钠–葡萄糖共转运蛋白2抑制剂治疗多囊卵巢综合征研究进展
Research Progress of Sodium-Glucose Cotransporter 2 Inhibitor in the Treatment of Polycystic Ovary Syndrome
DOI: 10.12677/ACM.2024.142635, PDF, HTML, XML, 下载: 45  浏览: 85 
作者: 岳玺印:重庆医科大学研究生院,重庆;刘东方*:重庆医科大学附属第二医院内分泌科,重庆
关键词: 多囊卵巢综合征钠–葡萄糖共转运蛋白2抑制剂胰岛素抵抗高雄激素血症Polycystic Ovary Syndrome Sodium-Glucose Cotransporter 2 Inhibitor Insulin Resistance Hyperandrogenemia
摘要: 多囊卵巢综合征是无排卵性不孕最常见的原因,其发病机制主要与胰岛素抵抗、高雄激素血症以及肥胖相关。目前尚无根治多囊卵巢综合征的治疗手段,以对症治疗为主,通过减重和药物干预可以改善患者代谢及生殖结局,常用的药物有二甲双胍和避孕药。钠–葡萄糖共转运蛋白2抑制剂是一种新型降糖药物,具有减重、降糖、改善胰岛素抵抗、抗炎等作用,可使多囊卵巢综合征患者获益,相关的临床实验也逐渐增多,取得了可观的疗效,本文总结了钠–葡萄糖共转运蛋白2抑制剂的治疗多囊卵巢综合征可能的作用机制及最新进展,旨在为临床用药提供参考。
Abstract: Polycystic ovary syndrome is the most common cause of anovulatory infertility, and its pathogenesis is mainly related to insulin resistance, hyperandrogenemia and obesity. At present, there is no rad-ical treatment for polycystic ovary syndrome, mainly symptomatic treatment, weight loss and drug intervention can improve patients’ metabolism and reproductive outcome, and the commonly used drugs are metformin and contraceptive. Sodium-glucose cotransporter 2 inhibitor is a new type of hypoglycemic drug, which may benefit patients with polycystic ovary syndrome by reducing weight, reducing blood glucose, improving insulin resistance and anti-inflammation, and the related clinical trials are gradually increasing. Considerable efficacy has been achieved. This paper summarizes the possible mechanism and latest progress of sodium-glucose cotransporter 2 inhibitors in the treat-ment of polycystic ovary syndrome, aiming to provide reference for clinical medication.
文章引用:岳玺印, 刘东方. 钠–葡萄糖共转运蛋白2抑制剂治疗多囊卵巢综合征研究进展[J]. 临床医学进展, 2024, 14(2): 4573-4580. https://doi.org/10.12677/ACM.2024.142635

1. 引言

近年来,我国劳动年龄人口数量减少,老龄化程度进一步加深,使经济和社会可持续发展受到一定影响。实施三孩生育政策及配套支持措施,有利于缓解人口老龄化,保持合理的劳动力结构和数量。但是近几年的调查发现中国人口出生率和人口增速不升反降。除去社会经济发展因素、育龄妇女持续减少、生育观念变化等多方面因素影响外,出生率的降低和生殖力降低存在密切关系。生殖力又称可育性、生育力,是指女性、男性或夫妇双方能够生育活产婴儿的生理能力 [1] 。低生殖能力通常是指任何形式的生育能力下降,并且长时间不怀孕。在中国,女性不孕症患病率亦呈上升趋势:1988年在全国范围内进行的一项大规模调查显示,育龄妇女2年不孕症患病率为6.7%;2010年至2011年,一项包括25,270对夫妇的基于人群的研究发现总体不孕症患病率为15.5%;到2019年,在河南省进行的一项调查显示女性不孕症患病率已上升至24.58% [2] 。因此,缓解影响生殖力的危险因素及有效治疗影响生殖力的相关疾病势在必行。无排卵性不孕最常见的原因是多囊卵巢综合征(polycystic ovary syndrome, PCOS) [3] 。PCOS是一种异质性疾病,主要表现为高雄激素血症、排卵功能障碍、卵巢多囊样改变,表型的流行程度根据生命阶段、基因型、种族和环境因素(包括生活方式和体重)而有很大差异 [4] 。根据不同的诊断标准,多囊卵巢综合征在育龄期女性中发病率占7%~13%,且有显著增加的趋势 [5] [6] [7] 。

