右美托嘧啶用于老年患者全身麻醉中的研究进展
Research Progress in the Use of Dexmedetomidine for General Anesthesia in Elderly Patients
DOI: 10.12677/ACM.2024.143731, PDF, HTML, XML, 下载: 124  浏览: 196 
作者: 孜丽胡玛尔·扎克尔, 陈 红:新疆医科大学第五附属医院麻醉科,新疆 乌鲁木齐
关键词: 右美托嘧啶老年患者全身麻醉研究进展Dexmedetomidine Elderly Patients General Anesthesia Research Progress
摘要: 右美托咪定是一种高选择性a2肾上腺素能受体激动剂,具有镇静、抗焦虑和抗交感神经以及稳定血流动力学的作用,并且不会对患者呼吸造成明显的影响而广泛用于围麻醉期的各个阶段。老年手术患者,因其年龄大、自主神经系统发生退行性改变,且有较多合并症,给予右美托咪定麻醉时可有效减缓肠蠕动,并对各种术后症状进行预防,较好地保护了患者的心脑血管,降低了心脑血管不良事件发生率,稳定了患者的血流动力学。与传统阿片类药物相比,右美托嘧啶的安全性和有效性更高,本研究就右美托嘧啶在老年患者麻醉中的优势和具体内容进行综述。
Abstract: Dexmedetomidine is a highly selective α2-adrenergic agonist with sedative, anxiolytic, and an-ti-sympathetic properties as well as hemodynamic stabilization, and is widely used in all phases of the perianesthesia period without significant effects on patient respiration. In elderly surgical pa-tients, because of their age, degenerative changes in the autonomic nervous system and more comorbidities, dexmedetomidine anesthesia can effectively slow down intestinal motility and pre-vent various postoperative symptoms, better protect patients’ cardiovascular and cerebrovascular, reduce the incidence of cardiovascular and cerebrovascular adverse events, and stabilize patients’ hemodynamics. Compared with traditional opioids, dexmedetomidine is safer and more effective. This study reviews the advantages and specifics of dexmedetomidine in the anesthesia of elderly patients.
文章引用:孜丽胡玛尔·扎克尔, 陈红. 右美托嘧啶用于老年患者全身麻醉中的研究进展[J]. 临床医学进展, 2024, 14(3): 506-512. https://doi.org/10.12677/ACM.2024.143731

1. 引言

随着我国老年人口的迅速增长,需要进行手术的高龄患者的比例也不断增高。老年人的自主神经系统发生退行性改变,对靶器官的调节能力下降,且有较多合并症,老年人生理储备下降或多种功能异常致使机体易损性增加、抗应激能力减退,并对手术治疗科学性和有效性提出了更高且严苛的要求。右美托咪定是一种高选择性的α2-肾上腺素能受体激动剂,具有镇静、镇痛、交感神经溶解和抗焦虑的特性 [1] 。它被广泛用作围手术期的麻醉辅助剂和重症监护室的镇静剂。以前的研究报告称,与其他镇静剂相比,右美托咪定可能与术后谵妄的发生率较低有关 [2] ,防止在重症监护室出现谵妄 [3] ,减弱术中应激反应 [4] ,并降低术后死亡率达1年之久 [5] ,右美托咪定具有独特的作用机制,具有镇静、缓解焦虑和止痛作用,而不会导致呼吸抑制,此外,右美托咪定改善危重患者的睡眠质量,主要类似于非快速眼动睡眠模式。作为一种α2肾上腺素能受体激动剂,它也被证明具有显著的阿片类药物非依赖性作用。此外,右美托咪定缺乏临床上显著的抗胆碱能作用,已被证明可以减轻CP1B的炎症反应。所有这些独特的特性的结合可能有助于减少POD的发生率和持续时间。因此,在心脏手术后围手术期应用右美托咪定也与降低死亡率有关,这并不令人惊讶。近年来,越来越多的相关医学研究报道显示,盐酸右美托咪定能够对交感神经兴奋性进行抑制,促进迷走神经兴奋性的增强,其药理特性包括促进心率减慢、血压及心肌氧耗降低、镇静镇痛等,故对患者的自主呼吸具有较轻的影响。本研究通过收集、整理相关文献,就右美托咪定用于老年患者麻醉的研究进展进行了总结和归纳,现报告如下。

