维奈克拉在急性髓系白血病中的研究进展
Progress of Venetoclax in Acute Myeloid Leukemia
DOI: 10.12677/ACM.2024.142556, PDF, HTML, XML, 下载: 111  浏览: 192 
作者: 李 贺, 陈智超*:华中科技大学同济医学院附属协和医院血液科,湖北 武汉
关键词: 维奈克拉急性髓系白血病Venetoclax Acute Myeloid Leukemia
摘要: 维奈克拉(venetoclax, VEN)是一种靶向B细胞淋巴瘤-2 (B-cell lymphoma-2, BCL-2)的特异性抑制剂。在急性髓系白血病(acute myeloid leukemia, AML)中,VEN单药表现出良好的耐受性,但是疗效有限。VEN联合低甲基化药物或低剂量阿糖胞苷在AML中取得了显著的疗效,为老年或无法耐受强化化疗的AML患者带来了新的治疗选择。VEN联合强化化疗、靶向治疗和免疫治疗等临床试验的初步结果也表现出良好的疗效,为AML患者提供更多治疗可能。同时,使用VEN引发的不良反应和治疗过程中可能产生的耐药问题也需要关注。本文对VEN在AML中的最新研究进展以及其不良反应和耐药机制进行综述,以期为AML治疗提供更多可行方案。
Abstract: Venetoclax (VEN) is a specific inhibitor that targets B-cell lymphoma-2 (BCL-2). In acute myeloid leukemia (AML), VEN monotherapy shows good tolerability, but its efficacy is limited. However, when combined with hypomethylating agents or low-dose cytarabine, VEN has shown high effec-tiveness in AML treatment. This combination therapy provides a new opportunity for patients with AML, especially the elderly or those who cannot tolerate intensive chemotherapy. Preliminary re-sults from clinical trials combining VEN with intensive chemotherapy, targeted therapy, and im-munotherapy have also demonstrated good efficacy. These findings offer more treatment options for patients with AML. It is also important to note that adverse reactions and drug resistance may occur due to the use of VEN. This review reports the latest research progress of VEN in AML as well as its adverse reactions and drug resistance mechanisms, aiming to present more viable therapeu-tic options for AML.
文章引用:李贺, 陈智超. 维奈克拉在急性髓系白血病中的研究进展[J]. 临床医学进展, 2024, 14(2): 4004-4011. https://doi.org/10.12677/ACM.2024.142556

1. 引言

AML是一组以未成熟的髓系造血干细胞增殖和异常分化为特征的血液恶性肿瘤,是成人最好发的一种急性白血病。目前AML的治疗方案以联合化疗、造血干细胞移植(Hematopoietic Stem Cell Transplantation, HSCT)为主 [1] 。然而,大多数患者还是会复发,5年总生存(OS)率较低。根据SEER数据库,65岁以下患者5年OS不足40%,65岁及以上患者的5年OS仅为11%。随着细胞遗传学和分子学方面的研究进展,确定了多种AML的分子和免疫治疗靶点,靶向药物的发展为AML的治疗带来了新突破。

BCL-2家族蛋白在线粒体凋亡途径中起重要作用。当细胞内出现死亡信号时,促凋亡蛋白BH3-only蛋白抑制抗凋亡蛋白BCL-2,刺激凋亡效应分子BAX/BAK,BAX/BAK激活并发生寡聚化,使线粒体外膜透化(mitochondrial outer membrane permeabilization, MOMP),进而导致线粒体细胞色素C释放、caspase级联激活,最终导致细胞凋亡。BCL-2蛋白可以拮抗BH3-only蛋白,抑制这一过程 [2] 。这三组蛋白通过相互作用调控线粒体外膜的通透性,平衡细胞的生存与死亡。然而,抗凋亡蛋白BCL-2在AML等多种血液系统恶性肿瘤和实体瘤中过表达,打破了促凋亡蛋白和抗凋亡蛋白之间的平衡,抑制肿瘤细胞凋亡,并导致肿瘤细胞化疗耐药。

