焦亡在ARDS引起的肺血管内皮细胞功能障碍中的作用
The Role of Pyroptosis in the Dysfunction of Pulmonary Endothelial Cells Caused by ARDS
DOI: 10.12677/acm.2024.143921, PDF, HTML, XML, 下载: 56  浏览: 87  科研立项经费支持
作者: 田 雨*, 张 安#:重庆医科大学附属第二医院重症医学科,重庆;詹 柱#:重庆医科大学附属第二医院感染科,重庆
关键词: 急性呼吸窘迫综合征肺血管内皮细胞焦亡信号通路治疗Acute Respiratory Distress Syndrome Pulmonary Vascular Endothelial Cells Pyroptosis Signaling Pathways Treatment
摘要: 急性呼吸窘迫综合征(Acute Respiratory Distress Syndrome, ARDS)是一种严重且难以控制的急性肺部炎症情况,常与多种损伤因素相关。细胞焦亡是一种由炎性半胱氨酸蛋白酶(caspase)触发的程序性细胞死亡方式,其在ARDS的发生发展过程中发挥着重要作用。本文将综述肺血管内皮细胞焦亡在ARDS进展中的作用,并指出其作为潜在药物靶点的重要意义。
Abstract: Acute Respiratory Distress Syndrome (ARDS) is a severe and challenging acute lung inflammation condition often associated with various injurious factors. Pyroptosis is a form of programmed cell death triggered by inflammatory caspases. It plays a significant role in the occurrence and progression of ARDS. This article will review the role of pulmonary vascular endothelial cell pyroptosis in the advancement of ARDS and underscore its importance as a potential drug target.
文章引用:田雨, 詹柱, 张安. 焦亡在ARDS引起的肺血管内皮细胞功能障碍中的作用[J]. 临床医学进展, 2024, 14(3): 1895-1900. https://doi.org/10.12677/acm.2024.143921

1. 引言

急性呼吸窘迫综合征(Acute Respiratory Distress Syndrome, ARDS)是一种常见的致命性疾病,其病因复杂,可由多种直接或间接的原因引起 [1] [2] 。其特征是广泛的肺组织损伤和肺部血管通透性增加导致的难治性低氧血症 [3] 。近年来,对ARDS的病因和病理生理机制方面的研究取得了重大进展,但在治疗方面的研究进展相对有限 [4] [5] [6] [7] [8] 。目前,肺保护性通气和液体保守管理仍是ARDS患者最关键的生命支持方法。然而,由于这些措施多为被动的支持性治疗,对病情的进展缺乏有效的控制,导致ARDS的发生率和致死率仍在增加 [9] 。

肺血管内皮屏障的损害常推动ARDS的病理进程,内皮细胞焦亡在ARDS的恶化中起着重要作用,可导致细胞因子的过度释放并引发细胞因子风暴 [10] [11] [12] [13] 。由于肺血管内皮细胞在肺组织中广泛分布且具有独特作用,焦亡的发生不仅导致炎性细胞因子的释放,还损害了血管的完整性。此外,细胞焦亡过程中产生的损伤相关分子模式(DAMPs)还可进一步诱导邻近细胞的焦亡,其影响不仅局限于局部组织,还涉及广泛的组织损伤。因此,阐明ARDS与焦亡之间的相关性可能有助于从病因上寻找更有效的治疗急性肺损伤的方法,及时干预肺血管内皮细胞中焦亡的发生可能对ARDS的管理产生重要影响。

2. 细胞焦亡机制

细胞焦亡是一种程序性细胞死亡,它与炎症反应密切相关 [14] [15] 。焦亡的发生常通过与GSDMD (Gasdermin D)相关的经典途径及非经典途径触发。细胞在发生焦亡时伴随有细胞膜的破裂、细胞内容物的释放,以及细胞内部的炎症反应。