2. 右美托嘧啶药理特性及进展

右美托咪定是一种α2-肾上腺素受体激动剂,具有镇静、抗焦虑、交感神经溶解和镇痛的作用,对呼吸功能的抑制最小。它对α2受体具有强效和高度选择性,α2:α1的比例为1620:1。血液动力学效应包括短暂的高血压、心动过缓和低血压,是由于该药的外周血管收缩和交感神经溶解特性所致。右美托咪定通过激活脑室中枢突触前和突触后的α2受体来发挥其催眠作用,从而诱发一种类似于自然睡眠的无意识状态,产生自然的、“可唤醒”的睡眠 [6] [7] [8] [9] [10] ,其独特之处在于病人仍然容易振作和合作。右美托咪定分布迅速,主要通过葡萄糖醛酸化和羟化作用被肝脏代谢为非活性代谢物。现有证据表明,围手术期应用右美托咪定可以抑制应激反应,降低各种应激调节剂,即儿茶酚胺和皮质醇的浓度,从而在手术或麻醉诱导等应激事件期间产生更稳定的血流动力学曲线 [11] [12] [13] 。它以剂量依赖的方式减少中枢神经系统(CNS)的交感神经外流,其镇痛效果被描述为节省阿片类药物。越来越多的证据表明,它对缺血和缺氧损伤具有器官保护作用,包括心脏保护、神经保护和肾脏保护 [14] 。

3. 右美托嘧啶应用于麻醉

3.1. 右美托嘧啶给药方式和剂量问题

右美托咪定可以通过静脉、肌肉、皮下、鼻、颊、直肠和口腔等途径给药 [15] ,右美托咪定口服时生物利用度较差(约15%),鼻内血管丰富,药物通透性好,其简单方便、非侵入性、可降低首过效应。由于它是一种镇静剂、抗焦虑剂、镇痛剂、交感神经溶解剂,并且具有稳定的血液动力学,右美托咪定被用于预处理。它可以减少术中(达8%)和术后(达17%)的氧气消耗 [16] 。术前剂量为0.33~0.67微克/公斤静脉注射或2.5微克/公斤肌肉注射,在术前15分钟给予。当术中使用较低的浓度时,对其他麻醉剂的需求就会减少。治疗心动过速所需的干预措施较少。心肌缺血的发生率也会减少。然而,像低血压和心动过缓的副作用可能会发生,需要干预。在年龄超过65岁的病人中,观察到在服用右美托咪定后,心动过缓和低血压的发生率较高。因此需要减少剂量,并应监测肾功能。

3.2. 右美托咪定在老年手术患者区域麻醉中的应用

右美托咪定具有高度的亲脂性,因此在神经组织中迅速分布,在神经轴上使用时,通过与脊髓背角的α-2受体结合而产生抗痛作用 [17] 。硬膜外右美托咪定作为局麻药的辅助剂,延长了感觉和运动阻滞的时间,运动阻滞更强烈,术后镇痛效果好 [18] 。硬膜外右美托咪定作为局麻药的辅助药与全身麻醉一起使用,显示出降低术中麻醉需求,改善氧合和延长术后镇痛 [19] 。在硬膜外麻醉中,右美托咪定作为罗哌卡因的辅助药物,与氯尼丁和芬太尼相比,效果更好 [20] [21] 。在局麻药中加入右美托咪定,可以增强感觉阻滞,产生更强烈的运动阻滞,延长术后镇痛时间,因此可以减少局麻药的使用剂量。在外周神经阻滞中,右美托咪定与局麻药一起使用时,也显示出其延长感觉阻滞时间和延长术后镇痛的功效。动物研究已经验证了直接应用于神经模型时没有神经毒性 [22] [23] 。此外,在锁骨上臂丛神经阻滞等外周神经阻滞中,右美托咪定作为局麻药的辅助剂与氯尼丁进行了比较,发现右美托咪定可以延长感觉和运动阻滞的时间,并延长了对解救镇痛剂的需求 [24] 。在静脉区域阻滞中,将右美托咪定添加到利多卡因中,已被证明可以提高阻滞质量,减少止血带疼痛,并延长术后镇痛时间,且副作用最小 [25] [26] 。

