神经氨酸酶在心血管疾病中的研究进展
Research Progress on Neuraminidase in Car-diovascular Disease
DOI: 10.12677/ACM.2024.143662, PDF, XML, 下载: 64  浏览: 127  科研立项经费支持
作者: 毛列恩·青古司, 陈春玲*:新疆医科大学第一附属医院麻醉科,新疆围术期器官保护重点实验室(XJDX1411),新疆 乌鲁木齐
关键词: 神经氨酸酶唾液酸去唾液酸化心血管疾病Neuraminidase Sialic Acids Desialylation Cardiovascular Disease
摘要: 细胞表面的糖蛋白和脂蛋白末端由唾液酸构成。神经氨酸酶(NEU)通过去除唾液酸来改变唾液酸化水平,影响细胞内外和细胞间的相互作用。在诸多心血管疾病中,内源性的NEU及其介导的去唾液酸化参与其发生和发展。脱落的唾液酸中,N-乙酰神经氨酸(Neu5Ac)有望成为心血管疾病的生物标志物。而抗流感药物NEU抑制剂,可以阻断NEU的酶活性,起心脏保护作用。该文通过系统介绍NEU和心血管疾病的关系及相关机制,探讨与此相关代谢标志物及治疗药物,为心血管疾病诊治和心脏保护提供新思路。
Abstract: Glycoproteins and lipoprotein ends on the cell surface are composed of sialic acid. Neuraminidase (NEU) changes the level of sialylation by removing sialic acid, affecting intracellular and extracellu-lar interactions. Endogenous NEU and its mediated desialylation are involved in cardiovascular diseases. Among sialic acids, N-acetylneuraminic acid (Neu5Ac) is expected to be a biomarker for cardiovascular disease. NEU inhibitors can protect the heart by blocking the activity of NEU. This article reviewed the relationship between NEU and cardiovascular disease and its related mecha-nisms, explored the related metabolic markers and therapeutic drugs, and provided new ideas for the diagnosis and treatment of cardiovascular disease.
文章引用:毛列恩·青古司, 陈春玲. 神经氨酸酶在心血管疾病中的研究进展[J]. 临床医学进展, 2024, 14(3): 37-43. https://doi.org/10.12677/ACM.2024.143662

1. 引言

心血管疾病是全球范围内主要死亡原因,以高神经氨酸酶(Neuraminidase, NEU)活性为特征的流感感染与心血管不良结局风险增加有关 [1] [2] 。NEU也称唾液酸酶,是一类广泛存在于从病毒到哺乳动物等不同进化谱系的生物体中的糖苷酶,主要负责从糖蛋白和糖脂的聚糖部分去除末端唾液酸残基,即去唾液酸化。NEU实现生物学功能与去唾液酸化过程密切相关。由于唾液酸存在于糖蛋白和糖脂的末端,并通过多种化学修饰获得多样化,因此唾液酸在细胞蛋白识别和细胞膜信号调节中起重要作用 [3] 。人类唾液酸多为N-乙酰神经氨酸(N-acetylneuraminic acid, Neu5Ac)。本文就内源性NEU参与多种心血管疾病进展的重要机制,其下游产物Neu5Ac作为代谢标志物的潜力,以及NEU抑制剂在心血管疾病中的治疗作用进行探讨,为心血管疾病的诊治和心脏保护提供新的依据。

2. NEU概述

NEU根据其不同的酶学性质、组织及亚细胞定位分为NEU1、NEU2、NEU3和NEU4 [4] 。NEU1定位于溶酶体,在不同刺激下向质膜转位,调节胞吐,调节炎症反应;NEU2定位于细胞质,参与成肌细胞和神经元细胞的分化;NEU3定位于质膜,参与神经细胞分化、黏附、细胞侵袭、细胞存活、增殖;NEU4定位于溶酶体或线粒体和内质网,参与神经元分化和凋亡 [5] 。NEU1和NEU3在心肌与内皮细胞均有表达 [6] [7] 。

3. NEU与心血管疾病

NEU在心血管疾病中的研究以NEU1为主,NEUI活性增高与多种心血管疾病进展相关,部分研究显示NEU3在某些心血管疾病中的保护作用,而有关NEU2和NEU4报道甚少。