细胞焦亡是近年的热门研究领域。从发现到蓬勃发展也只过去了30年,它与炎症密切相关,是机体重要的免疫反应。2001年,Boise和Collins将这种死亡方式定义为细胞焦亡。此时,细胞焦亡这条复杂的通路里唯一清晰的是在感染后caspase-1可以活化IL-1β并引起细胞死亡,而caspase-1的上游和引起细胞焦亡的下游机制均不清楚 [16] 。在2002年,Martinon等首次提出了炎症小体的概念,证实包内受体NLRP1与接头蛋白ASC和caspase1可以组成复合体,参与对IL-1β的活化 [17] 。此后关于caspase-1活化的上游信号被深入研究,因而通过不同受体组成的经典炎症小体被相继发现 [18] [19] ,至此caspase上游机制基本研究清楚。2011年时,DixitVM团队发现了细胞焦亡的非经典途径:caspase-11可以通过未知机制感受到胞内菌的感染,可以不依赖caspase-1参与焦亡过程 [20] 。2013年时,该团队证实胞内菌可以通过LPS激活caspase-11,但caspase-11如何感应LPS仍然未知 [21] 。2014年,邵峰等人发现caspase-4/5/11可直接识别细胞内LPS诱导焦亡,而不需要其它胞内受体,完美解析了DixitVM团队在2011和2013年的工作 [22] 。2015年前后,邵峰团队、DixitVM团队及韩家淮团队先后发现了GSDMD分子是经典途径中caspase-1和非经典途径中caspase-4/5/11的下游分子 [23] [24] [25] 。除了GSDMD参与焦亡外,近些年越来越多的研究发现了GSDM家族中其他分子也在细胞焦亡中发挥着一定作用。在角质细胞被A组链球菌感染后。细胞内的GSDMA可被SpeB蛋白酶切割,从而引起角质细胞的焦亡 [26] 。GSDMB与caspase-1/3/4/6/7之间存在相互作用,既可通过经典途径诱发细胞焦亡,也可影响非经典途径中的相关蛋白触发焦亡 [27] [28] 。此外GSDME可经caspase-3参与焦亡 [29] 。

3. 肺血管内皮细胞焦亡与ARDS进展相关

肺血管内皮细胞负责调节血管张力、通透性、调节通气-灌注比以及与循环中的白细胞产生相互作用 [30] [31] [32] 。肺内皮细胞约占所有肺细胞的50%,具有接受心输出量的功能。因此,肺内皮细胞最有可能受到细菌内毒素和循环病原体的干扰。内皮广泛损伤引起的肺内皮屏障功能障碍是急性肺损伤的标志。肺血管内皮细胞是气–血屏障的重要组成部分,肺血管内皮细胞发生焦亡后,不但会导致肺内皮的完整性丧失,引起肺血管通透性增加,且过程中产生的多种炎性细胞因子如IL-1β、IL-18等可导致气-血屏障的损伤和炎症扩散,导致难治性低氧血症和ARDS [33] 。因而抑制肺内皮细胞焦亡、保护肺内皮的完整性,有可能成为治疗ARDS的重要策略。肺血管内皮细胞的损伤及死亡在ARDS发生发展的各个阶段均有发生。当肺组织受到病原微生物入侵后,内皮细胞膜上的TLR4可识别细菌内毒素LPS,随后引起下游经典炎症小体激活并切割GSDMD诱导内皮细胞焦亡 [12] 。此外LPS还可通过TLR4上调小鼠肺内皮细胞中caspase-11的表达,随后进入到细胞内的细菌可直接激活非经典炎症小体诱导内皮细胞焦亡 [34] 。内皮细胞中caspase-1的激活有不单单仅有上述一个来源,LPS可通过HMGB1/RAGE信号通路激活caspase-1触发炎症小体的形成,并引发内皮细胞对HMGB1的内吞作用。下游通路caspase-3和caspase-9可被活化的caspase-1激活,并启动caspase-3介导的焦亡通路 [29] 。NLRP1、NLRP3和NLRC4已被广泛研究诱导炎症小体的形成并参与caspase-1的活化,诱导肺微血管内皮细胞焦亡。但其活化方式不尽相同,这与其自身蛋白结构相关。细胞焦亡发生后,caspase-1的下游通路也发挥促炎作用,活化的caspase-1导致下游IL-1β、IL-6、IL-18、TNF-α的产生。IL-1β与其特异性受体结合后上调肺毛细血管内皮细胞中粘附因子的表达,从而促进炎症细胞趋化和活化进入肺组织,释放大量炎症因子,引发细胞因子风暴。同时,IL-1β还可以通过促进内吞作用破坏血管内皮(VE)-钙粘蛋白的细胞表面定位,增加毛细血管通透性导致肺间质水肿,引发ARDS [35] 。