3.3. 右美托咪定在老年手术患者全麻中的应用

由于右美托咪定具有抗焦虑、镇痛、交感神经溶解和镇静的作用,它已被发现应用于预处理、预防喉镜检查的应激反应和预防出现谵妄的情况。右美托咪定对血压的影响是双相的,由于刺激血管平滑肌中的α-2B亚型受体,最初会出现短暂的血压上升和心率反射性下降。随后血压和心率下降,这是由于抑制了中枢交感神经的流出,刺激突触前的α-2受体导致去甲肾上腺素的释放减少,从而导致血压进一步下降。 [27] [28] 然而,这些血液动力学效应在有固定卒中量的病人、使用降速药物如β受体阻滞剂、洋地黄等的病人以及低血容量的病人中可能是有害的。右美托咪定会导致脑血流和脑氧代谢需求的减少,同时颅内压也略有下降。它通过减少循环和大脑中的儿茶酚胺而具有神经保护作用;因此,减少了兴奋性,改善了缺血脑组织的血液供应。它还能降低谷氨酸的水平,而谷氨酸被发现能增强细胞的脑损伤,特别是在蛛网膜下腔出血中 [29] 。右美托咪定对呼吸功能没有任何抑制作用,即使在较高的剂量下也不会损害通气或气体交换;但可能产生轻度高碳酸血症。

3.4. 右美托咪定在高龄手术患者麻醉期间的应用

机体在围麻醉期的应激反应强烈,发生这一现象的原因为留置气管导管、疼痛等,导致患者具有较快的心率、较高的血压计不平衡的心肌氧供需。一方面促进了高血压高龄患者心血管意外等并发症发生的显著增加,如心律失常、心肌缺血等;另一方面也进一步提升了没有基础疾病的高龄患者心血管意外等并发症的发生风险。右美托咪定由于其交感神经的作用,可以减弱对喉镜检查和手术的高动力反应,并保持稳定的血液动力学状态 [30] [31] 。它还被发现能增强所有麻醉剂(即静脉注射和吸入)的作用,并具有阿片类药物的节约作用,从而减少所需的剂量 [32] [33] [34] [35] ,它还能帮助减少身体的氧气需求,并有助于预防术中心肌缺血 [36] [37] 。据报道,右美托咪定可以减少七氟醚麻醉中对罗库仑的需求,这种效果可能是由于右美托咪定改变了罗库仑的药代动力学 [38] 。最近,右美托咪定被用于帮助因上呼吸道解剖扭曲和感染而导致气道受损的病人进行清醒的光纤插管。它提供了良好的镇静和镇痛效果,几乎没有呼吸抑制,也不影响气道反射,使病人保持平静,并将吸入的机会降到最低 [39] [40] [41] 。最近,它被用于清醒光纤插管,没有对上呼吸道进行局部麻醉,作为唯一的镇静剂,用于记录对局部麻醉剂过敏的病人 [42] 。右美托咪定既有交感神经的作用,又有麻醉剂的作用,这使它成为诱导和维持各种手术中可控低血压的理想工具,可以最大限度地减少失血,并为脊柱融合手术、鼻内窥镜手术、鼻窦手术和颌面手术提供最佳条件 [43] [44] 。

3.5. 右美托嘧啶用于困难气道

众所周知,对气道困难的病人进行清醒的光纤插管会引起不适。这个问题是有问题的,因为麻醉师希望通过自发的通气来维持一个通畅的气道,以避免呼吸抑制和肺部吸入的并发症。然而,病人在手术过程中必须有足够的舒适感。许多药物已被描述为促进这一过程,包括苯二氮卓类药物、局部麻醉剂输注和阿片类激动剂。右美托咪定为这个问题提供了一个理想的解决方案,除了为麻醉师创造一个干燥的场地,因为它是一种抗异物癖。在最近对7名使用右美托咪定和口咽局部麻醉剂进行静脉镇静的病人的调查中 [45] ,没有病人出现饱和度变化,所有病人都成功进行了光纤插管,没有病人出现任何呼吸抑制的潮末二氧化碳证据 [46] 。

