代谢组学在儿童囊性纤维化中的应用进展
Progress in Application of Metabolomics in Childhood Cystic Fibrosis
DOI: 10.12677/ACM.2024.142591, PDF, HTML, XML, 下载: 43  浏览: 76 
作者: 向仕华, 彭东红*:重庆医科大学附属儿童医院呼吸科,重庆;国家儿童健康与疾病临床医学研究中心,重庆;儿童发育疾病研究教育部重点实验室,重庆;儿科学重庆市重点实验室,重庆
关键词: 代谢组学囊性纤维化儿童应用进展Metabolism Cystic Fibrosis Child Application Progress
摘要: 囊性纤维化(cystic fibrosis, CF)是一种以肺部疾病伴随多系统受累的遗传性疾病,随着近年来对该病认识的提高及基因检测技术的发展,更多的患儿被诊断出来,但目前对该病的致病机制、诊断、治疗及预后仍处于研究中。代谢组学可以全面系统或有针对性地识别和量化生物样本中的代谢物,对代谢物进行综合评估,使之成为CF研究中的有利工具。本文就代谢组学在儿童CF中的应用进展进行综述,重点概述代谢组学在CF患儿代谢产物特点、慢性炎症、病原学及急性加重期等方面的应用进展。
Abstract: Cystic fibrosis (CF) is a hereditary disease characterized by pulmonary complications and systemic involvement. In recent years, advancements in the comprehension of CF, along with the evolution of genetic testing methodologies, have facilitated increased diagnoses in pediatric populations. However, various aspects including the disease’s etiology, diagnostic approaches, therapeutic interventions, and prognostic factors remain subjects of ongoing research. The field of metab-olomics presents a robust and systematic approach to comprehensively identify and quantify metabolites within biological samples. This capability allows for a comprehensive assessment of metabolite abundance, rendering it an invaluable tool in conducting research pertaining to cystic fibrosis. The present article provides a comprehensive overview of the advancements in metabo-lomics application for pediatric CF patients, with a specific focus on the characterization of metab-olites, chronic inflammation, etiology, and acute exacerbation in children with CF.
文章引用:向仕华, 彭东红. 代谢组学在儿童囊性纤维化中的应用进展[J]. 临床医学进展, 2024, 14(2): 4267-4274. https://doi.org/10.12677/ACM.2024.142591

1. 引言

囊性纤维化(cystic fibrosis, CF)是一种常染色体隐性遗传病,由于编码囊性纤维化跨膜传导调节因子(cystic fibrosis transmembrane conductance regulator, CFTR)的基因突变致细胞表面膜转导调节蛋白表达减少或缺失,进而引起钠离子和氯离子转运障碍,最终导致黏液增多而阻塞气道、消化道、胰腺管腔、胆管、汗腺管及生殖管腔等,因此出现反复呼吸道感染、胰腺功能不全、肝胆疾病、电解质紊乱、生长发育障碍及生殖功能受损等 [1] [2] ,中国CF患者最常表现为呼吸道受累,其中又以鼻窦炎(33/71, 46.5%)和支气管扩张(67/71, 94.4%)最为常见 [3] 。

研究报道全球94个国家有162,428人患有CF [4] 。CF在各地发病率有所差异,在高加索人群中CF发病率最高 [5] [6] ,然而在我国尚无相关流行病学报道,最新研究估计中国CF患病率范围为1/153,825~1/110,127 [7] 。另有一项研究估计中国CF的发病率约为1/6400,预计CF患者可能超过2万人 [3] 。随着近年来对该病认识的提高及基因检测技术的发展,更多未被确诊的患儿被诊断出来。代谢组学是系统生物学的一个快速发展的领域,其可以描述生物标本中的代谢产物,提供机体内代谢活动的全面生理快照,有助于识别疾病的生物标志物并阐明相关机制,近几年在CF患儿中得到广泛的应用。现总结近年来代谢组学在CF儿童中的应用研究进展。