1) NEU通过多种途径参与冠心病

血浆唾液酸水平增加、神经氨酸酶活性增加和唾液酸化低密度脂蛋白(Low Density Lipoprotein, LDL)含量减少与动脉粥样硬化和冠心病相关 [8] [9] 。研究显示,NEU通过引起血管内皮功能障碍、促进动脉粥样硬化,或引起心肌细胞损伤等途径参与冠状动脉粥样硬化性心脏病发生发展。

a) 引起血管内皮功能障碍:NEU介导的去唾液酸化,显著抑制剪切力诱导的一氧化氮生成,增加血管壁活性氧簇生成,减弱血管舒张 [10] 。唾液酸的破坏降低了核因子E2相关因子2 (Nrf2)对内源性抗氧化系统的机械敏感性激活;在没有唾液酸的情况下,单向剪切力培养的内皮细胞中内皮型一氧化氮合成酶磷酸化受损,线粒体ROS和促炎标志物血管细胞粘附分子1 (VCAM-1)水平增加 [11] 。

b) 促进动脉粥样硬化:NEU1与其介导的去唾液酸化通过参与血脂水平的调控、单核/巨噬细胞的活化、巨噬细胞对脂蛋白的摄取、新生内膜的形成等过程,促进动脉粥硬化斑块的形成 [12] [13] [14] [15] 。Sieve等 [13] 发现,在动脉粥样硬化患者动脉内膜层、钙化区域和斑块中巨噬细胞高表达NEU1。单核细胞NEU1与白介素-1β以及脂多糖之间存在正反馈,会促进单核细胞活化并向内膜的浸润。NEU可以去除载脂蛋白B (Apolipoprotein, ApoB)糖链末端唾液酸,产生致动脉粥样硬化LDL,并且增加与巨噬细胞去唾液酸糖蛋白受体对LDL的摄取 [14] 。NEU引起的动脉去唾液酸化,会增加血管平滑肌细胞增殖和新生内膜的形成 [15] 。在弹性蛋白衍生肽致动脉粥样硬化过程中,NEU1与弹性蛋白结合蛋白和组织蛋白A组成的弹性蛋白受体复合体,通过NEU1/PI3Kγ信号通路和巨噬细胞表面的NEU1去唾液酸化清道夫受体CD36来增加巨噬细胞对氧化型LDL的摄取,促进动脉粥样硬化 [16] [17] 。

反而NEU1亚等位基因表达会降低Apoe敲除小鼠血清LDL和极低密度脂蛋白(Very Low Density Lipoprotein, VLDL)水平,减少了白介素-4与干扰素γ产生、减少白细胞募集、减小主动脉粥样斑块体积 [12] 。NEU1亚等位基因表达降低VLDL和LDL水平,与通过增强肝脏高度唾液酸化LDL受体对LDL的摄取,降低肝脏VLDL-甘油三酯的生成有关 [18] 。

c) 造成心肌细胞损伤:NEU下游产物Neu5Ac可引起心肌细胞损伤。Neu5A作为信号分子通过激活Rho/Rho相关卷曲螺旋蛋白激酶信号通路触发RhoA和Cdc42依赖性心肌损伤和心功能受损 [9] 。

冠心病的发生发展比较复杂,涉及诸多病理变化,NEU及其介导的去唾液酸化在炎症、氧化应激、内皮细胞功能障碍、动脉粥样硬化斑块形成和心肌损伤过程中起重要作用,未来靶向NEU的治疗方法或许成为冠心病患者一项新的治疗选择,提高临床疗效,改善预后。