2. PCOS发病机制

2.1. 高雄激素血症

目前PCOS的发病原因尚未完全阐明,可能与遗传、环境、种族等因素有关 [8] [9] 。最近的研究发现,多囊卵巢综合征的核心病因和主要内分泌特征是高雄激素血症(Hyperandrogenism, HA)和胰岛素抵抗(Insulin resistance, IR) [10] 。PCOS患者有高雄激素血症和/或高雄激素表现者占60%~80%,有不同程度的胰岛素抵者占50%~70% [11] [12] 。在卵巢卵膜细胞及肾上腺皮质网状带的细胞中,胆固醇经过一系列酶促反应,转化为脱氢表雄酮(DHEA)和雄烯二酮 [13] 。研究表明,高雄激素血症可引起促黄体生成素分泌增加、下丘脑垂体性腺轴紊乱、排卵障碍,从而导致不孕,且雄激素过多影响脂肪组织重新分布,促进内脏脂肪积累,引起棕色脂肪组织功能障碍、肝脏组织变性,损害瘦素的减肥特性、增加肥胖几率,从而加重胰岛素抵抗 [14] 。雄激素作用于中枢和多种外周组织,通过不同机制驱动PCOS的发生发展。

2.2. 胰岛素抵抗

除高雄激素血症以外,PCOS发病的另一重要机制是胰岛素抵抗。胰岛素抵抗被定义为胰岛素介导葡萄糖摄取、葡萄糖产生和/或脂肪分解等代谢作用的能力下降,导致需要增加胰岛素量来实现正常的代谢作用。不同组织对胰岛素的敏感性反应各不相同,这使得PCOS女性的胰岛素抵抗定义变得复杂 [12] 。IR导致胰岛β细胞代偿性分泌更多胰岛素,从而引起高胰岛素血症,血液中高水平胰岛素通过MAPK通路刺激GnRH基因转录,增加LH脉冲分泌,从而显著增加卵巢雄激素合成 [15] 。高胰岛素血症导致高雄激素血症的另一个可能的机制是抑制肝脏产生性激素结合球蛋白(SHBG),由于睾酮与SHBG高度结合,血清SHBG浓度的降低将增加循环睾酮的组织可用性 [16] 。有证据表明,高胰岛素血症虽然不是解释低/无排卵的唯一因素,但可能确实有助于多囊卵巢综合征的窦卵泡功能障碍和无排卵机制,使用二甲双胍等胰岛素增敏剂可改善月经周期和慢性无排卵症状 [17] [18] 。

2.3. 肥胖

肥胖在PCOS发病机制中发挥的作用也不可小觑。多囊卵巢综合征患者肥胖的可能性几乎是非多囊卵巢综合征的女性的三倍,患病率因种族、地区和文化而异,从38%到88%不等 [19] [20] 。肥胖,尤其是在肥胖和非肥胖多囊卵巢综合征女性中常见的内脏脂肪,会放大和恶化多囊卵巢综合征的所有代谢和生殖结果 [21] 。与正常体重妇女相比,肥胖患者更容易出现月经少和无排卵症状,卵母细胞质量更差,体外受精等生育治疗的成功率降更低,且身体质量指数(BMI)越大,不孕时间越长 [22] 。在临床上,即使是适度的体重减轻(~5%)也会导致多囊卵巢综合征患者的生殖、高雄激素和代谢特征有意义的改善,这突出了肥胖和多囊卵巢综合征之间的生物学联系 [23] 。

2.4. 炎症与氧化应激

此外,氧化应激与炎症在PCOS的发病机制中也占有一席之地。PCOS女性血清中氧化应激标志物水平升高,氧化应激过程中产生的活性氧会破坏蛋白质、脂质和DNA,从而导致组织损伤 [24] 。氧化应激增加的后遗症是产生促炎细胞因子,诱导IR和高雄激素血症,并增加心血管疾病的机会 [25] 。PCOS患者细胞间黏附分子(ICAM)-1、肿瘤坏死因子(TNF)-α、单核细胞趋化蛋白(MCP)-1、C反应蛋白(CRP)、IL-8等,这表明体内有炎症 [26] 。炎症与肥胖、心血管疾病、胰岛素抵抗和糖尿病相关,这些是PCOS的代谢方面 [27] 。