2. 代谢组学

代谢组学是试图全面系统或有针对性地识别和量化生物样本中相对分子质量通常<1.5 kDa的代谢产物,包括多肽、氨基酸、核酸、碳水化合物、有机酸、维生素、多酚、生物碱和无机物等 [8] [9] [10] ,由于能够检测和定量分析与RNA、DNA和蛋白质不同的小分子类化合物,因此代谢组学为其他组学提供了可行的替代方案并对其进行补充 [11] ,同时它能提供体内细胞全面的“瞬间生理快照”,因此比其他组学更具动态性,能够在较短的时间里检测由生理或环境事件引起的代谢物变化 [12] [13] 。整合基因组学、转录组学、蛋白质组学、微生物组学和代谢组学,可以更全面地以揭示生物体内的代谢途径,了解细胞及个体生长、适应、发育和疾病的进展 [14] [15] [16] 。

代谢组学分为检测分析特定代谢物的靶向代谢组学和检测分析所有可检测化合物的非靶向代谢组学,前者最适合于验证特定的假设,后者最常用于产生假设的研究 [11] [17] [18] [19] ,代谢组学所用的生物标本主要包括尿液、血浆、血清、脑脊液、精液、羊水、滑液、肠吸液、呼出的呼吸冷凝物(exhaled breath condensate, EBC)、支气管肺泡灌洗液(bronchoalveolar lavage fluid, BALF)、唾液、汗液、完整组织及其提取物以及体内细胞及其提取物 [20] [21] [22] 。代谢组学常用的技术平台包括质谱(mass spectroscopy, MS)和核磁共振波谱法(nuclear magnetic resonance, NMR)等 [23] [24] [25] ,前者又分为液相色谱–质谱(liquid chromatography-mass spectroscopy, LC/MS)和气相色谱–质谱(gas chromatography-mass spectrometry, GC/MS) [26] ,MS多用于靶向代谢组学,而NMR多用于非靶向代谢组学,不同的检测方式各有优缺点 [27] ,目前仍不断有新的技术研发出来 [28] [29] 。样品通过上述方式进行检测后产生了大量复杂的原始数据,这些数据要经过预处理才能进行多变量统计,最广泛使用的统计技术是以无监督或有监督的方式提取潜在变量,无监督方法中主成分分析(principal component analysis, PCA)是最实用且最易应用的,而偏最小二乘判别分析(partial least squares discrimination analysis, PLS-DA)和正交PLS-DA (orthogonal partial least squares discrimination analysis, O-PLS-DA)是常用的监督方法,两者通常用于鉴定生物标志物和不同样品组之间的差异 [30] 。非靶向代谢组学中产生了大量未知的代谢物,通常利用其质荷比值、色谱保留时间、同位素模式和片段化数据等特征与相关数据库中的标准品进行匹配和识别 [31] [32] [33] ,最后进行代谢通路分析及通过富集分析评估各通路的重要性 [11] 。

3. 代谢组学在儿童CF中的应用

3.1. CF患者与非CF患者的代谢组学研究

CF患儿的确诊基于CF的特征性表现、CF家族史、汗液氯离子或基因检测,但我国汗液试验尚未广泛开展 [34] [35] ,故诊断上存在一定的困难,若能发现CF患儿特征性代谢产物及生物标志物,可协助CF的诊断及与其他疾病相鉴别。

Joseloff等人 [17] 在2014年使用超高效液相色谱/串联质谱对31例CF和31例非CF患儿的血清进行代谢组学分析发现,在459种代谢产物中,有92种在CF和非CF患儿之间存在显著差异,与非CF患儿相比,CF患儿血清中3-羟基丁酸、中链肉碱、2-羟基丁酸、3-硫酸盐牛磺石胆酸盐、硫酸甘胆酸盐、硫酸牛磺胆酸盐、胆红素和氧脯氨酸水平较低,二羧酸水平较高。其结果反映CF患儿可能存在线粒体功能障碍和胆汁酸处理的异常。

Wisniewski等人 [36] 在2020年为探讨二手烟暴露对CF患儿的影响,研究纳入80名患儿将其分为非CF组、CF非二手烟暴露和CF二手烟暴露组,对他们的血浆样品进行高分辨率代谢组学分析发现,伴有二手烟暴露的CF患儿在类固醇合成、脂肪酸代谢和氧化应激相关的途径上发生了改变,亚油酸、棕榈酸、肉豆蔻酸、花生酸、亚牛磺酸和5-羟基吲哚乙酸在内的几种代谢物在伴有二手烟暴露的CF儿童中表达降低,4-吡哆酸、胍基琥珀酸和泛酸表达增加。