2) 不同NEU亚型在心肌缺血–再灌注损伤的作用

Heimerl等 [6] 通过RNA测序发现健康成年小鼠心脏中,NEU1和NEU3大量表达;NEU在小鼠心肌缺血–再灌注3天后明显升高,2周后恢复到正常水平;并且在心肌缺血–再灌注后的第三天可观察到短暂的NEU1上调和NEU3下调。NEU低表达小鼠心肌缺血–再灌注后表现出更低的炎症信号,并且在心肌缺血再灌注第3天促炎性巨噬细胞向抗炎性巨噬细胞的转变,在心肌缺血–再灌注后14天表现出更好的心功能和更少的缝隙连接蛋白43 (CX43)表达受损。而NEU3可激活再灌注损伤挽救酶(Reperfusion Injury Salvage Kinase, RISK)通路发挥心脏保护作用 [19] 。过表达NEU3通过激活HIF-α和AKT/ERK信号通路显著增加心肌细胞对心肌缺血–再灌注的抵抗能力。

可见,NEU1活性增高与心肌缺血–再灌注后心功能受损相关,而NEU3通过激活RISK通路起心脏保护作用。NEU在心肌–缺血再灌注的作用目前仍然存在众多未知,需要更多研究去进一步探索和发现。

3) NEU与心室重构和心肌病

NEU1通过入核调控胚胎基因表达,介导氧化应激和线粒体能量代谢障碍等途径,参与心肌肥大、心肌重塑,导致心室不良重构 [20] [21] 。相反,NEU3可减少心肌纤维化 [22] 。在肥厚性心肌病患者以及心肌肥厚动物模型中,心肌NEU1水平明显上调;NEU1转位到细胞核并与转录因子GATA结合蛋白4相互作用,导致胚胎基因(Nppa和Nppb)表达引起心肌肥厚;抗病毒药物NEU抑制剂如奥司他韦、扎那米韦和化合物C-09抑制NEU活性,改善心肌肥厚 [20] 。小鼠心梗模型显示,心梗后NEU1在梗死区域表达显著增高,并伴随线粒体的生物合成和功能受损。心脏区域特异性NEU1抑制通过SIRT1/PGC-1α信号通路改善心梗后心肌组织线粒体能量代谢和降低线粒体氧化应激,改善心梗后心功能障碍和不良心室重构 [21] 。上调NEU3引起NEU3依赖的神经节苷脂去唾液酸化增加,抑制TGF-β信号通路和I型胶原沉积减少,减少人心脏成纤维细胞原代培养中的心肌纤维化 [22] 。

NEU1参与糖尿病心肌病 [23] 和阿霉素产生的心脏毒性 [24] 。NEU1在糖尿病老鼠心肌细胞中表达增加,抑制LKB1/AMPKα/SIRT3通路,引起心肌纤维化、炎症、氧化损伤和细胞凋亡 [23] 。而NEU1是阿霉素对心脏产生毒性的关键驱动因子,NEU1抑制剂可通过抑制动力蛋白相关蛋白1 (Drp1)介导的线粒体分裂和线粒体自噬,有效改善阿霉素引起的心功能障碍 [24] 。

4) NEU、唾液酸与心力衰竭

在中国汉族人群中NEU2和NEU4基因的遗传位点与心力衰竭的风险或预后显著相关 [25] 。Dougherty等 [26] 利用可公开获得的数据结合心脏代谢模型来探索晚期心力衰竭的转录变化,发现NEU下游产物N-乙酰神经氨酸(N-Acetylneuraminic Acid, Neu5Ac)合成的基因表达降低是心力衰竭的常见代谢标志物。在心衰患者中,血浆N-乙酰神经氨酸水平升高与长期不良心血管事件风险增加独立相关 [27] 。在患者的心脏组织中,NEU表达上调,并伴有去唾液酸化,在心衰小鼠中使用NEU抑制剂奥司他韦治疗可显著抑制去唾液酸化,改善心功能障碍 [27] 。NEU1表达与激活增加心衰发生风险,而NEU1低表达时,促炎性巨噬细胞向抗炎性巨噬细胞的转变,改善心脏功能 [6] 。