3. PCOS治疗现状

多囊卵巢综合征不仅给患者的身心健康带来不利影响,也导致了巨大的医疗保健相关经济负担 [28] 。然而,用于该病的治疗策略仍然有限,目前仍以对症治疗为主,包括改善饮食、减重、促排卵、改善胰岛素抵抗、降低雄激素水平等治疗 [29] [30] [31] [32] 。改善生活方式是多囊卵巢综合征患者治疗的基石,贯穿治疗全过程甚至患者的一生。2019年,一篇纳入了15项随机对照试验(RCT)和498名参与者的报告称,与最小干预或常规护理相比,生活方式干预可显著降低体重和体重指数,并改善高雄激素血症和胰岛素抵抗 [33] 。但临床实践表明,对于一些肥胖多囊卵巢综合征患者,改善生活方式是无效的。虽然减肥药物如奥利司他及减重手术也被推荐用于治疗肥胖多囊卵巢综合征,但奥利司他引起吸收不良及胆汁淤积的副作用限制了该药物的使用,减肥手术引起的创伤及一些不可逆转的副作用也影响了其应用。对于患有PCOS的成年女性,常用口服避孕药来治疗雄激素分泌过多和/或月经周期不规律,但避孕药会对血脂有不利影响,增加静脉血栓形成和心血管事件的风险 [34] [35] 。在临床上,降糖药物如二甲双胍、吡格列酮、利拉鲁肽等也被用于治疗多囊卵巢综合征,但是在改善月经周期、促排卵、改善高雄激素血症、提高生殖能力等方面收益有限 [36] [37] [38] 。因此,寻找更加有效的PCOS代谢和生殖功能改善药物具有非常重要的意义。

4. 钠–葡萄糖共转运体-2治疗PCOS可能的作用机制

钠–葡萄糖共转运体-2 (sodium glucose cotransporter 2, SGLT-2)抑制剂是一类新型口服降糖药物,通过阻断近端肾小管S1和S2段表达的的SGLT2受体,抑制葡萄糖和钠离子的重吸收,降低肾糖阈,从而发挥降糖作用,这种作用机制与胰岛素无关,不会增加低血糖的风险 [39] [40] 。目前全球共有6种SGLT-2抑制剂,因为降糖外的显著的心肾获益而获得全球很多指南的推荐。在解读sglt2抑制剂的众多作用机制中,我们发现其部分机制可能会对PCOS患者的代谢包括胰岛素抵抗、体重、炎症等具有明显改善作用,甚至会进而因为代谢和胰岛素敏感性的改善带来月经周期或者排卵功能的改善。

首先,早期研究发现,SGLT2在成年雄性啮齿类动物中的表达存在性别差异,雄激素在调节小鼠SGLT2表达方面具有主要作用,雌性小鼠在使用睾酮治疗后SGLT2上升到雄性小鼠水平 [41] ;2021年发表的一项研究显示,给予4周龄雌性Sprague Dawley大鼠双氢睾酮(DHT)治疗90 d后,SGLT2、SGLT4和GLUT2的表达上调,这也为干预PCOS患者干SGLT-2的活性提供了相应的基础,当然这不是必需的基础,因为在某些根本没有SGLT-2表达的器官,依然在使用恩格列净等药物中产生了获益 [42] 。

第二,sglt2抑制剂有明确的体重减轻作用。SGLT2抑制剂抑制葡萄糖和钠离子在近端肾小管重吸收,使葡萄糖、钠离子随尿液流出,减轻水钠潴留,每天排出约60~80克葡萄糖,热量丢失约240~320卡路里,底物利用从碳水化合物转移到脂质和酮类,进而引起脂肪分解和脂肪氧化增强,降低体脂含量,最终引起体重减轻 [43] 。卡格列净通过改善脂肪细胞和脂肪组织中的脂肪酸氧化和线粒体功能来预防hfd诱导的肥胖和肥胖相关的代谢紊乱,这种能量耗散作用可能由PPARα介 [44] 。在小鼠模型中,达格列净被证明干扰能量代谢,激活腺苷酸活化的蛋白激酶,促进乙酰辅酶A羧化酶磷酸化,抑制脂肪酸合成,促进脂质分解。临床研究发现,Sglt2抑制剂不仅可以减轻糖尿病患者的体重,罹患PCOS的肥胖妇女也有体重受益,达格列净、恩格列净、卡格列净及利格列净均可减轻超重和肥胖PCOS的体重、腰围、臀围、基础代谢率等 [45] [46] [47] 。