Esther Jr.等人 [18] 在2019年对46名CF学龄前儿童和16名非CF对照组儿童的BALF进行了非靶向代谢组学和微生物组学分析,研究发现早期CF肺病的特征在于粘液负荷和炎症标志物增加,并发生于细菌感染或结构性肺病之前,粘液溶解剂和抗炎剂可能成为CF有效的预防性治疗 [37] 。

Scholte等人 [38] 在2019年测定33名CF儿童和不明原因肺部炎性疾病的16名非CF患者BALF中的一系列脂质,研究发现尽管两组BALF中中性粒细胞计数和细菌负荷相当,但CF患者的长链与极长链神经酰胺种类和溶血脂质水平比非CF患者高,且两者与炎症相关。神经酰胺前体鞘氨醇、鞘氨醇、鞘磷脂与炎症相关,未观察到脂质与当前细菌感染之间的相关性。

John B. O’Connor等人 [19] 在2022年通过多组学网络分析方法整合靶向代谢组学、微生物组学数据和表型指标分析CF患儿BALF气道微生物组和代谢组学特征之间的复杂关系,与非CF患者相比,CF患者的BALF具有显著更高浓度的氨基酸、L-甲硫氨酸S-氧化物和更低浓度的酰基肉碱、甘油磷脂以及鞘磷脂,使用代谢组学特征的随机森林分类在识别CF和非CF样品的准确度达81.1%,同时发现CF患者的强预测因子包括溶血磷脂酰胆碱、生物胺L-甲硫氨酸S-氧化物和酰基肉碱。

3.2. CF患者气道炎症的代谢组学研究

由于CFTR基因突变引起钠离子和氯离子转运障碍,氯离子、钠离子分泌减少导致支气管内分泌物脱水粘稠,纤毛清除功能障碍,同时粘稠的分泌物阻塞气道,使肺部的细菌无法被清除,从而导致肺部慢性感染,在慢性感染的CF患者肺部存在严重的微生物群生态失调,感染性病原体占主导,为了应对这种复杂的多微生物感染,气道上皮细胞、巨噬细胞及死亡的中性粒细胞产生和释放系列炎症介质,包括IL-8、IL-1、IL-17、肿瘤坏死因子α及释放大量氧化酶,从而趋化、招募和介导中性粒细胞、巨噬细胞及其他免疫细胞释放炎症介质和脱颗粒作用,促进CF气道的局部炎症反应及使炎症反应持续 [39] [40] 。即使在无病原菌感染的情况下,炎症反应在CF患者中也是持续存在的 [41] 。

Wolak等人 [42] 在2009年通过1H-NMR对11名不同炎症程度的CF患儿BALF进行代谢组学分析,以细胞计数和分类将患儿分为低炎症和高炎症状态组,研究表明高炎症状态的患儿BALF液中具有较高浓度的氨基酸、乳酸盐和丙酮,确定了能体现两组差异的最重要的7种已知代谢物:亮氨酸、乳酸、异亮氨酸、2-羟基异癸酸、丙氨酸、缬氨酸及丙酮,同时研究也构建了一个预测性能非常好的OPLS模型,能实现组间的完全区分。

Esther Jr.等人 [18] 在2014年使用靶向MS方法分析发现,BALF中338个特征峰与嗜中性粒细胞炎症相关,无论有无病原菌感染,大多数代谢物与嗜中性粒细胞计数相关,并能准确区分高炎症组和低炎症组,其中许多代谢产物来自于嘌呤、多胺、蛋白质和烟酰胺相关的代谢途径。

John B. O’Connor等人 [19] 在2022年发现有50个代谢组学特征与白细胞计数和中性粒细胞百分比相关性最强,其中氨基酸与白细胞计数和中性粒细胞百分比呈正相关,而甘油、甘油磷脂和酰基肉碱与其的负相关最显著。

3.3. CF患者肺部慢性感染的代谢组学研究

慢性感染是CF肺病的一个标志 [43] ,也是CF患者进行加重及肺功能进行性下降的主要原因,因此确定CF感染期间代谢活跃的细菌和代谢物组成的相对丰度在诊断策略和制定抗生素治疗方案中是有意义和必要的 [44] [45] 。将代谢组学结合微生物组学、基因组学,能够揭示细菌群落、代谢组学特征和临床特征之间的复杂关系,确定代谢活跃的微生物及其抗生素耐药机制,从而帮助临床决策,实现精确诊疗 [46] 。