VEN是抗凋亡蛋白BCL-2的特异性抑制剂,靶向结合BCL-2,释放出BCL-2螯合的BIM蛋白,后者激活BAX/BAK,导致MOMP和细胞凋亡 [3] 。目前,VEN已获得FDA批准联合低甲基化药物(HMAs)或低剂量阿糖胞苷(LDAC)治疗老年或不适合强化化疗的AML患者。国内也已经将VEN联合HMAs/ LDAC作为不适合强化化疗的AML患者的治疗方案 [4] [5] 。此外,VEN联合强化化疗、靶向治疗和免疫治疗等临床试验都在进行中。本文将对VEN在AML中的研究进展进行概述。

2. VEN在AML中的应用

2.1. VEN单药

VEN单药治疗AML的II期临床试验共纳入32例AML患者,其中30例复发/难治AML (R/R AML)患者,2例不适合强化化疗的初诊AML (ND AML)患者 [6] 。仅2例患者(6%)达到完全缓解(CR),4例患者(13%)达到CR伴血液学不完全恢复(CRi),CR/CRi为19%,中位总生存期(mOS)为4.7个月。其中携带IDH1/2突变的患者CR/CRi率达到33%;但是3例同时伴有IDH1/2突变和FLT3-ITD突变的患者未达到CR/CRi,且对VEN反应持续时间较短。这表明IDH1/2突变的AML细胞可能对VEN具有一定的敏感性,且AML患者中可能存在对VEN敏感/耐药的亚群。

患者的主要不良反应为胃肠道和血液学反应,主要表现为恶心、呕吐、腹泻,以及粒细胞缺乏伴发热。该项研究中未出现肿瘤溶解综合征(tumour lysis syndrome, TLS)事件。总体而言,VEN单药在AML患者中疗效有限,但是耐受性良好,为评估VEN联合其他药物治疗AML提供了可靠的研究基础。

2.2. VEN联合用药

2.2.1. VEN联合HMAs/LDAC

基于Venetoclax在R/R AML患者中显示出一定的疗效和良好的耐受性 [6] ,VEN联合HMAs/LDAC开展了一系列临床试验。

VIALE-A III期临床试验显示,与AZA单药相比,VEN联合AZA能够明显提高不适合强化化疗的老年ND AML患者的CR/CRi率(66.4% vs 28.3%) [7] 。在IDH1/2突变(75.4% vs 10.7%)、FLT3突变(72.4% vs 36.4%)、NPM1突变(66.7% vs 23.5%)和TP53突变(55.3% vs 0%)等分子亚组中的CR/CRi率也显著提高。AZA联合VEN还显著延长了患者的Mos (14.7个月vs 9.6个月)。然而,与单独使用AZA相比,AZA联合VEN的副作用发生率也升高,其中粒细胞缺乏伴发热的发生率明显高于对照组(42% vs 19%)。虽然VEN联合DEC没有进行III期临床试验,但是D. Kwag等人进行了一项倾向评分匹配分析,首次提供真实世界证据证明VEN联合DEC比DEC单药治疗≥65岁的ND AML患者具有更好的疗效。VEN + DEC组mOS长于DEC组(13.4个月vs 8.3个月)。两组患者30天(2.7% vs 9.5%)和60天(9.5% vs 18.9%)死亡率无差异,住院率和输血率中位数无差异 [8] 。

VIALE-C III期临床试验评估了VEN联合LDAC在不适合强化化疗的ND AML患者中的疗效和安全性 [9] 。与LDAC单药相比,VEN联合LDAC能够显著提高患者的CR/Cri (48% vs 13%),延长患者的Mos (8.4个月vs 4.1个月),患者的输血独立率也明显更高。在分子亚组分析中,VEN联合LDAC在大多数亚组中(FLT3突变除外)也显示出更长的mOS和更高的缓解率,特别是在携带NPM1和IDH1/2基因突变的患者中,生存结果得到显著改善。而对于无NPM1突变的FLT3突变患者,无论是联合组还是安慰剂组的CR/CRi率都较低,NPM1和FLT3均突变的患者,两组的CR/CRi率达到了100%。VEN联合LDAC在AML患者中的主要不良反应为粒细胞缺乏伴发热(32%和29%)、粒细胞减少(47%和16%)、血小板减少(45%和37%)。