3.6. 右美托嘧啶对老年患者术后谵妄与认知功能障碍的影响

麻醉后认知功能障碍是术后精神障碍的常见临床表现,目前已逐渐成为人们关注的焦点 [47] [48] 。这通常发生在心脏手术、髋关节置换术、下颌骨骨折和其他主要手术之后 [49] 。表现为记忆障碍、抽象思维和麻醉后的迷失方向,同时伴有社交活动减少(即性格、社交技能、认知能力和技能的变化)。据报道,术前应用右美托咪定镇静可降低术后急性谵妄的发生率。右美托咪定以剂量依赖的方式减少脑血流量。然而,CO2反应性和脑血管的自动调节保持不变。动物实验表明右美托咪定对大脑有保护作用。它作用于α2A受体,减少围手术期兴奋性毒素引起的灰质和白质损伤面积。对于缺乏α2A受体的大鼠,右美托咪定不能保护白质免受损伤。此外,白质病变相对严重。就局部效应而言,在全脑缺血和缺血/再灌注后,右美托咪定可以提高神经细胞的存活率。脑保护作用的机制可以概括为:脑组织中去甲肾上腺素释放的减少,凋亡蛋白和抗凋亡蛋白的平衡的调节,脑中兴奋性神经递质释放的减少、热休克蛋白27的磷酸化和脑组织中caspase-3表达的减少,细胞外信号调节蛋白激酶1/2的激活产生神经保护作用。此外,据报道,术前使用右美托咪定镇静也可降低术后急性谵妄的发生率 [50] 。然而,目前尚无关于右美托咪定对老年患者术后认知功能影响的研究报道。

4. 结论

右美托嘧啶是一种强效、高选择性的α-2肾上腺素能受体激动剂,具有镇静、镇痛、抗焦虑、抗交感神经和阿片类药物的特性。它提供了一种独特的镇静类型,即“清醒镇静”,患者看起来很困,但在受到刺激时很容易被唤醒、合作和交流。它起效快,起效时间相对短,其特点使右美托咪定适合重症监护室、术后心脏病和非心脏病患者以及侵入性和非侵入性手术,因为它可以很容易地滴定。一些研究表明,短期镇静是安全的,尽管低血压和心动过缓是最显著的副作用。此外,它似乎具有最小的呼吸抑制,因此,它可以安全地用于机械通气和自然呼吸患者。这些特性使右美托咪定成为当前早期拔管和术后心脏病患者快速追踪的有效药物。总的来说,右美托咪定具有独特的性质,使其成为麻醉医生和重症监护医生的理想药物。它是一种优秀的镇静和镇痛剂,具有阿片类药物的保留特性和最小的呼吸抑制;不会降低肠动力;防止术后恶心、呕吐和颤抖;同时,对神经保护、心脏保护和肾脏保护具有潜在的益处。如上所述,它可以被广泛使用,同时需要在使用过程中保持警惕。可考虑使用术中右美托咪定作为老年手术后增强恢复的总体策略的一部分是有必要的。