Robroeks等人 [47] 在2010年对48名CF患儿与57名健康对照的EBC的VOCs进行气相色谱–飞行时间质谱分析,以区分CF患者是否有假单胞菌定植,研究发现通过呼出的14种VOCs可以100%正确地鉴别出铜绿假单胞菌培养阳性或阴性的患儿。

John B. O’Connor等人 [19] 在2022年通过多组学网络分析方法发现氨基酸与总细菌负荷呈正相关,而甘油、甘油磷脂和酰基肉碱与其成负相关。应用稀疏监督典型相关分析揭示了CF和非CF之间相关性最强的亚网络,包括传统CF病原体、葡萄球菌和非传统病原体、普雷沃菌、链球菌和韦荣球菌,这些亚网络与19个代谢组学特征网络相关,包括8种甘油磷脂,6种氨基酸,2种生物胺,3种酰基肉碱。同时L-蛋氨酸S-氧化物与厌氧分类群普雷沃菌、链球菌和韦荣球菌呈负相关,与传统CF病原体葡萄球菌呈正相关。

Hahn等人 [48] 在2020年通过代谢组学纵向分析一名CF患儿在12个月内收集的14个样本,以研究不同临床疾病状态的代谢物及病原菌的变化,最终研究鉴定了466种不同的挥发性代谢物。稳定状态和病情加重样品在化学组成上相当一致并且彼此相似,而治疗样品高度可变并且与其他两种状态在化学组成上不同。同时研究观察到以葡萄球菌属和埃希氏菌属为主的样品与较高的醇相对丰相关,而以无色杆菌属为主的样品与更多氧化挥发物相关。

3.4. CF患者急性加重期的代谢组学研究

在CF患儿中,急性肺部加重的频率和严重程度是肺功能加速下降和死亡率增加的重要决定因素,因此早期干预可减少肺部急性加重,但目前尚无预测肺部急性加重的方法,因此需要更好的生物标志物来预测CF患儿急性肺部加重,早期实施干预 [49] 。

Theresa A. Laguna等人 [50] 在2015年应用非靶向的气相色谱质谱和液相色谱质谱分析了25名CF儿童和成人在急性加重期和临床稳定期的血浆样本和肺功能数据,以识别CF患者血浆中CF急性加重的生物标志物,研究共鉴定出398种代谢物,最终鉴定出核苷酸(次黄嘌呤)、核苷(n4-乙酰胞苷)、氨基酸(n-乙酰蛋氨酸)、碳水化合物(甘露糖)和类固醇(皮质醇)等5种代谢紊乱的代谢物,其具有区分急性加重期和临床稳定期的能力。

Montuschi,P.等人 [51] [52] 对稳定的CF、不稳定CF患者的EBC进行代谢组学研究,利用PLS-DA建立分类模型,并对模型进行验证,研究中所构建的模型对区分稳定型CF与不稳定型CF患者的准确率达95%,而乙酸盐、乙醇、2-丙醇和甲醇是鉴别稳定和不稳定CF患者的最重要代谢物。

Zang,X.等人 [53] [54] 应用超高效液相色谱-高分辨率质谱分析了临床稳定的CF、急性加重期CF、急性加重恢复期CF和急性加重前期CF的成人和儿童的EBC样本中的代谢产物,研究发现与稳定的、急性肺加重前期和急性肺加重恢复期的样本相比,急性加重患者样本中的乳酸显著升高,亮氨酸/异亮氨酸从稳定的CF到急性加重前期儿童患者呈上升趋势,从急性加重前期到急性加重期呈下降趋势,可能与急性加重期应用抗生素有关。与稳定的CF患者相比,丁酸、苹果酸和脯氨酸在急性加重前期中显著降低。对发生显著改变的代谢物进行通路分析发现,脯氨酸代谢通路在急性加重期和急性加重前期的儿童中有显著变化,丙酮酸代谢通路在急性加重期和稳定CF患者之间发生了显著变化,通过建立oPLS-DA模型以区分急性加重期患儿与稳定CF患儿,模型的分类准确率为84.6%,急性加重前期患者和稳定CF患者的oPLS-DA模型的准确率为90.5%。4-羟基环己基羧酸和焦谷氨酸可以将急性加重期CF患者与稳定的CF样品区分开来,准确率为84.6%。用乳酸和焦谷氨酸将急性肺加重前期CF患者样品与稳定CF样品进行区分,准确率为90.5%。乳酸被确定为预测即将发生急性肺加重事件的关键生物标志物。最后建立监督多变量分类模型,其模型在检测急性加重期和预测即将到来的急性加重的准确率在81.3%~93.9%之间,AUC值为0.8~0.9,为儿童患者的急性加重和预测急性加重的监测提供了思路。