Kadia等人发现交替使用克拉屈滨(CLAD) + LDAC + VEN和AZA + VEN在老年或不适合强化化疗的ND AML患者中疗效显著 [10] 。患者在第1和第2疗程接受CLAD + LDAC + VEN治疗,在第3和第4疗程接受AZA + VEN治疗。第1个疗程根据伴随的CYP3A4抑制剂调整VEN剂量,后续疗程根据可检测残留病(Measurable residual disease, MRD)和耐受性确定。2个疗程CLAD + LDAC + VEN和2个疗程AZA + VEN之间交替进行巩固治疗,中位疗程数为3 (范围1~18)。93%的患者达到CR/CRi,其中84%的患者达到MRD阴性。首次缓解后,34%的患者行异基因造血干细胞移植(allo-HSCT)。随访22.1个月,mOS未达到,估计1年和2年OS率分别为72.9%和63.5%。此方案为老年或者不适合强化化疗的ND AML患者提供了一种有效的治疗选择。

R/R AML患者的缓解率低、生存期短、预后较差,需探索新的治疗方案。在R/R AML患者中,VEN联合HMAs/LDAC的总体CR/CRi率约为24%~45%,mOS约6~9个月 [11] [12] [13] 。此外,VEN + AZA联合高三尖杉酯碱(HHT)在R/R AML患者中的CR/CRi率达到70.8%,其中58.8%的患者达到MRD阴性,患者的mOS为22.1个月 [14] 。最常见的3~4级不良反应为粒细胞缺乏伴发热(37.4%)、败血症(11.4%)和肺炎(21.9%)。VAH是一种很有潜力的挽救治疗方案,且患者的耐受性良好。目前VAH方案治疗R/R AML患者的Ⅲ期临床试验(NCT05457361)正在进行中。

2.2.2. VEN联合强化化疗

33例AML患者接受VEN联合柔红霉素和阿糖胞苷(DA)方案治疗,1个周期后,总体CR/CRi率达91%。在获得CR/CRi的患者中,97%的患者MRD水平为阴性。中位随访时间为11个月,mOS尚未达到,估计1年OS率为97% [15] 。

在氟达拉滨、阿糖胞苷、粒细胞集落刺激因子和去甲氧柔红霉素联合VEN (FLAG-IDA + VEN)治疗ND-AML和R/R-AML的临床试验中,ND AML的总体反应率(ORR)达到98%,复合缓解率(CR + Cri + 完全缓解伴部分血液学恢复[CRh])为89% [16] 。在获得缓解的患者中,93%的患者MRD为阴性。此外,60%的患者在获得缓解后进行了异基因造血干细胞移植(allo-HSCT)。中位随访时间约20个月,中位无事件生存期(EFS)和OS尚未达到。估计1年EFS和OS率分别为64%和76%。在R/R-AML中,ORR为70%,复合缓解率为61%。在获得缓解的患者中,79%达到MRD阴性。46%的患者接受allo-HSCT,allo-HSCT使患者的OS (mOS未达到;1年OS为87%)得到显著改善 [17] 。FLAG-IDA联合VEN可使大部分患者获得较高的MRD阴性缓解率,并在适当的情况下过渡到allo-HSCT。

VEN联合克拉屈滨、去甲氧柔红霉素和阿糖胞苷(CLIA)的临床试验共纳入46例ND AML患者和4例高危MDS患者,其中41例接受VEN联合CLIA治疗方案,9例FLT3突变患者接受VEN + CLIA + FLT3抑制剂治疗 [18] 。总体CR/CRi为94% (其中VEN + CLIA治疗组为95%,VEN + CLIA + FLT3抑制剂为89%)。45例可评估MRD的患者中37例(82%)达到MRD阴性,29例(62%)在首次缓解后进行allo-HSCT。中位随访时间为13.5个月,mOS未达到。估计1年OS为85%。