参考文献

[1] Weerink, M.A.S., Struys, M., Hannivoort, L.N., Barends, C.R.M., Absalom, A.R. and Colin, P. (2017) Clinical Phar-macokinetics and Pharmacodynamics of Dexmedetomidine. Clinical Pharmacokinetics, 56, 893-913.
https://doi.org/10.1007/s40262-017-0507-7
[2] Djaiani, G., Silverton, N., Fedorko, L., Carroll, J., Styra, R., Rao, V. and Katznelson, R. (2016) Dexmedetomidine versus Propofol Sedation Reduces Delirium after Cardiac Surgery: A Randomized Controlled Trial. Anesthesiology, 124, 362-368.
https://doi.org/10.1097/ALN.0000000000000951
[3] Su, X., Meng, Z.T., Wu, X.H., Cui, F., Li, H.L., Wang, D.X., Zhu, X., Zhu, S.N., Maze, M. and Ma, D. (2016) Dexmedetomidine for Prevention of Delirium in Elderly Patients after Non-Cardiac Surgery: A Randomised, Double-Blind, Placebo-Controlled Trial. The Lancet, 388, 1893-1902.
https://doi.org/10.1016/S0140-6736(16)30580-3
[4] Li, Y., Wang, B., Zhang, L.L., He, S.F., Hu, X.W., Wong, G.T. and Zhang, Y. (2016) Dexmedetomidine Combined with General Anesthesia Provides Similar Intraoperative Stress Response Reduction When Compared with a Combined General and Epidural Anesthetic Technique. Anesthesia & Anal-gesia, 122, 1202-1210.
https://doi.org/10.1213/ANE.0000000000001165
[5] Ji, F., Li, Z., Nguyen, H., Young, N., Shi, P., Fleming, N. and Liu, H. (2013) Perioperative Dexmedetomidine Improves Outcomes of Cardiac Surgery. Circulation, 127, 1576-1584.
https://doi.org/10.1161/CIRCULATIONAHA.112.000936
[6] Kim, J.A., Ahn, H.J., Yang, M., Lee, S.H., Jeong, H. and Seong, B.G. (2019) Intraoperative Use of Dexmedetomidine for the Prevention of Emergence Agitation and Postoperative Delirium in Thoracic Surgery: A Randomized-Controlled Trial. Canadian Journal of Anesthesia, 66, 371-379.
https://doi.org/10.1007/s12630-019-01299-7
[7] Kang, X., Tang, X., Yu, Y., Bao, F., Gan, S., Zheng, W., Zhang, J. and Zhu, S. (2019) Intraoperative Dexmedetomidine Infusion Is Associated with Reduced Emergence Agi-tation and Improved Recovery Profiles after Lung Surgery: A Retrospective Cohort Study. Drug Design, Development and Therapy, 13, 871-879.
https://doi.org/10.2147/DDDT.S195221
[8] Lee, C., Lee, C.H., Lee, G., Lee, M. and Hwang, J. (2018) The Effect of the Timing and Dose of Dexmedetomidine on Postoperative Delirium in Elderly Patients after Laparoscopic Major Non-Cardiac Surgery: A Double Blind Randomized Controlled Study. Journal of Clinical Anesthesia, 47, 27-32.
https://doi.org/10.1016/j.jclinane.2018.03.007
[9] Capri, M., Yani, S.L., Chattat, R., Fortuna, D., Bucci, L., Lanzarini, C., Morsiani, C., Catena, F., Ansaloni, L., Adversi, M., et al. (2014) Pre-Operative, High-IL-6 Blood Level Is a Risk Factor of Post-Operative Delirium Onset in Old Patients. Frontiers in Endocrinology, 5, Article 173.
https://doi.org/10.3389/fendo.2014.00173
[10] Neema, P.K. (2012) Dexmedetomidine in Pediatric Cardiac Anes-thesia. Annals of Cardiac Anaesthesia, 15, 177-179.
https://doi.org/10.4103/0971-9784.97972
[11] Sulaiman, S., Karthekeyan, R.B., Vakamudi, M., Sundar, A.S., Ravullapalli, H. and Gandham, R. (2012) The Effects of Dexmedetomidine on Attenuation of Stress Response to Endo-tracheal Intubation in Patients Undergoing Elective Off-Pump Coronary Artery Bypass Grafting. Annals of Cardiac An-aesthesia, 15, 39-43.
https://doi.org/10.4103/0971-9784.91480