第三,sglt2抑制剂可以改善胰岛素抵抗,增加骨骼肌等靶器官的胰岛素敏感性。在Zucker糖尿病肥胖大鼠身上进行的实验发现,卡格列净使ZDF大鼠的基础和餐后高血糖恢复正常,通过消除糖毒性改善了肝脏受损的葡萄糖效能和肌肉的胰岛素敏感性,从而恢复了ZDF大鼠的代谢灵活性 [48] 。恩格列净可降低小鼠空腹胰岛素水平和HOMA-IR,改善葡萄糖耐量和胰岛素敏感性 [49] 。Sglt2抑制剂在临床上的治疗T2DM的效果也证实了从动物实验中得出的结论。服用达格列净治疗5周后,T2DM患者代谢发生类似热量限制的重大调整,脂肪氧化增加,肝脏和脂肪胰岛素敏感性改善,24小时能量代谢改善 [50] 。

第四,SGLT-2抑制剂可减轻炎症、抑制氧化应激。在卡格列净治疗2型糖尿病肾病的实验中,肿瘤坏死因子受体(TNFR) 1、白介素(IL)-6、基质金属蛋白酶(MMP) 7和纤连蛋白(FN) 1的减少表明,卡格列净有助于逆转与炎症、细胞外基质转换和纤维化相关的分子过程 [51] 。恩格列净可以消除高糖状态下肾小管细胞产生的超氧化物,通过抑制线粒体活性氧(ROS)生成、MMP和ATP生成,减少高糖诱导的细胞凋亡,改善线粒体功能,保护肾小管周围毛细血管免受高糖介导的损伤 [52] 。在一项包含35例T2DM合并冠状动脉疾病患者的小规模随机对照试验中,每日服用达格列净5 mg,总疗程6个月,可显著降低血浆TNF-α [53] 。SGLT2抑制剂可以使血液循环中的炎症标志物减少,这一点也在啮齿动物身上得到了验证,2022年的一项荟萃分析表明,使用SGLT2抑制剂治疗导致IL-6、CRP、TNF-α、和MCP-1水平降低 [54] 。

第五,晚期糖基化终产物(AGEs在PCOS病理生理机制中发挥的作用日益受到重视。AGEs是过量的糖与蛋白质结合的产物,通过人体内合成和高热量食物摄入2种途径 [55] 。PCOS患者中AGEs水平升高,循环中的AGEs在不同组织中沉积,通过活性氧形成而引起细胞损伤;AGEs受体(RAGE)是促炎受体,PCOS患者卵巢AGEs受体表达升高,从而改变PCOS女性的甾体生成和卵泡生成,因此这表明AGEs与PCOS患者的高雄激素血症与胰岛素抵抗有关 [25] 。Sglt2抑制剂,如恩格列净,降低AGEs的作用在保护心脏肾脏等器官保护作用中得到了体现 [56] 。

5. 结论

近年来,sglt2抑制剂用于治疗超重肥胖PCOS患者的研究逐渐增多。与二甲双胍疗效相似,sglt2抑制剂在改善患者体重、腰围、臀围、腰臀比和增加胰岛素敏感性方面取得了可观的疗效。然而,在改善性激素水平方面,各种sglt2抑制剂的治疗效果各不相同,未取得一致的研究结论。另外,由于用药时间普遍较短,既往进行的临床试验未详细评估生殖结局 [45] [46] [47] [57] [58] [59] 。目前关于sglt2抑制剂在PCOS患者中的安全性和有效性的原始研究较少、样本量小,用药时间较短,需要更多治疗时间更长的试验来评估补充SGLT-2抑制剂对PCOS患者的长期影响。