5) NEU、唾液酸化修饰与高血压

在中国西北少数民族人群中,发现高血压个体中存在IgGFc糖链相对低的唾液酸化 [28] 。Peng等 [29] 发现肥胖与IgG Fc糖链末端唾液酸化水平降低有关,而IgG Fc糖链末端唾液酸化水平与收缩压呈负相关。NEU处理使免疫球蛋白G低唾液酸化,引起血压升高。高质饮食喂养的小鼠和NEU处理的IgG通过激活免疫球蛋白G受体FcγRIIB,改变内皮型一氧化氮合成酶的磷酸化。然而补充唾液酸前体N-乙酰-D-甘露糖胺使IgG唾液酸化恢复正常,预防肥胖诱导的高血压。

6) NEU与主动脉夹层

NEU1在β-氨基丙腈诱导的主动脉夹层小鼠主动脉组织中表达明显上调,敲除NEU1改善主动脉功能和血管重塑,降低主动脉破裂死亡率;β-氨基丙腈处理后NEU1敲除小鼠预后改善和血管炎症减轻、细胞凋亡减少、活性氧产生和细胞外基质降解减少,以及M2巨噬细胞极化降低有关 [30] 。

4. NEU下游产物唾液酸有望成为心血管疾病标志物

患者血清中的唾液酸浓度对心血管死亡率有很强的预测作用。急性心梗患者血清或血浆中NEU表达和活性增加,甚至唾液酸水平升高与疾病严重程度、危险因素以及生物标志物呈正相关 [13] [31] [32] [33] 。在2324例接受冠脉造影的患者队列中发现,NEU1产生的血清Neu5Ac水平可作为冠心病及其进展的代谢标志物 [9] 。在心衰患者中,唾液酸水平也经常被用作系统性炎症的标志物 [26] [33] [34] 。潜在的机制是在诸如急性心梗等心血管疾病中,由于细胞损伤时,唾液酸从细胞表面脱落增加 [32] 。并且细胞表面唾液酸脱落增加与缺血损伤后NEU表达和活性增高相一致 [28] 。唾液酸尤其Neu5Ac是心血管疾病诊断和进展的潜在标志物,但是需要更多研究来评价唾液酸在心血管疾病中的诊断价值。

5. NEU抑制剂类药物治疗心血管疾病相关进展

NEU抑制剂在心血管疾病中显示出良好的治疗作用。基于动物模型的研究显示,敲低NEU1或者使用NEU1抑制剂会减少动脉粥样硬化斑块形成,减少心肌损伤、心室不良重构和心功能受损 [9] [14] [20] [21] 。对于诊断为流感的冠心病患者,使用抗流感药物奥司他韦治疗的心血管事件复发率明显低于未使用奥司他韦治疗组 [35] [36] 。NEU抑制剂治疗主要缓解COVID-19患者急性心肌损伤的发生率,缓解疾病进展和降低患者死亡率 [37] 。并且静脉注射NEU抑制剂扎那米韦对QT及校正QT间期无影响,且不改变心脏复极 [38] 。

NEU抑制剂类药物主要是通过抑制NEU活性发挥心脏保护作用,其具体机制还需要大规模前瞻性研究来提供证据,为心血管疾病治疗和心血管疾病药物研发提供新思路,促进患者康复,改善预后,提高生活质量。

6. 小结

内源性NEU活性增高和介导去唾液酸化参与多种心血管疾病发生发展。NEU亚型在不同心血管病中表达改变,NEU1表达升高促进心血管病进展,而NEU3起心脏保护作用,目前更多的研究集中在NEU1表达升高参与疾病的作用机制,很少探讨为何NEU1在这些疾病中表达改变。NEU下游产物唾液酸在冠心病及心力衰竭患者血液中升高,有望成为心血管疾病生物标志物,在心血管病诊治、风险评估、预后判断中具有潜质。NEU抑制剂很可能会是未来心血管疾病药物治疗中的一项新的补充,让更多的患者获益。