4. 展望

随着医疗技术的进步,更多的CF患儿被诊断出来,同时CF患儿的生存寿命逐渐延长,因此也对CF患儿的全程管理提出了新的挑战,CF患儿基因型多样,不同阶段CF患儿体内病原菌及机体状态有所不同,故迫切需要针对CF患儿的更加个体化和精准的诊疗。代谢组学是全面系统、动态和有针对性地识别和量化生物样本中的代谢产物,能够在较短的时间里检测代谢产物的变化,同时结合微生物组学、蛋白组学等多组学,从而可以更加全面了解机体内代谢产物与病原学的关系、发现CF发生发展机制及发现相关代谢通路。近几年,国外将代谢组学应用于CF患儿生物标志物的发现、慢性感染、慢性炎症及急性期代谢物的变化,为CF患儿的诊断、病情评估及靶向治疗提供新的思路。但目前国内由于CF患儿病例数较少,暂无代谢组学与CF的相关研究发表,同时我国CF患儿往往具有与国外患儿不同的基因型和临床表现,故未来需开展代谢组学与CF的相关研究以指导中国CF患儿的诊断和治疗。

NOTES

*通讯作者。

参考文献

[1] Dickinson, K.M. and Collaco, J.M. (2021) Cystic Fibrosis. Pediatrics in Review, 42, 55-67.
https://doi.org/10.1542/pir.2019-0212
[2] Graeber, S.Y. and Mall, M.A. (2023) The Future of Cystic Fibrosis Treatment: From Disease Mechanisms to Novel Therapeutic Approaches. The Lancet (London, England), 402, 1185-1198.
https://doi.org/10.1016/S0140-6736(23)01608-2
[3] Guo, X., Liu, K., Liu, Y., et al. (2018) Clinical and Genetic Characteristics of Cystic Fibrosis in CHINESE Patients: A Systemic Review of Reported Cases. Orphanet Journal of Rare Diseases, 13, Article No. 224.
https://doi.org/10.1186/s13023-018-0968-2
[4] Guo, J., Garratt, A. and Hill, A. (2022) Worldwide Rates of Di-agnosis and Effective Treatment for Cystic Fibrosis. Journal of Cystic Fibrosis: Official Journal of the European Cystic Fibrosis Society, 21, 456-462.
https://doi.org/10.1016/j.jcf.2022.01.009
[5] O’Sullivan, B.P. and Freedman, S.D. (2009) Cystic Fibrosis. The Lancet (London, England), 373, 1891-1904.
https://doi.org/10.1016/S0140-6736(09)60327-5
[6] Sanders, D.B. and Fink A.K. (2016) Background and Epi-demiology. Pediatric Clinics of North America, 63, 567-584.
https://doi.org/10.1016/j.pcl.2016.04.001
[7] Ni, Q., Chen, X., Zhang, P., et al. (2022) Systematic Estimation of Cystic Fibrosis Prevalence in Chinese and Genetic Spectrum Comparison to Caucasians. Orphanet Journal of Rare Diseases, 17, Article No. 129.
https://doi.org/10.1186/s13023-022-02279-9
[8] Clayton, T.A., Lindon, J.C., Cloarec, O., et al. (2006) Pharmaco-Metabonomic Phenotyping and Personalized Drug Treatment. Nature, 440, 1073-1077.
https://doi.org/10.1038/nature04648
[9] Nicholson, J.K. and Lindon, J.C. (2008) Systems Biology: Metabonomics. Nature, 455, 1054-1056.
https://doi.org/10.1038/4551054a
[10] Arakaki, A.K., Skolnick, J. and McDonald, J.F. (2008) Marker Metabolites Can Be Therapeutic Targets as Well. Nature, 456, 443.
https://doi.org/10.1038/456443c
[11] Stringer, K.A., McKay, R.T., Karnovsky, A., et al. (2016) Metabolomics and Its Application to Acute Lung Diseases. Frontiers in Immunology, 7, Article 44.
https://doi.org/10.3389/fimmu.2016.00044
[12] Wishart, D.S. (2005) Metabolomics: The Principles and Potential Applications to Transplantation. American Journal of Transplantation, 5, 2814-2820.
https://doi.org/10.1111/j.1600-6143.2005.01119.x
[13] Wishart, D.S. (2010) Computational Approaches to Metabolomics. Methods in Molecular Biology (Clifton, NJ), 593, 283-313.
https://doi.org/10.1007/978-1-60327-194-3_14
[14] Pinu, F.R., Beale, D.J., Paten, A.M., et al. (2019) Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics Research Community. Metabolites, 9, Article 76.