4. 肺血管内皮细胞焦亡可能是ARDS的治疗新靶标

通过调节肺血管内皮细胞焦亡途径的上下游分子,干预内皮细胞焦亡的发生,为ARDS治疗提供了新的方向。在动物模型中,有很多研究通过抑制肺血管内皮细胞焦亡的发生,显著提高了ARDS小鼠的生存率。二甲双胍够抑制NLRP3炎症小体的激活和其诱导的焦亡,降低LPS处理后的小鼠肺组织中的caspase-1、GSDMD-NT和IL-1β蛋白的水平。此外,在体外实验中,二甲双胍还能降低NF-κB表达,并增加肺组织和肺内皮细胞中sirtuin 1 (SIRT1)的表达。该实验表明二甲双胍可能通过上调SIRT1的表达抑制了NF-κB/NLRP3缓解了的内细胞皮焦亡,从而减轻了LPS诱发的ARDS [13] 。还有研究证实经LPS处理后的小鼠血清中C5a水平及肺组织中C5aR含量均有增加,而使用C5aR抑制剂(W-54011)后,血清中C5a水平明显下降细胞焦亡也随之减少,表明通过抑制肺血管内皮细胞与血液中C5a的接触也可抑制内皮细胞发生焦亡,并缓解LPS诱导的ARDS [11] 。有研究表明二氢杨梅素(DHM)能显着减弱CLP诱导的急性肺损伤,其机制是通过抑制NLRP3炎性体的激活减少肺血管内皮细胞焦亡实现的 [36] 。有研究证实通过抑制Kindlin-2表达对于内皮细胞具有一定保护作用,可减少内皮细胞焦亡的发生,从而对LPS诱导的ARDS起到治疗作用 [37] 。七氟醚通过调节LINC00839/miR-223/NLRP3轴来改善LPS诱导的ARDS,这可能为ARDS的预防提供一种新的有希望的药物 [38] 。瓜氨酸可通过抑制ROS/NLRP3炎性小体依赖性的细胞焦亡,并激活Nrf2信号通路发挥抗炎及抗氧化作用,并对ARDS模型小鼠提供保护 [39] 。鞘氨醇激酶1 (SphK1)的活化可以减弱ARDS的症状,其是通过抑制NLRP3的活化以及随后的细胞亡焦实现的 [40] 。经异丙基3-(3,4-二羟基苯基)-2-羟基丙酸酯(IDHP)处理可显著减少LPS诱导的肺血管内皮细胞焦亡的发生,其可降低NLPR3、caspase-1、GSDMD等蛋白的表达,并使内皮细胞间紧密连接蛋白表达增加 [41] 。成纤维细胞生长因子(FGFs)中的FGF5可对LPS诱发的ARDS产生影响,FGF5过表达可以减弱LPS诱导的肺损伤以及肺血管内皮细胞的焦亡水平 [42] 。

5. 总结及展望

炎症是免疫系统对感染入侵的正常反应,通常认为受控的炎症反应是有益的。但是,一旦炎症发展到不可控的阶段,则可能导致正常组织受到牵连。细胞焦亡作为一种与炎性反应相关的程序性死亡方式,其在ARDS的疾病进展中发挥着重要作用。将焦亡通路中的各级蛋白作为抑制焦亡的靶点,可为缓解ARDS的炎性反应提供新思路。尽管目前在动物模型上,有多种治疗手段通过针对内皮细胞焦亡的发生取得了不错的治疗效果,但在临床上通过该方向起到的治疗效果仍值得进一步探讨。