基金项目

新疆维吾尔自治区重点实验室开放课题(2022D04020)。

NOTES

*通讯作者。

参考文献

[1] Madjid, M., Miller, C.C., Zarubaev, V.V., et al. (2007) Influenza Epidemics and Acute Respiratory Disease Activity Are Associated with a Surge in Autopsy-Confirmed Coronary Heart Disease Death: Results from 8 Years of Autopsies in 34,892 Subjects. European Heart Journal, 28, 1205-1210.
https://doi.org/10.1093/eurheartj/ehm035
[2] Smeeth, L., Thomas, S.L., Hall, A.J., et al. (2004) Risk of Myocardial Infarction and Stroke after Acute Infection or Vaccination. The New England Journal of Medicine, 351, 2611-2618.
https://doi.org/10.1056/NEJMoa041747
[3] Pshezhetsky, A.V. and Ashmarina, L.I. (2013) Desialylation of Surface Receptors as a New Dimension in Cell Signaling. Biochemis-try, 78, 736-745.
https://doi.org/10.1134/S0006297913070067
[4] Lipničanová, S., Chmelová, D., Ondrejovič, M., et al. (2020) Diversity of Sialidases Found in the Human Body—A Review. International Journal of Biological Macromolecules, 148, 857-868.
https://doi.org/10.1016/j.ijbiomac.2020.01.123
[5] Glanz, V.Y., Myasoedova, V.A., Grechko, A.V., et al. (2019) Sialidase Activity in Human Pathologies. European Journal of Pharmacology, 842, 345-350.
https://doi.org/10.1016/j.ejphar.2018.11.014
[6] Heimerl, M., Sieve, I., Ricke-Hoch, M., et al. (2020) Neuramini-dase-1 Promotes Heart Failure after Ischemia/Reperfusion Injury by Affecting Cardiomyocytes and Invading Mono-cytes/Macrophages. Basic Research in Cardiology, 115, Article No. 62.
https://doi.org/10.1007/s00395-020-00821-z
[7] Cross, A.S., Hyun, S.W., Miranda-Ribera, A., et al. (2012) NEU1 and NEU3 Sialidase Activity Expressed in Human Lung Microvascular Endothelia: NEU1 Restrains Endothelial Cell Migration, Whereas NEU3 Does Not. Journal of Biological Chemistry, 287, 15966-15980.
https://doi.org/10.1074/jbc.M112.346817
[8] Lindberg, G. (2007) Resialylation of Sialic Acid Deficit Vascular Endothelium, Circulating Cells and Macromolecules May Counteract the Development of Atherosclerosis: A Hypothesis. Atherosclerosis, 192, 243-245.
https://doi.org/10.1016/j.atherosclerosis.2007.03.011
[9] Zhang, L., Wei, T.T., Li, Y., et al. (2018) Functional Metabolomics Characterizes a Key Role for N-Acetylneuraminic Acid in Coronary Artery Diseases. Circulation, 137, 1374-1390.
https://doi.org/10.1161/CIRCULATIONAHA.117.031139
[10] Kumagai, R., Lu, X. and Kassab, G.S. (2009) Role of Glycocalyx in Flow-Induced Production of Nitric Oxide and Reactive Oxygen Species. Free Radical Biology and Medicine, 47, 600-607.
https://doi.org/10.1016/j.freeradbiomed.2009.05.034
[11] Psefteli, P.M., Kitscha, P., Vizcay, G., et al. (2021) Gly-cocalyx Sialic Acids Regulate Nrf2-Mediated Signaling by Fluid Shear Stress in Human Endothelial Cells. Redox Biology, 38, Article ID: 101816.
https://doi.org/10.1016/j.redox.2020.101816
[12] White, E.J., Gyulay, G., Lhoták, Š., et al. (2018) Sialidase Down-Regulation Reduces Non-HDL Cholesterol, Inhibits Leukocyte Transmigration, and Attenuates Atherosclerosis in ApoE Knockout Mice. Journal of Biological Chemistry, 293, 14689-14706.
https://doi.org/10.1074/jbc.RA118.004589
[13] Sieve, I., Ricke-Hoch, M., Kasten, M., et al. (2018) A Positive Feedback Loop between IL-1β, LPS and NEU1 May Promote Atherosclerosis by Enhancing a Pro-Inflammatory State in Monocytes and Macrophages. Vascular Pharmacology, 103-105, 16-28.