https://doi.org/10.3390/metabo9040076
[15] Heckendorf, C., Blum, B.C., Lin, W., et al. (2023) Integration of Metabolomic and Proteomic Data to Uncover Actionable Metabolic Pathways. Methods in Molecular Biology (Clifton, NJ), 2660, 137-148.
https://doi.org/10.1007/978-1-0716-3163-8_10
[16] Chetty, A. and Blekhman, R. (2024) Multi-Omic Approaches for Host-Microbiome Data Integration. Gut Microbes, 16, Article 2297860.
https://doi.org/10.1080/19490976.2023.2297860
[17] Joseloff, E., Sha, W., Bell, S.C., et al. (2014) Serum Metabolomics Indicate Altered Cellular Energy Metabolism in Children with Cystic Fibrosis. Pediatric Pulmonology, 49, 463-472.
https://doi.org/10.1002/ppul.22859
[18] Esther Jr., C.R., Coakley, R.D., Henderson, A.G., et al. (2015) Metabolomic Evaluation of Neutrophilic Airway Inflammation in Cystic Fibrosis. Chest, 148, 507-515.
https://doi.org/10.1378/chest.14-1800
[19] O’Connor, J.B., Mottlowitz, M., Kruk, M.E., et al. (2022) Network Analysis to Identify Multi-Omic Correlations in the Lower Airways of Children with Cystic Fibrosis. Frontiers in Cel-lular and Infection Microbiology, 12, Article 805170.
https://doi.org/10.3389/fcimb.2022.805170
[20] Beckonert, O., Keun, H.C., Ebbels, T.M., et al. (2007) Metabolic Profiling, Metabolomic and Metabonomic Procedures for NMR Spectroscopy of Urine, Plasma, Serum and Tissue Ex-tracts. Nature Protocols, 2, 2692-2703.
https://doi.org/10.1038/nprot.2007.376
[21] Griffin, J.L. and Kauppinen, R.A. (2007) Tumour Metabolomics in Animal Models of Human Cancer. Journal of Proteome Research, 6, 498-505.
https://doi.org/10.1021/pr060464h
[22] Mena-Bravo, A. and Luque de Castro, M.D. (2014) Sweat: A Sample with Limited Present Applications and Promising Future in Metabolomics. Journal of Pharmaceutical and Biomedical Analysis, 90, 139-147.
https://doi.org/10.1016/j.jpba.2013.10.048
[23] Serkova, N.J., Standiford, T.J. and Stringer, K.A. (2011) The Emerging Field of Quantitative Blood Metabolomics for Biomarker Discovery in Critical Illnesses. American Journal of Respiratory and Critical Care Medicine, 184, 647-655.
https://doi.org/10.1164/rccm.201103-0474CI
[24] Alonso, A., Marsal, S. and Julià A. (2015) Analytical Methods in Untargeted Metabolomics: State of the Art in 2015. Frontiers in Bioengineering and Biotechnology, 3, Article 23.
https://doi.org/10.3389/fbioe.2015.00023
[25] Sas, K.M., Karnovsky, A., Michailidis, G., et al. (2015) Metabo-lomics and Diabetes: Analytical and Computational Approaches. Diabetes, 64, 718-732.
https://doi.org/10.2337/db14-0509
[26] More, T., RoyChoudhury, S., Gollapalli, K., et al. (2015) Metabolomics and Its Integration with Systems Biology: PSI 2014 Conference Panel Discussion Report. Journal of Proteomics, 127, 73-79.
https://doi.org/10.1016/j.jprot.2015.04.024
[27] Markley, J.L., Brüschweiler, R., Edison, A.S., et al. (2017) The Future of NMR-Based Metabolomics. Current Opinion in Biotechnology, 43, 34-40.
https://doi.org/10.1016/j.copbio.2016.08.001
[28] Basov, N.V., Rogachev, A.D., Aleshkova, M.A., et al. (2024) Global LC-MS/MS Targeted Metabolomics Using a Combination of HILIC and RP LC Separation Modes on an Organic Monolithic Column Based on 1-Vinyl-1,2,4-Triazole. Talanta, 267, Article 125168.