[12] Kunisawa, T., Ueno, M., Kurosawa, A., Nagashima, M., Hayashi, D., Sasakawa, T., Suzuki, A., Takahata, O. and Iwasaki, H. (2011) Dexmedetomidine Can Stabilize Hemodynamics and Spare Anesthetics before Cardiopulmonary Bypass. Journal of Anesthesia, 25, 818-822.
https://doi.org/10.1007/s00540-011-1215-3
[13] Yildiz, M., Tavlan, A., Tuncer, S., Reisli, R., Yosunkaya, A. and Otelcioglu, S. (2006) Effect of Dexmedetomidine on Haemodynamic Responses to Laryngoscopy and Intubation. Drugs in R & D, 7, 43-52.
[14] Panzer, O., Moitra, V. and Sladen, R.N. (2009) Pharmacology of Sedative-Analgesic Agents: Dexmedetomidine, Remifentanil, Ketamine, Volatile Anesthetics, and the Role of Peripheral Mu Antagonists. Critical Care Clinics, 25, 451-469.
https://doi.org/10.1016/j.ccc.2009.04.004
[15] Waurick, K., Sauerland, C. and Goeters, C. (2017) Dexmedetomidine Sedation Combined with Caudal Anesthesia for Lower Abdominal and Extremity Surgery in Ex-Preterm and Full-Term Infants. Paediatric Anaesthesia, 27, 637-642.
https://doi.org/10.1111/pan.13110
[16] Taittonen, M.T., Kirvelä, O.A., Aantaa R. and Kanto, J.H. (1997) Effect of Clonidine and Dexmedetomidine Premedication on Perioperative Oxygen Consumption and Haemodynamic State. British Journal of Anaesthesia, 78, 400-406.
[17] Pertovaara, A. (1993) Antinociception Induced by Alpha-2-Adrenoceptor Agonists, with Special Emphasis on Medetomidine Studies. Progress in Neurobiology, 40, 691-709.
https://doi.org/10.1016/0301-0082(93)90011-G
[18] Salgado, P.F., Sabbag, A.T., Silva, P.C., Brienze, S.L., Dalto, H.P., Módolo, N.S., et al. (2008) [Synergistic Effect between Dexmedetomidine and 0.75% Ropivacaine in Epidural Anesthesia]. Revista da Associação Médica Brasileira, 54, 110-115.
https://doi.org/10.1590/S0104-42302008000200011
[19] Hernandez-Montfort, J., Canoy, J., Velez, J. and Giugli-ano, G. (2012) Acute Aortic Syndrome in the Peripartum State: Powering Clinical Suspicion. Journal of Obstetric An-aesthesia and Critical Care, 2, 55-57.
https://doi.org/10.4103/2249-4472.99337
[20] Bajwa, S.J., Bajwa, S.K., Kaur, J., Singh, G., Arora, V., Gupta, S., Kulshrestha, A., Singh, A., Parmar, S., Singh, A., et al. (2011) Dexmedetomidine and Clonidine in Epidural Anaesthesia: A Comparative Evaluation. Indian Journal of Anaesthesia, 55, 116-121.
https://doi.org/10.4103/0019-5049.79883
[21] Bajwa, S.J., Arora, V., Kaur, J., Singh, A. and Parmar, S.S. (2011) Comparative Evaluation of Dexmedetomidine and Fentanyl for Epidural Analgesia in Lower Limb Orthopedic Surgeries. Saudi Journal of Anaesthesia, 5, 365-370.
https://doi.org/10.4103/1658-354X.87264
[22] Esmaoglu, A., Yegenoglu, F., Akin, A. and Turk, C.Y. (2010) Dexmedetomidine Added to Levobupivacaine Prolongs Axillary Brachial Plexus Block. Anesthesia & Analgesia, 111, 1548-1551.
https://doi.org/10.1213/ANE.0b013e3181fa3095
[23] Brummett, C.M., Norat, M.A., Palmisano, J.M. and Lydic, R. (2008) Perineural Administration of dexmedetomidine in Combination with Bupivacaine Enhances Sensory and Motor Blockade in Sciatic Nerve Block without Inducing Neurotoxicity in Rat. Anesthesiology, 109, 502-511.
https://doi.org/10.1097/ALN.0b013e318182c26b
[24] Swami, S.S., Keniya, V.M., Ladi, S.D. and Rao, R. (2012) Comparison of Dexmedetomidine and Clonidine (Alpha2 agonist Drugs) as an Adjuvant to Local Anaesthesia in Supra-clavicular Brachial Plexus Block: A Randomised Double-Blind Prospective Study. Indian Journal of Anaesthesia, 56, 243-249.