https://doi.org/10.1016/j.vph.2018.01.005
[14] Demina, E.P., Smutova, V., Pan, X., et al. (2021) Neuraminidases 1 and 3 Trigger Atherosclerosis by Desialylating Low-Density Lipoproteins and Increasing Their Uptake by Macrophages. Journal of the American Heart Association, 10, e018756.
https://doi.org/10.1161/JAHA.120.018756
[15] Cuniberti, L.A., Martinez, V., Schachter, J., et al. (2005) Sialic Acid as a Protective Barrier against Neointima Development. Atherosclerosis, 181, 225-231.
https://doi.org/10.1016/j.atherosclerosis.2005.01.021
[16] Gayral, S., Garnotel, R., Castaing-Berthou, A., et al. (2014) Elastin-Derived Peptides Potentiate Atherosclerosis through the Immune Neu1-PI3Kγ Pathway. Cardiovascular Research, 102, 118-127.
https://doi.org/10.1093/cvr/cvt336
[17] Kawecki, C., Bocquet, O., Schmelzer, C.E.H., et al. (2019) Identification of CD36 as a New Interaction Partner of Membrane NEU1: Potential Implication in the Pro-Atherogenic Effects of the Elas-tin Receptor Complex. Cellular and Molecular Life Sciences, 76, 791-807.
https://doi.org/10.1007/s00018-018-2978-6
[18] Yang, A., Gyulay, G., Mitchell, M., et al. (2012) Hypomorphic Sialidase Expression Decreases Serum Cholesterol by Downregulation of VLDL Production in Mice. Journal of Lipid Research, 53, 2573-2585.
https://doi.org/10.1194/jlr.M027300
[19] Piccoli, M., Coviello, S., Canali, M.E., et al. (2022) Neu3 Sialidase Acti-vates the RISK Cardioprotective Signaling Pathway During Ischemia and Reperfusion Injury (IRI). International Journal of Molecular Sciences, 23, Article 6090.
https://doi.org/10.3390/ijms23116090
[20] Chen, Q.Q., Ma, G., Liu, J.F., et al. (2021) Neuraminidase 1 Is a Driver of Experimental Cardiac Hypertrophy. European Heart Journal, 42, 3770-3782.
https://doi.org/10.1093/eurheartj/ehab347
[21] Guo, Z., Fan, D., Liu, F.Y., et al. (2022) NEU1 Regulates Mito-chondrial Energy Metabolism and Oxidative Stress Post-Myocardial Infarction in Mice via the SIRT1/PGC-1 Alpha Axis. Frontiers in Cardiovascular Medicine, 9, Article 821317.
https://doi.org/10.3389/fcvm.2022.821317
[22] Ghiroldi, A., Piccoli, M., Creo, P., et al. (2020) Role of Sialidase Neu3 and Ganglioside GM3 in Cardiac Fibroblasts Activation. Biochemical Journal, 477, 3401-3415.
https://doi.org/10.1042/BCJ20200360
[23] Guo, Z., Tuo, H., Tang, N., et al. (2022) Neuraminidase 1 Deficiency Attenuates Cardiac Dysfunction, Oxidative Stress, Fibrosis, Inflammatory via AMPK-SIRT3 Pathway in Diabetic Cardiomyopathy Mice. International Journal of Biological Sciences, 18, 826-840.
https://doi.org/10.7150/ijbs.65938
[24] Qin, Y., Lv, C., Zhang, X., et al. (2021) Neuraminidase1 Inhibitor Protects against Doxorubicin-Induced Cardiotoxicity via Suppressing Drp1-Dependent Mitophagy. Frontiers in Cell and Devel-opmental Biology, 9, Article 802502.
https://doi.org/10.3389/fcell.2021.802502
[25] Li, S., Wang, Y., Zeng, X., et al. (2022) Common Variants in Neu-raminidases Genes Contribute to Predisposition to and Progression of Chronic Heart Failure. Human Heredity, 87, 96-101.
https://doi.org/10.1159/000525713
[26] Dougherty, B.V., Rawls, K.D., Kolling, G.L., et al. (2021) Identi-fying Functional Metabolic Shifts in Heart Failure with the Integration of Omics Data and a Heart-Specific, Ge-nome-Scale Model. Cell Reports, 34, Article ID: 108836.