NOTES

*通讯作者。

参考文献

[1] 李晓宇, 顾向应. 我国生育力现状及面临的挑战[J]. 中国计划生育和妇产科, 2020, 12(1): 3-6, 97-98.
[2] Liang, S., Chen, Y., Wang, Q., et al. (2021) Prevalence and Associated Factors of Infertility among 20-49 Year Old Women in Henan Province, China. Reproductive Health, 18, Article No. 254.
https://doi.org/10.1186/s12978-021-01298-2
[3] Wang, R., Li, W., Bordewijk, E.M., et al. (2019) First-Line Ov-ulation Induction for Polycystic Ovary Syndrome: An Individual Participant Data Meta-Analysis. Human Reproduction Update, 25, 717-732.
https://doi.org/10.1093/humupd/dmz029
[4] Shrivastava, S. and Conigliaro, R.L. (2023) Polycystic Ovarian Syn-drome. Medical Clinics of North America, 107, 227- 234.
https://doi.org/10.1016/j.mcna.2022.10.004
[5] Skiba, M.A., Islam, R.M., Bell, R.J. and Davis, S.R. (2018) Understanding Variation in Prevalence Estimates of Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Human Reproduction Update, 24, 694-709.
https://doi.org/10.1093/humupd/dmy022
[6] Safiri, S., Noori, M., Nejadghaderi, S.A., et al. (2022) Prevalence, Incidence and Years Lived with Disability Due to Polycystic Ovary Syndrome in 204 Countries and Territories, 1990-2019. Human Reproduction, 37, 1919-1931.
https://doi.org/10.1093/humrep/deac091
[7] Yang, R., Li, Q., Zhou, Z., et al. (2022) Changes in the Prevalence of Polycystic Ovary Syndrome in China over the Past Decade. The Lancet Regional Health—Western Pacific, 25, Article ID: 100494.
https://doi.org/10.1016/j.lanwpc.2022.100494
[8] Vanhise, K., Wang, E.T., Norris, K., et al. (2023) Racial and Ethnic Disparities in Polycystic Ovary Syndrome. Fertility and Sterility, 119, 348-354.
https://doi.org/10.1016/j.fertnstert.2023.01.031
[9] Abdalla, M., Deshmukh, H., Atkin, S.L. and Sathyapalan, T. (2020) MiRNAs as a Novel Clinical Biomarker and Therapeutic Targets in Polycystic Ovary Syndrome (PCOS): A Re-view. Life Sciences, 259, Article ID: 118174.
https://doi.org/10.1016/j.lfs.2020.118174
[10] Wang, J., Wu, D., Guo, H., et al. (2019) Hyperandrogenemia and Insulin Resistance: The Chief Culprit of Polycystic Ovary Syndrome. Life Sciences, 236, Article ID: 116940.
https://doi.org/10.1016/j.lfs.2019.116940
[11] Balen, A.H., Morley, L.C., Misso, M., et al. (2016) The Manage-ment of Anovulatory Infertility in Women with Polycystic Ovary Syndrome: An Analysis of the Evidence to Support the Development of Global WHO Guidance. Human Reproduction Update, 22, 687-708.
https://doi.org/10.1093/humupd/dmw025
[12] Legro, R.S., Castracane, V.D. and Kauffman, R.P. (2004) Detecting Insulin Resistance in Polycystic Ovary Syndrome: Purposes and Pitfalls. Obstetrical & Gynecological Survey, 59, 141-154.
https://doi.org/10.1097/01.OGX.0000109523.25076.E2
[13] Crespo, R.P., Bachega, T., Mendonça, B.B., et al. (2018) An Update of Genetic Basis of PCOS Pathogenesis. Archives of Endocrinology and Metabolis, 62, 352-361.
https://doi.org/10.20945/2359-3997000000049
[14] Sanchez-Garrido, M.A. and Tena-Sempere, M. (2020) Meta-bolic Dysfunction in Polycystic Ovary Syndrome: Pathogenic Role of Androgen Excess and Potential Therapeutic Strate-gies. Molecular Metabolism, 35, Article ID: 100937.
https://doi.org/10.1016/j.molmet.2020.01.001
[15] Lonardo, M.S., Cacciapuoti, N., Guida, B., et al. (2024) Hypo-thalamic-Ovarian Axis and Adiposity Relationship in Polycystic Ovary Syndrome: Physiopathology and Therapeutic Op-tions for the Management of Metabolic and Inflammatory Aspects. Current Obesity Reports.
https://doi.org/10.1007/s13679-023-00531-2
[16] Nestler, J.E., Powers, L.P., Matt, D.W., et al. (1991) A Direct Effect of Hyperinsulinemia on Serum Sex Hormone- Binding Globulin Levels in Obese Women with the Polycystic Ovary Syndrome. The Journal of Clinical Endocrinology & Metabolism, 72, 83-89.