https://doi.org/10.4103/0019-5049.98767
[25] Memis, D., Turan, A., Karamanlioglu, B., Pamukcu, Z. and Kurt, I. (2004) Adding Dexmedetomidine to Lidocaine for Intravenous Regional Anesthesia. Anesthesia & Analgesia, 98, 835-840.
https://doi.org/10.1213/01.ANE.0000100680.77978.66
[26] Brummett, C.M., Padda, A.K., Amodeo, F.S., Welch, K.B. and Lydic, R. (2009) Perineural Dexmedetomidine Added to Ropivacaine Causes a Dose-Dependent Increase in the Duration of Thermal Antinociception in Sciatic Nerve Block in Rat. Anesthesiology, 111, 1111-1119.
https://doi.org/10.1097/ALN.0b013e3181bbcc26
[27] Hall, J.E., Uhrich, T.D., Barney, J.A., Arain, S.R. and Ebert, T.J. (2000) Sedative, Amnestic, and Analgesic Properties of Small-Dose Dexmedetomidine Infusions. Anesthesia & An-algesia, 90, 699-705.
https://doi.org/10.1097/00000539-200003000-00035
[28] Bloor, B.C., Ward, D.S., Belleville, J.P. and Maze, M. (1992) Effects of Intravenous Dexmedetomidine in Humans: II. Hemodynamic Changes. Anesthesiology, 77, 1134-1142.
https://doi.org/10.1097/00000542-199212000-00014
[29] Yu, S., Leng, Y., Wang, Y. and Zhao, G. (2022) A Re-view of the Biological Mechanisms of Dexmedetomidine for Postoperative Neurocognitive Disorders. Medical Science Monitor, 28, e937862.
https://doi.org/10.12659/MSM.937862
[30] Bajwa, S.J., Kaur, J., Singh, A., Parmar, S., Singh, G., Kulshrestha, A., Gupta, S., Sharma, V. and Panda, A. (2012) Attenuation of Pressor Response and Dose Sparing of Opioids and An-aesthetics with Pre-Operative Dexmedetomidine. Indian Journal of Anaesthesia, 56, 123-128.
https://doi.org/10.4103/0019-5049.96303
[31] Guler, G., Akin, A., Tosun, Z., Eskitascoglu, E., Mizrak, A. and Boyaci, A. (2005) Single-Dose Dexmedetomidine Attenuates Airway and Circulatory Reflexes during Extubation. Acta Anaesthesiologica Scandinavica, 49, 1088-1091.
https://doi.org/10.1111/j.1399-6576.2005.00780.x
[32] He, L., Xu, J.M. and Dai, R.P. (2012) Dexmedetomidine Reduces the Incidence of Fentanyl-Induced Cough: A Double-Blind, Randomized, and Placebo-Controlled Study. Upsa-la Journal of Medical Sciences, 117, 18-21.
https://doi.org/10.3109/03009734.2011.629749
[33] Menda, F., Koner, O., Sayin, M., Ture, H., Imer, P. and Aykac, B. (2010) Dexmedetomidine as an Adjunct to Anesthetic Induction to Attenuate Hemodynamic Response to En-dotracheal Intubation in Patients Undergoing Fast-Track CABG. Annals of Cardiac Anaesthesia, 13, 16-21.
https://doi.org/10.4103/0971-9784.58829
[34] Lee, Y.Y., Wong, S.M., Hung, C.T. (2007) Dexmedetomidine Infu-sion as a Supplement to Isoflurane Anaesthesia for Vitreoretinal Surgery. British Journal of Anaesthesia, 98, 477-483.
https://doi.org/10.1093/bja/aem040
[35] Sturaitis, M., Kroin, J., Swamidoss, C. and Moric, M. (2002) Effects of Intraoperative Dexmedetomidine Infusion on Hemodynamic Stability during Brain Tumor Resection. Anesthesiology, 98, A310.
[36] Panda, B.K., Singh, P., Marne, S., Pawar, A., Keniya, V., Ladi, S. and Swami, S. (2012) A Comparison Study of Dexmedetomidine vs Clonidine for Sympathoadrenal Response, Perioperative Drug Requirements and Cost Analysis. Asian Pacific Journal of Tropical Disease, 2, S815-S821.
https://doi.org/10.1016/S2222-1808(12)60271-0
[37] Kamibayashi, T. and Maze, M. (2000) Clinical Uses of Al-pha2-Adrenergic Agonists. Anesthesiology, 93, 1345-1349.
https://doi.org/10.1097/00000542-200011000-00030