https://doi.org/10.1016/j.celrep.2021.108836
[27] Li, C., Zhao, M., Xiao, L., et al. (2021) Prognostic Value of Ele-vated Levels of Plasma N-Acetylneuraminic Acid in Patients with Heart Failure. Circulation: Heart Failure, 14, e008459.
https://doi.org/10.1161/CIRCHEARTFAILURE.121.008459
[28] Liu, J.N., Dolikun, M., Štambuk, J., et al. (2018) The Association between Subclass-Specific IgG Fc N-Glycosylation Profiles and Hypertension in the Uygur, Kazak, Kirgiz, and Tajik Populations. Journal of Human Hypertension, 32, 555-563.
https://doi.org/10.1038/s41371-018-0071-0
[29] Peng, J., Vongpatanasin, W., et al. (2019) Supplementation with the Sialic Acid Precursor N-Acetyl-D-Mannosamine Breaks the Link between Obesity and Hypertension. Circulation, 140, 2005-2018.
https://doi.org/10.1161/CIRCULATIONAHA.119.043490
[30] Wang, Q., Chen, Z., et al. (2021) Neuraminidase 1 Exacerbating Aortic Dissection by Governing a Pro-Inflammatory Program in Macrophages. Frontiers in Cardiovascu-lar Medicine, 8, Article 788645.
https://doi.org/10.3389/fcvm.2021.788645
[31] Poznyak, A.V., Zhang, D., Grechko, A.V., et al. (2020) The Role of Sialic Acids in the Initiation of Atherosclerosis. Minerva Cardioangiologica, 68, 359-364.
https://doi.org/10.23736/S0026-4725.20.05145-2
[32] Gökmen, S.S., Kazezoğlu, C., Sunar, B., et al. (2006) Rela-tionship between Serum Sialic Acids, Sialic Acid-Rich Inflammation-Sensitive Proteins and Cell Damage in Patients with Acute Myocardial Infarction. Clinical Chemistry and Laboratory Medicine, 44, 199-206.
https://doi.org/10.1515/CCLM.2006.037
[33] Rajendiran, K.S., Ananthanarayanan, R.H., Satheesh, S., et al. (2014) Elevated Levels of Serum Sialic Acid and High-Sensitivity C-Reactive Protein: Markers of Systemic Inflammation in Pa-tients with Chronic Heart Failure. British Journal of Biomedical Science, 71, 29-32.
https://doi.org/10.1080/09674845.2014.11669959
[34] Cheeseman, J., Kuhnle, G., Spencer, D.I.R., et al. (2021) Assays for the Identification and Quantification of Sialic Acids: Challenges, Opportunities and Future Perspectives. Bioorganic & Medicinal Chemistry, 30, Article ID: 115882.
https://doi.org/10.1016/j.bmc.2020.115882
[35] Madjid, M., Curkendall, S. and Blumentals, W.A. (2009) The In-fluence of Oseltamivir Treatment on the Risk of Stroke after Influenza Infection. Cardiology, 113, 98-107.
https://doi.org/10.1159/000172796
[36] Casscells, S.W., Granger, E., Kress, A.M., et al. (2009) Use of Oseltami-vir after Influenza Infection Is Associated with Reduced Incidence of Recurrent Adverse Cardiovascular Outcomes among Military Health System Beneficiaries with Prior Cardiovascular Diseases. Circulation: Cardiovascular Quality and Outcomes, 2, 108-115.
https://doi.org/10.1161/CIRCOUTCOMES.108.820357
[37] Wu, J., Zhao, M., Wei, H., et al. (2022) Neuramini-dase Inhibitor Treatment Is Associated with Decreased Mortality in COVID-19 Patients: A Retrospective Analysis. Eu-ropean Heart Journal—Cardiovascular Pharmacotherapy, 8, 392-401.
https://doi.org/10.1093/ehjcvp/pvac018
[38] Lou, Y., Gan, J., Peppercorn, A., et al. (2013) Effect of Intravenous Zanamivir on Cardiac Repolarization. Pharmacotherapy, 33, 701-709.
https://doi.org/10.1002/phar.1261