https://doi.org/10.1210/jcem-72-1-83
[17] Franks, S., Stark, J. and Hardy, K. (2008) Follicle Dynamics and Anov-ulation in Polycystic Ovary Syndrome. Human Reproduction Update, 14, 367-378.
https://doi.org/10.1093/humupd/dmn015
[18] Sam, S. and Ehrmann, D.A. (2017) Metformin Therapy for the Re-productive and Metabolic Consequences of Polycystic Ovary Syndrome. Diabetologia, 60, 1656-1661.
https://doi.org/10.1007/s00125-017-4306-3
[19] Eng, P.C., Phylactou, M., Qayum, A., et al. (2023) Obesi-ty-Related Hypogonadism in Women. Endocrine Reviews.
https://doi.org/10.1210/endrev/bnad027
[20] Wang, F.F., Wu, Y., Zhu, Y.H., et al. (2018) Pharmacologic Therapy to Induce Weight Loss in Women Who Have Obesity/Overweight with Polycystic Ovary Syndrome: A Systematic Re-view and Network Meta-Analysis. Obesity Reviews, 19, 1424-1445.
https://doi.org/10.1111/obr.12720
[21] Glueck, C.J. and Goldenberg, N. (2019) Characteristics of Obesity in Polycystic Ovary Syndrome: Etiology, Treatment, and Ge-netics. Metabolism, 92, 108-120.
https://doi.org/10.1016/j.metabol.2018.11.002
[22] Arya, S., Hansen, K.R., Peck, J.D., et al. (2021) Metabolic Syndrome in Obesity: Treatment Success and Adverse Pregnancy Outcomes with Ovulation Induction in Polycystic Ovary Syndrome. American Journal of Obstetrics and Gynecology, 225, 280.E1-280.E11.
https://doi.org/10.1016/j.ajog.2021.03.048
[23] Liu, Q., Zhu, Z., Kraft, P., et al. (2022) Genomic Correlation, Shared Loci, and Causal Relationship between Obesity and Polycystic Ovary Syndrome: A Large-Scale Genome-Wide Cross-Trait Analysis. BMC Medicine, 20, Article No. 66.
https://doi.org/10.1186/s12916-022-02238-y
[24] Rudnicka, E., Suchta, K., Grymowicz, M., et al. (2021) Chronic Low Grade Inflammation in Pathogenesis of PCOS. International Journal of Molecular Sciences, 22, Article 3789.
https://doi.org/10.3390/ijms22073789
[25] Siddiqui, S., Mateen, S., Ahmad, R., et al. (2022) A Brief Insight into the Etiology, Genetics, and Immunology of Polycystic Ovarian Syndrome (PCOS). Journal of Assisted Reproduction and Genetics, 39, 2439-2473.
https://doi.org/10.1007/s10815-022-02625-7
[26] Patel, S. (2018) Polycystic Ovary Syndrome (PCOS), an In-flammatory, Systemic, Lifestyle Endocrinopathy. The Journal of Steroid Biochemistry and Molecular Biology, 182, 27-36.
https://doi.org/10.1016/j.jsbmb.2018.04.008
[27] Abraham Gnanadass, S., Divakar Prabhu, Y. and Valsala Gopalakrishnan, A. (2021) Association of Metabolic and Inflammatory Markers with Polycystic Ovarian Syndrome (PCOS): An Update. Archives of Gynecology and Obstetrics, 303, 631-643.
https://doi.org/10.1007/s00404-020-05951-2
[28] Riestenberg, C., Jagasia, A., Markovic, D., et al. (2022) Health Care-Related Economic Burden of Polycystic Ovary Syndrome in the United States: Pregnancy-Related and Long-Term Health Consequences. The Journal of Clinical Endocrinology & Metabolism, 107, 575-585.
https://doi.org/10.1210/clinem/dgab613
[29] Haase, C.L., Varbo, A., Laursen, P.N., et al. (2023) Association be-tween Body Mass Index, Weight Loss and the Chance of Pregnancy in Women with Polycystic Ovary Syndrome and Overweight Or Obesity: A Retrospective Cohort Study in the UK. Human Reproduction, 38, 471-481.
https://doi.org/10.1093/humrep/deac267
[30] Cowan, S., Lim, S., Alycia, C., et al. (2023) Lifestyle Management in Polycystic Ovary Syndrome—Beyond Diet and Physical Activity. BMC Endocrine Disorders, 23, Article No. 14.
https://doi.org/10.1186/s12902-022-01208-y
[31] Costello, M.F., Misso, M.L., Balen, A., et al. (2019) Evidence Summaries and Recommendations from the International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome: Assessment and Treatment of Infertility. Human Reproduction Open, 2019, Hoy021.