基金项目

2022年度新冠病毒感染救治应急专项(2023IITXG06);

重庆市自然科学基金博士后科学基金项目(cstc2021jcyj-bsh0006)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] ARDS Definition Task Force (2012) Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA, 307, 2526-2533.
https://doi.org/10.1001/jama.2012.5669
[2] Henderson, W.R., Chen, L., Amato, M.B.P. and Brochard, L.J. (2017) Fifty Years of Research in ARDS. Respiratory Mechanics in Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 196, 822-833.
https://doi.org/10.1164/rccm.201612-2495CI
[3] Matthay, M.A. and Zemans, R.L. (2011) The Acute Respiratory Distress Syndrome: Pathogenesis and Treatment. Annual Review of Pathology, 6, 147-163.
https://doi.org/10.1146/annurev-pathol-011110-130158
[4] Matthay, M.A., Ware, L.B. and Zimmerman, G.A. (2012) The Acute Respiratory Distress Syndrome. Journal of Clinical Investigation, 122, 2731-2740.
https://doi.org/10.1172/JCI60331
[5] Ware, L.B. and Matthay, M.A. (2000) The Acute Respiratory Distress Syndrome. The New England Journal of Medicine, 342, 1334-1349.
https://doi.org/10.1056/NEJM200005043421806
[6] Matthay, M.A., Zimmerman, G.A., Esmon, C., et al. (2003) Future Research Directions in Acute Lung Injury: Summary of a National Heart, Lung, and Blood Institute Working Group. American Journal of Respiratory and Critical Care Medicine, 167, 1027-1035.
https://doi.org/10.1164/rccm.200208-966WS
[7] Matthay, M.A. and Zimmerman, G.A. (2005) Acute Lung Injury and the Acute Respiratory Distress Syndrome: Four Decades of Inquiry into Pathogenesis and Rational Management. American Journal of Respiratory Cell and Molecular Biology, 33, 319-327.
https://doi.org/10.1165/rcmb.F305
[8] Spragg, R.G., Bernardet, G.R., Checkley, W., et al. (2010) Beyond Mortality: Future Clinical Research in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 181, 1121-1127.
https://doi.org/10.1164/rccm.201001-0024WS
[9] Sweeney, R.M. and McAuley, D.F. (2016) Acute Respiratory Distress Syndrome. The Lancet, 388, 2416-2430.
https://doi.org/10.1016/S0140-6736(16)00578-X
[10] Li, Z.F., Wang, Y.C., Feng, Q.R., et al. (2022) Inhibition of the C3a Receptor Attenuates Sepsis-Induced Acute Lung Injury by Suppressing Pyroptosis of the Pulmonary Vascular Endothelial Cells. Free Radical Biology and Medicine, 184, 208-217.
https://doi.org/10.1016/j.freeradbiomed.2022.02.032
[11] Wang, R., Wang, Y., Hu, L., et al. (2021) Inhibition of Complement C5a Receptor Protects Lung Cells and Tissues against Lipopolysaccharide-Induced Injury via Blocking Pyroptosis. Aging (Albany NY), 13, 8588-8598.
https://doi.org/10.18632/aging.202671
[12] Yang, J., Zhao, Y., Zhang, P., et al. (2016) Hemorrhagic Shock Primes for Lung Vascular Endothelial Cell Pyroptosis: Role in Pulmonary Inflammation Following LPS. Cell Death & Disease, 7, e2363.
https://doi.org/10.1038/cddis.2016.274
[13] Zhang, Y., Zhang, H., Li, S., et al. (2022) Metformin Alleviates LPS-Induced Acute Lung Injury by Regulating the SIRT1/NF-κB/NLRP3 Pathway and Inhibiting Endothelial Cell Pyroptosis. Frontiers in Pharmacology, 13, Article 801337.