https://doi.org/10.1016/j.talanta.2023.125168
[29] Bansal, N., Kumar, M. and Gupta, A. (2024) Richer than Pre-viously Probed: An Application of 1H NMR Reveals One Hundred Metabolites Using Only Fifty Microliter Serum. Biophysical Chemistry, 305, Article 107153.
https://doi.org/10.1016/j.bpc.2023.107153
[30] Bjerrum, J.T. (2015) Metabonomics: Analytical Techniques and Associated Chemometrics at a Glance. In: Bjerrum, J., Ed., Methods in Molecular Biology (Clifton, NJ), Vol. 1277, Humana Press, New York, 1-14.
https://doi.org/10.1007/978-1-4939-2377-9_1
[31] Zamboni, N., Saghatelian, A. and Patti, G.J. (2015) Defining the Metabolome: Size, Flux, and Regulation. Molecular Cell, 58, 699-706.
https://doi.org/10.1016/j.molcel.2015.04.021
[32] Yurekten, O., Payne, T., Tejera, N., et al. (2024) MetaboLights: Open Data Repository for Metabolomics. Nucleic Acids Research, 52, D640-D646.
https://doi.org/10.1093/nar/gkad1045
[33] Wishart, D.S., Kruger, R., Sivakumaran, A., et al. (2024) PathBank 2.0—The Pathway Database for Model Organism Metabolomics. Nucleic Acids Research, 52, D654-D662.
https://doi.org/10.1093/nar/gkad1041
[34] 中华医学会儿科学分会呼吸学组, 中华医学会儿科学分会呼吸学组疑难少见病协作组, 国家呼吸系统疾病临床医学研究中心等. 中国儿童囊性纤维化诊断与治疗专家共识[J]. 中华实用儿科临床杂志, 2022, 37(22): 1681-1687.
[35] 田欣伦. 中国人囊性纤维化[J]. 中国实用儿科杂志, 2023, 38(3): 204-209.
[36] Wisniewski, B.L., Shrestha, C.L., Zhang, S., et al. (2020) Metabolomics Profiling of Tobacco Exposure in Children with Cystic Fibrosis. Journal of Cystic Fibrosis: Official Journal of the European Cystic Fibrosis Society, 19, 791-800.
https://doi.org/10.1016/j.jcf.2020.05.003
[37] Esther Jr., C.R., Muhlebach, M.S., Ehre, C., et al. (2019) Mucus Ac-cumulation in the Lungs Precedes Structural Changes and Infection in Children with Cystic Fibrosis. Science Transla-tional Medicine, 11.
https://doi.org/10.1126/scitranslmed.aav3488
[38] Scholte, B.J., Horati, H., Veltman, M., et al. (2019) Oxidative Stress and Abnormal Bioactive Lipids in Early Cystic Fibrosis Lung Disease. Journal of Cystic Fibrosis: Official Journal of the European Cystic Fibrosis Society, 18, 781-789.
https://doi.org/10.1016/j.jcf.2019.04.011
[39] Zemanick, E.T., Sagel, S.D. and Harris, J.K. (2011) The Airway Microbiome in Cystic Fibrosis and Implications for Treatment. Current Opinion in Pediatrics, 23, 319-324.
https://doi.org/10.1097/MOP.0b013e32834604f2
[40] Elizur, A., Cannon, C.L. and Ferkol, T.W. (2008) Airway Inflammation in Cystic Fibrosis. Chest, 133, 489-495.
https://doi.org/10.1378/chest.07-1631
[41] Lepissier, A., Addy, C., Hayes, K., et al. (2022) Inflammation Bi-omarkers in Sputum for Clinical Trials in Cystic Fibrosis: Current Understanding and Gaps in Knowledge. Journal of Cystic Fibrosis: Official Journal of the European Cystic Fibrosis Society, 21, 691-706.
https://doi.org/10.1016/j.jcf.2021.10.009
[42] Wolak, J.E., Esther Jr., C.R., and O’Connell, T.M. (2009) Metabolomic Analysis of Bronchoalveolar Lavage Fluid from Cystic Fibrosis Patients. Biomarkers: Biochemical Indi-cators of Exposure, Response, and Susceptibility to Chemicals, 14, 55-60.
