in Aging. Trends in Cardiovascular Medicine, 28, 246-260.
https://doi.org/10.1016/j.tcm.2017.11.008
[18] Tujios, S. and Fontana, R.J. (2011) Mechanisms of Drug-Induced Liver Injury: From Bedside to Bench. Nature Reviews Gastroenterology & Hepatology, 8, 202-211.
https://doi.org/10.1038/nrgastro.2011.22
[19] Hartmut, J.R.M.M. and Anup, R. (2012) Oxidant Stress, Mitochondria, and Cell Death Mechanisms in Drug-Induced Liver Injury: Lessons Learned from Acetaminophen Hepatotoxicity. Drug Metabolism Reviews, 44, 88-106.
https://doi.org/10.3109/03602532.2011.602688
[20] Russell, R.C., Tian, Y., Yuan, H., et al. (2013) ULK1 Induces Autophagy by Phosphorylating Beclin-1 and Activating VPS34 Lipid Kinase. Nature Cell Biology, 15, 741-750.
https://doi.org/10.1038/ncb2757
[21] Kim, J., Kundu, M., Viollet, B., et al. (2011) AMPK and MTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nature Cell Biology, 13, 132-141.
https://doi.org/10.1038/ncb2152
[22] Egan, D.F., Shackelford, D.B., Mihaylova, M.M., et al. (2011) Phosphorylation of ULK1 (HATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science, 331, 456-461.
https://doi.org/10.1126/science.1196371
[23] Inoki, K., Zhu, T. and Guan, K.L. (2003) TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival. Cell, 115, 577-590.
https://doi.org/10.1016/S0092-8674(03)00929-2
[24] Gwinn, D.M., Shackelford, D.B., Egan, D.F., et al. (2008) AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint. Molecular Cell, 30, 214-226.
https://doi.org/10.1016/j.molcel.2008.03.003
[25] Wang, B., Nie, J., Wu, L., et al. (2018) AMPKα2 Protects against the Development of Heart Failure by Enhancing Mitophagy via PINK1 Phosphorylation. Circulation Research, 122, 712-729.
https://doi.org/10.1161/CIRCRESAHA.117.312317
[26] Mizushima, N. (2010) The Role of the Atg1/ULK1 Complex in Autophagy Regulation. Current Opinion in Cell Biology, 22, 132-139.
https://doi.org/10.1016/j.ceb.2009.12.004
[27] Ravikumar, B., Sarkar, S., Davies, J.E., et al. (2010) Regulation of Mammalian Autophagy in Physiology and Pathophysiology. Physiological Reviews, 90, 1383-1435.
https://doi.org/10.1152/physrev.00030.2009
[28] Mizushima, N., Yoshimori, T. and Levine, B. (2010) Methods in Mammalian Autophagy Research. Cell, 140, 313-326.
https://doi.org/10.1016/j.cell.2010.01.028
[29] Shan, S., Shen, Z. and Song, F. (2018) Autophagy and Acetaminophen-Induced Hepatotoxicity. Archives of Toxicology, 92, 2153-2161.
https://doi.org/10.1007/s00204-018-2237-5
[30] Zawel, L., Le Dai, J., Buckhaults, P., et al. (1998) Human Smad3 and Smad4 Are Sequence-Specific Transcription Activators. Molecular Cell, 1, 611-617.
https://doi.org/10.1016/S1097-2765(00)80061-1
[31] Bayne, A.N. and Trempe, J.F. (2019) Mechanisms of PINK1, Ubiquitin and Parkin Interactions in Mitochondrial Quality Control and Beyond. Cellular and Molecular Life Sciences, 76, 4589-4611.
https://doi.org/10.1007/s00018-019-03203-4
[32] Lee, S.B., Kim, J.J., Han, S.A., et al. (2019) The AMPK-Parkin Axis Negatively Regulates Necroptosis and Tumorigenesis by Inhibiting the Necrosome. Nature Cell Biology, 21, 940-951.
https://doi.org/10.1038/s41556-019-0356-8
[33] Callegari, S., Oeljeklaus, S., Warscheid, B., et al. (2017) Phospho-Ubiquitin-PARK2 Complex as a Marker for Mitophagy Defects. Autophagy, 13, 201-211.
https://doi.org/10.1080/15548627.2016.1254852