https://doi.org/10.3389/fphar.2022.801337
[14] Qian, Z., Zhao, Y., Wan, C., et al. (2021) Pyroptosis in the Initiation and Progression of Atherosclerosis. Frontiers in Pharmacology, 12, Article 652963.
https://doi.org/10.3389/fphar.2021.652963
[15] Angus, D.C. and Van der Poll, T. (2013) Severe Sepsis and Septic Shock. The New England Journal of Medicine, 369, 840-851.
https://doi.org/10.1056/NEJMra1208623
[16] Boise, L.H. and Collins, C.M. (2001) Salmonella-Induced Cell Death: Apoptosis, Necrosis or Programmed Cell Death? Trends in Microbiology, 9, 64-67.
https://doi.org/10.1016/S0966-842X(00)01937-5
[17] Martinon, F., Burns, K. and Tschopp, J. (2002) The Inflammasome: A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-Beta. Molecular Cell, 10, 417-426.
https://doi.org/10.1016/S1097-2765(02)00599-3
[18] Schroder, K. and Tschopp, J. (2010) The Inflammasomes. Cell, 140, 821-832.
https://doi.org/10.1016/j.cell.2010.01.040
[19] Franchi, L., Eigenbrod, T., Muñoz-Planillo, R. and Nuñez, G. (2009) The Inflammasome: A Caspase-1-Activation Platform That Regulates Immune Responses and Disease Pathogenesis. Nature Immunology, 10, 241-247.
https://doi.org/10.1038/ni.1703
[20] Kayagaki, N., Warming, S., Lamkanfi, M., et al. (2011) Non-Canonical Inflammasome Activation Targets Caspase-11. Nature, 479, 117-121.
https://doi.org/10.1038/nature10558
[21] Kayagaki, N., Wong, M.T., Stowe, I.B., et al. (2013) Noncanonical Inflammasome Activation by Intracellular LPS Independent of TLR4. Science, 341, 1246-1249.
https://doi.org/10.1126/science.1240248
[22] Shi, J., Zhao, Y., Wang, Y., et al. (2014) Inflammatory Caspases Are Innate Immune Receptors for Intracellular LPS. Nature, 514, 187-192.
https://doi.org/10.1038/nature13683
[23] Ding, J., Wang, K., Liu, W., et al. (2016) Pore-Forming Activity and Structural Autoinhibition of the Gasdermin Family. Nature, 535, 111-116.
https://doi.org/10.1038/nature18590
[24] Kayagaki, N., Stowe, I.B., Lee, B.L., et al. (2015) Caspase-11 Cleaves Gasdermin D for Non-Canonical Inflammasome Signalling. Nature, 526, 666-671.
https://doi.org/10.1038/nature15541
[25] He, W.T., Wan, H., Hu, L., et al. (2015) Gasdermin D Is an Executor of Pyroptosis and Required for Interleukin-1β Secretion. Cell Research, 25, 1285-1298.
https://doi.org/10.1038/cr.2015.139
[26] Deng, W., Bai, Y., Deng, F., et al. (2022) Streptococcal Pyrogenic Exotoxin B Cleaves GSDMA and Triggers Pyroptosis. Nature, 602, 496-502.
https://doi.org/10.1038/s41586-021-04384-4
[27] Zhou, Z., He, H., Wang, K., et al. (2020) Granzyme A from Cytotoxic Lymphocytes Cleaves GSDMB to Trigger Pyroptosis in Target Cells. Science, 368, 1-9.
https://doi.org/10.1126/science.aaz7548
[28] Chen, Q., Shi, P., Wang, Y., et al. (2019) GSDMB Promotes Non-Canonical Pyroptosis by Enhancing Caspase-4 Activity. Journal of Molecular Cell Biology, 11, 496-508.
https://doi.org/10.1093/jmcb/mjy056
[29] Wang, Y., Gao, W., Shi, X., et al. (2017) Chemotherapy Drugs Induce Pyroptosis Through Caspase-3 Cleavage of a Gasdermin. Nature, 547, 99-103.