https://doi.org/10.1093/hropen/hoy021
[32] Li, M., Chi, X., Wang, Y., et al. (2022) Trends in Insulin Resistance: Insights into Mechanisms and Therapeutic Strategy. Signal Transduction and Targeted Therapy, 7, Article No. 216.
https://doi.org/10.1038/s41392-022-01073-0
[33] Lim, S.S., Hutchison, S.K., Van, Ryswyk, E., et al. (2019) Life-style Changes in Women with Polycystic Ovary Syndrome. Cochrane Database of Systematic Reviews, 3, CD007506.
https://doi.org/10.1002/14651858.CD007506.pub4
[34] Teede, H.J., Misso, M.L., Costello, M.F., et al. (2018) Recommendations from the International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. Human Reproduction, 33, 1602-1618.
https://doi.org/10.1093/humrep/dey256
[35] Teal, S. and Edelman, A. (2021) Contraception Selection, Effective-ness, and Adverse Effects: A Review. JAMA, 326, 2507-2518.
https://doi.org/10.1001/jama.2021.21392
[36] Foda, A.A., Foda, E.A., El-Negeri, M.A. and El-Said, Z.H. (2019) Serum Chemerin Levels in Polycystic Ovary Syndrome af-ter Metformin Therapy. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 1309-1315.
https://doi.org/10.1016/j.dsx.2019.01.050
[37] Glintborg, D., Hermann, A.P., Andersen, M., et al. (2006) Effect of Pioglitazone on Glucose Metabolism and Luteinizing Hormone Secretion in Women with Polycystic Ovary Syndrome. Fertility and Sterility, 86, 385-397.
https://doi.org/10.1016/j.fertnstert.2005.12.067
[38] Elkind-Hirsch, K.E., Chappell, N., Shaler, D., et al. (2022) Li-raglutide 3 Mg on Weight, Body Composition, and Hormonal and Metabolic Parameters in Women with Obesity and Polycystic Ovary Syndrome: A Randomized Placebo- Controlled-Phase 3 Study. Fertility and Sterility, 118, 371-381.
https://doi.org/10.1016/j.fertnstert.2022.04.027
[39] Vaduganathan, M., Docherty, K.F., Claggett, B.L., et al. (2022) SGLT-2 Inhibitors in Patients with Heart Failure: A Comprehensive Meta-Analysis of Five Randomised Controlled Tri-als. Lancet, 400, 757-767.
https://doi.org/10.1016/S0140-6736(22)01429-5
[40] Sen, T. and Heerspink, H.J.L. (2021) A Kidney Perspective on the Mechanism of Action of Sodium Glucose Co-Trans- porter 2 Inhibitors. Cell Metabolism, 33, 732-739.
https://doi.org/10.1016/j.cmet.2021.02.016
[41] Sabolic, I., Vrhovac, I., Eror, D.B., et al. (2012) Expression of Na+-D-Glucose Cotransporter SGLT2 in Rodents Is Kidney-Specific and Exhibits Sex and Species Differences. Ameri-can Journal of Physiology-Cell Physiology, 302, C1174-C1188.
https://doi.org/10.1152/ajpcell.00450.2011
[42] Pruett, J.E., Torres Fernandez, E.D., Everman, S.J., et al. (2021) Impact of SGLT-2 Inhibition on Cardiometabolic Abnormalities in a Rat Model of Polycystic Ovary Syndrome. Interna-tional Journal of Molecular Sciences, 22, Article 2576.
https://doi.org/10.3390/ijms22052576
[43] Xie, L.L. and Xia, W.F. (2022) Characteristics and Molecular Mechanisms through Which SGLT2 Inhibitors Improve Metabolic Dis-eases: A Mechanism Review. Life Sciences, 300, Article ID: 120543.
https://doi.org/10.1016/j.lfs.2022.120543
[44] Wei, D., Liao, L., Wang, H., et al. (2020) Canagliflozin Ameliorates Obesity by Improving Mitochondrial Function and Fatty Acid Oxidation Via PPARα in Vivo and in Vitro. Life Sciences, 247, Article ID: 117414.
https://doi.org/10.1016/j.lfs.2020.117414
[45] Elkind-Hirsch, K.E., Chappell, N., Seidemann, E., et al. (2021) Ex-enatide, Dapagliflozin, or Phentermine/Topiramate Differentially Affect Metabolic Profiles in Polycystic Ovary Syndrome. The Journal of Clinical Endocrinology & Metabolism, 106, 3019-3033.
https://doi.org/10.1210/clinem/dgab408