https://doi.org/10.1080/13547500802688194
[43] Nichols, D., Chmiel, J. and Berger, M. (2008) Chronic In-flammation in the Cystic Fibrosis Lung: Alterations in Inter- and Intracellular Signaling. Clinical Reviews in Allergy & Immunology, 34, 146-162.
https://doi.org/10.1007/s12016-007-8039-9
[44] Twomey, K.B., Alston, M., An, S.Q., et al. (2013) Microbiota and Metabolite Profiling Reveal Specific Alterations in Bacterial Community Structure and Environment in the Cystic Fibrosis Airway During Exacerbation. PLOS ONE, 8, e82432.
https://doi.org/10.1371/journal.pone.0082432
[45] Hu, Y. and Coates, A. (2012) Nonmultiplying Bacteria Are Profoundly Tolerant to Antibiotics. In: Coates, A., Ed., Antibiotic Resistance. Handbook of Experimental Pharmacology, Vol. 211, Springer, Berlin, Heidelberg, 99-119.
https://doi.org/10.1007/978-3-642-28951-4_7
[46] Quinn, R.A., Phelan, V.V., Whiteson, K.L., et al. (2016) Mi-crobial, Host and Xenobiotic Diversity in the Cystic Fibrosis Sputum Metabolome. The ISME Journal, 10, 1483-1498.
https://doi.org/10.1038/ismej.2015.207
[47] Robroeks, C.M., Van Berkel, J.J., Dallinga, J.W., et al. (2010) Metabolomics of Volatile Organic Compounds in Cystic Fibrosis Patients and Controls. Pediatric Research, 68, 75-80.
https://doi.org/10.1203/PDR.0b013e3181df4ea0
[48] Hahn, A., Whiteson, K., Davis, T.J., et al. (2020) Longitu-dinal Associations of the Cystic Fibrosis Airway Microbiome and Volatile Metabolites: A Case Study. Frontiers in Cellular and Infection Microbiology, 10, Article 174.
https://doi.org/10.3389/fcimb.2020.00174
[49] Bhatt, J.M. (2013) Treatment of Pulmonary Exacerbations in Cystic Fibrosis. European Respiratory Review: An Official Journal of the European Respiratory Society, 22, 205-216.
https://doi.org/10.1183/09059180.00006512
[50] Laguna, T.A., Reilly, C.S., Williams, C.B., et al. (2015) Metabolomics Analysis Identifies Novel Plasma Biomarkers of Cystic Fibrosis Pulmonary Exacerbation. Pediatric Pulmonology, 50, 869-877.
https://doi.org/10.1002/ppul.23225
[51] Montuschi, P., Paris, D., Melck, D., et al. (2012) NMR Spectroscopy Metabolomic Profiling of Exhaled Breath Condensate in Patients with Stable and Unstable Cystic Fibrosis. Thorax, 67, 222-228.
https://doi.org/10.1136/thoraxjnl-2011-200072
[52] Montuschi, P., Paris, D., Montella, S., et al. (2014) Nuclear Magnetic Resonance-Based Metabolomics Discriminates Primary Ciliary Dyskinesia from Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 190, 229-233.
https://doi.org/10.1164/rccm.201402-0249LE
[53] Zang, X., Monge, M.E., McCarty, N.A., et al. (2017) Feasibility of Early Detection of Cystic Fibrosis Acute Pulmonary Exacerbations by Exhaled Breath Condensate Metabolomics: A Pilot Study. Journal of Proteome Research, 16, 550-558.
https://doi.org/10.1021/acs.jproteome.6b00675
[54] Zang, X., Monge, M.E., Gaul, D.A., et al. (2020) Early Detection of Cystic Fibrosis Acute Pulmonary Exacerbations by Exhaled Breath Condensate Metabolomics. Journal of Proteome Research, 19, 144-152.
https://doi.org/10.1021/acs.jproteome.9b00443