https://doi.org/10.1038/nature22393
[30] Mehta, D. and Malik, A.B. (2006) Signaling Mechanisms Regulating Endothelial Permeability. Physiological Reviews, 86, 279-367.
https://doi.org/10.1152/physrev.00012.2005
[31] Epstein, F.H., Vane, J.R., Änggård, E.E. and Botting, R.M. (1990) Regulatory Functions of the Vascular Endothelium. The New England Journal of Medicine, 323, 27-36.
https://doi.org/10.1056/NEJM199007053230106
[32] Druml, W., Steltzer, H., Waldhäusl, W., et al. (1993) Endothelin-1 in Adult Respiratory Distress Syndrome. American Review of Respiratory Disease, 148, 1169-1173.
https://doi.org/10.1164/ajrccm/148.5.1169
[33] Liu, B., He, R., Zhang, L., et al. (2021) Inflammatory Caspases Drive Pyroptosis in Acute Lung Injury. Frontiers in Pharmacology, 12, Article 631256.
https://doi.org/10.3389/fphar.2021.631256
[34] Cheng, K.T., Xiong, S., Ye, Z., et al. (2017) Caspase-11-Mediated Endothelial Pyroptosis Underlies Endotoxemia-Induced Lung Injury. Journal of Clinical Investigation, 127, 4124-4135.
https://doi.org/10.1172/JCI94495
[35] 汪航飞. NLRP1炎性小体经TLR4/NF-кB通路在急性肺损伤的机制研究[D]: [硕士学位论文]. 海口: 海南医学院, 2022.
[36] Wang, Y.C., Liu, Q.X., Zheng, Q., et al. (2019) Dihydromyricetin Alleviates Sepsis-Induced Acute Lung Injury through Inhibiting NLRP3 Inflammasome-Dependent Pyroptosis in Mice Model. Inflammation, 42, 1301-1310.
https://doi.org/10.1007/s10753-019-00990-7
[37] Huang, Y.D., Fang, Y., Ma, L., et al. (2022) Kindlin-2 Mediates Lipopolysaccharide-Induced Acute Lung Injury Partially via Pyroptosis in Mice. Inflammation, 45, 1199-1208.
https://doi.org/10.1007/s10753-021-01613-w
[38] Fu, Z., Wu, X., Zheng, F. and Zhang, Y. (2022) Sevoflurane Anesthesia Ameliorates LPS-Induced Acute Lung Injury (ALI) by Modulating a Novel LncRNA LINC00839/miR-223/NLRP3 Axis. BMC Pulmonary Medicine, 22, Article No. 159.
https://doi.org/10.1186/s12890-022-01957-5
[39] Xue, Y., Zhang, Y., Chen, L., et al. (2022) Citrulline Protects against LPS-Induced Acute Lung Injury by Inhibiting ROS/NLRP3-Dependent Pyroptosis and Apoptosis via the Nrf2 Signaling Pathway. Experimental and Therapeutic Medicine, 24, Article No. 632.
https://doi.org/10.3892/etm.2022.11569
[40] Li, S., Xue, X., Zhang, H., et al. (2024) Inhibition of Sphingosine Kinase 1 Attenuates LPS-Induced Acute Lung Injury by Suppressing Endothelial Cell Pyroptosis. Chemico-Biological Interactions, 390, Article 110868.
https://doi.org/10.1016/j.cbi.2024.110868
[41] Zhang, M.L., Wang, M., Chen, J., et al. (2023) Isopropyl 3-(3,4-Dihydroxyphenyl)-2-Hydroxypropanoate Protects Lipopolysaccharide-Induced Acute Lung Injury in Mice by Attenuating Pyroptosis. European Journal of Pharmacology, 942, Article 175545.
https://doi.org/10.1016/j.ejphar.2023.175545
[42] Li, Y., Cui, S., Wu, B., et al. (2022) FGF5 Alleviated Acute Lung Injury via AKT Signal Pathway in Endothelial Cells. Biochemical and Biophysical Research Communications, 634, 152-158.
https://doi.org/10.1016/j.bbrc.2022.09.112