[46] Zhang, J., Xing, C., Cheng, X., et al. (2022) Canagliflozin Combined with Metformin versus Metformin Monotherapy for Endocrine and Metabolic Profiles in Overweight and Obese Women with Polycystic Ovary Syndrome: A Single- Center, Open-Labeled Prospective Randomized Controlled Trial. Frontiers in Endocrinology, 13, Article 1003238.
https://doi.org/10.3389/fendo.2022.1003238
[47] Javed, Z., Papageorgiou, M., Deshmukh, H., et al. (2019) Effects of Empagliflozin on Metabolic Parameters in Polycystic Ovary Syndrome: A Randomized Controlled Study. Clinical Endocrinology, 90, 805-813.
https://doi.org/10.1111/cen.13968
[48] O’brien, T.P., Jenkins, E.C., Estes, S.K., et al. (2017) Correcting Postpran-dial Hyperglycemia in Zucker Diabetic Fatty Rats with an SGLT2 Inhibitor Restores Glucose Effectiveness in the Liver and Reduces Insulin Resistance in Skeletal Muscle. Diabetes, 66, 1172-1184.
https://doi.org/10.2337/db16-1410
[49] Han, J.H., Oh, T.J., Lee, G., et al. (2017) The Beneficial Effects of Em-pagliflozin, an SGLT2 Inhibitor, on Atherosclerosis in ApoE-/- Mice Fed A Western Diet. Diabetologia, 60, 364-376.
https://doi.org/10.1007/s00125-016-4158-2
[50] Op Den Kamp, Y.J.M., De Ligt, M., Dautzenberg, B., et al. (2021) Effects of the SGLT2 Inhibitor Dapagliflozin on Energy Metabolism in Patients with Type 2 Diabetes: A Randomized, Double-Blind Crossover Trial. Diabetes Care, 44, 1334-1343.
https://doi.org/10.2337/dc20-2887
[51] Heerspink, H.J.L., Perco, P., Mulder, S., et al. (2019) Canagliflozin Reduces Inflammation and Fibrosis Biomarkers: A Potential Mechanism of Action for Beneficial Effects of SGLT2 Inhibitors in Diabetic Kidney Disease. Diabetologia, 62, 1154-1166.
https://doi.org/10.1007/s00125-019-4859-4
[52] Lee, W.C., Chau, Y.Y., Ng, H.Y., et al. (2019) Em-pagliflozin Protects HK-2 Cells from High Glucose-Mediated Injuries via a Mitochondrial Mechanism. Cells, 8, Article 1085.
https://doi.org/10.3390/cells8091085
[53] Sato, T., Aizawa, Y., Yuasa, S., et al. (2020) The Effect of Dapagliflozin Treatment on Epicardial Adipose Tissue Volume and P-Wave Indices: An Ad-Hoc Analysis of the Previ-ous Randomized Clinical Trial. Journal of Atherosclerosis and Thrombosis, 27, 1348-1358.
https://doi.org/10.5551/jat.48009
[54] Theofilis, P., Sagris, M., Oikonomou, E., et al. (2022) The Impact of SGLT2 Inhibitors on Inflammation: A Systematic Review and Meta-Analysis of Studies in Rodents. International Im-munopharmacology, 111, Article ID: 109080.
https://doi.org/10.1016/j.intimp.2022.109080
[55] Gill, V., Kumar, V., Singh, K., et al. (2019) Advanced Glycation End Products (AGEs) May Be a Striking Link Between Modern Diet and Health. Biomolecules, 9, Article 888.
https://doi.org/10.3390/biom9120888
[56] Ojima, A., Matsui, T., Nishino, Y., et al. (2015) Empagliflozin, an In-hibitor of Sodium-Glucose Cotransporter 2 Exerts Anti-Inflammatory and Antifibrotic Effects on Experimental Diabetic Nephropathy Partly by Suppressing AGEs-Re- ceptor Axis. Hormone and Metabolic Research, 47, 686692.
https://doi.org/10.1055/s-0034-1395609
[57] Cai, M., Shao, X., Xing, F., et al. (2022) Efficacy of Canagliflozin versus Metformin in Women with Polycystic Ovary Syndrome: A Randomized, Open-Label, Noninferiority Trial. Dia-betes, Obesity and Metabolism, 24, 312-320.
https://doi.org/10.1111/dom.14583
[58] Tan, S., Ignatenko, S., Wagner, F., et al. (2021) Licogliflozin versus Pla-cebo in Women with Polycystic Ovary Syndrome: A Randomized, Double-Blind, Phase 2 Trial. Diabetes, Obesity and Metabolism, 23, 2595-2599.
https://doi.org/10.1111/dom.14495
[59] Sinha, B. and Ghosal, S. (2022) A Meta-Analysis of the Effect of Sodium Glucose Cotransporter-2 Inhibitors on Metabolic Parameters in Patients with Polycystic Ovary Syndrome. Frontiers in Endocrinology, 13, Article 830401.
https://doi.org/10.3389/fendo.2022.830401