[38] Memis, D., Turan, A., Karamanlioglu, B., Seker, S. and Pamukcu, Z. (2008) Dexmedetomidine Reduces Rocuronium Dose Requirement Insevoflurane Anaesthesia. Current Anaesthesia & Critical Care, 19, 169-174.
https://doi.org/10.1016/j.cacc.2007.07.001
[39] Boyd, B.C. and Sutter, S.J. (2011) Dexmedetomidine Sedation for Awake Fiberoptic Intubation of Patients with Difficult Airways Due to Severe Odontogenic Cervicofacial Infections. Journal of Oral and Maxillofacial Surgery, 69, 1608-1612.
https://doi.org/10.1016/j.joms.2010.11.004
[40] Grant, S.A., Breslin, D.S., MacLeod, D.B., Gleason, D. and Martin, G. (2004) Dexmedetomidine Infusion for Sedation during Fiberoptic Intubation: A Report of Three Cases. Journal of Clinical Anesthesia, 16, 124-126.
https://doi.org/10.1016/j.jclinane.2003.05.010
[41] Maroof, M., Khan, R.M., Jain, D. and Ashraf, M. (2005) Dex-medetomidine Is a Useful Adjunct for Awake Intubation. Canadian Journal of Anesthesia, 52, 776-777.
https://doi.org/10.1007/BF03016576
[42] Madhere, M., Vangura, D. and Saidov, A. (2011) Dexmedetomidine as Sole Agent for Awake Fiberoptic Intubation in a Patient with Local Anesthetic Allergy. Journal of Anesthesia, 25, 592-594.
https://doi.org/10.1007/s00540-011-1154-z
[43] El-Gohary, M.M. and Arafa, A.S. (2019) Dexmedetomidine as a Hypotensive Agent: Efficacy and Hemodynamic Response during Spinal Surgery for Idiopathic Scoliosis in Adolescents. Egyptian Journal of Anaesthesia, 26, 305-311.
https://doi.org/10.1016/j.egja.2010.07.001
[44] Ayoglu, H., Yapakci, O., Ugur, M.B., Uzun, L., Altunkaya, H., Ozer, Y., Uyanik, R., Cinar, F. and Ozkocak, I. (2008) Effectiveness of Dexmedetomidine in Reducing Bleeding during Septoplasty and Tympanoplasty Operations. Journal of Clinical Anesthesia, 20, 437-441.
https://doi.org/10.1016/j.jclinane.2008.04.008
[45] Penttila, J., Helminen, A., Anttila, M., Hinkka, S. and Scheinin, H. (2004) Cardiovascular and Parasympathetic Effects of Dexmedetomidine in Healthy Subjects. Canadian Journal of Physiology and Pharmacology, 82, 359-362.
https://doi.org/10.1139/y04-028
[46] Magazine, R., Antony, T., Chogtu, B., Prabhudev, A., Surendra, V. and Guddattu, V. (2021) Clinical Usefulness of Intermediate-Dose Dexmedetomidine (0.75 μg/kg) in Flexible Bronchosco-py—A Prospective, Randomized, Double-Blinded Study. Indian Journal of Pharmacology, 53, 440-447.
https://doi.org/10.4103/ijp.IJP_446_20
[47] Xiang, D., Xing, H. and Zhu, Y. (2022) A Predictive Nomogram Model for Postoperative Delirium in Elderly Patients Following Laparoscopic Surgery for Gynecologic Cancers. Sup-portive Care in Cancer, 31, Article No. 24.
https://doi.org/10.1007/s00520-022-07517-1
[48] Ward, B., Imarengiaye, C., Peirovy, J., et al. (2005) Cognitive Function is Minimally Impaired after Ambulatory Surgery. Canadian Journal of Anesthesia, 52, 1017-1021.
https://doi.org/10.1007/BF03021598
[49] Newman, M.F., Croughwell, N.D., Blumenthal, J.A., et al. (1995) Pre-dictors of Cognitive Decline after Cardiac Operation. Annals of Thoracic Surgery, 59, 1326-1330.
https://doi.org/10.1016/0003-4975(95)00076-W
[50] Horvath, R., Halbrooks, E.F., Overman, D.M. and Frie-drichsdorf, S.J. (2015) Efficacy and Safety of Postoperative Dexmedetomidine Administration in Infants and Children Undergoing Cardiac Surgery: A Retrospective Cohort Study. Journal of Pediatric Intensive Care, 4, 138-145.
https://doi.org/10.1055/s-0035-1559820