综上,在可耐受化疗的患者中,VEN联合强化化疗疗效确切,患者可获得较高的CR/CRi率和MRD转阴率。然而,在VEN+DA临床试验中,患者恢复血细胞计数的中位时间为21天,在VEN联合FLAG-IDA和VEN联合CLIA的临床试验中则需要约一个月 [15] [16] [18] 。骨髓抑制仍是一大问题。

VEN联合DA (2 + 6)方案诱导治疗1个周期后,患者的CR/CRi率为90.5%,MRD阴性率为87.9%。患者mOS未达到,估计1年OS率为83.1% [19] 。所有患者都出现中性粒细胞和血小板减少。中性粒细胞和血小板的中位恢复时间分别为13天(5~26)和12天(8~26)。VEN联合DA (2 + 5)方案诱导治疗1个周期后,CR率为83.3% [20] 。经过2个周期的诱导治疗后,CR率为91.7%,MRD阴性率为83.3%。患者mOS也未达到。所有患者均在诱导治疗期间出现中性粒细胞减少、贫血和血小板减少。第一个诱导周期后,患者中性粒细胞和血小板的中位恢复时间为20.0 (18.75~22.0)天。

综上,在ND AML患者中,VEN联合减低剂量DA方案方案耐受性好,并且疗效显著。能够与VEN联合DA/FLAG-IDA/CLIA方案获得相似的CR/CRi率,同时使患者的骨髓抑制期缩短。

2.2.3. VEN联合靶向治疗

FLT3突变是AML最常见的突变之一,与野生型FLT3相比,FLT3突变的AML患者预后较差 [1] 。目前,FDA批准的FLT3抑制剂包括索拉菲尼(sorafenib)、米哚妥林(midostaurin)、奎扎替尼 (quizartinib)、吉列替尼(gilteritinib)等。临床前研究表明,FLT3抑制剂与VEN在FLT3突变的AML中具有协同作用 [21] 。Gilteritinib与VEN的I期临床试验显示出较高的mCRc (CR + CRh + Cri + MLFS)率和FLT3分子应答率 [22] ,但是需要中断剂量以减轻骨髓抑制。Quizartinib联合VEN的临床研究(NCT03735875、NCT03661307)正在进行中。

IDH1/2突变发生在约20%的AML患者中,其与疾病进展及治疗相关 [23] 。研究发现,IDH1/2突变AML患者对VEN治疗更为敏感 [24] 。艾伏尼布(ivosidenib)和恩西地平(enasidenib)分别是IDH1和IDH2抑制剂。临床前研究表明,enasidenib能够增强VEN在IDH2突变AML中的敏感性 [25] ,提示VEN联合IDH1/2抑制剂的治疗潜能。Jasra等报道1例60岁女性难治性AML患者,经过AZA + VEN + enasidenib治疗后取得CR [26] 。目前ivosidenib和enasidenib联合VEN在IDH1/2突变的AML中的I/II期临床试验(NCT04774393、NCT04092179)正在进行中。

2.2.4. VEN联合免疫治疗

CD33是一种糖基化跨膜蛋白,其在AML细胞中普遍高表达,因此是一个非常有潜力的AML治疗靶点 [27] 。吉妥珠单抗奥佐米星(Gemtuzumab Ozogamicin, GO)是一种靶向CD33的单克隆抗体,2017年,GO被FDA批准用于治疗CD33+ AML患者。目前评估GO联合VEN治疗CD33+ R/R AML患者的安全性和有效性的Ib期临床试验(NCT04070768)正在进行中。

CD47是一种用于逃避吞噬信号的跨膜蛋白,在AML细胞中表达上调,使AML细胞逃避吞噬 [28] 。Magrolimab是一种抗CD47的单克隆抗体,与AZA联合治疗AML的Ib期临床试验显示出良好的疗效和耐受性 [29] 。目前,Magrolimab联合VEN + AZA在AML中的临床试验(NCT04435691、NCT04778397、NCT05079230)正在进行中。

CD123是白细胞介素-3 (IL-3)受体的一个亚基,约80%的AML表达CD123 [30] 。Tagraxofusp (TAG)是首个获批靶向CD123的药物。TAG联合AZA + VEN治疗AML的Ib期临床试验中,患者的应答(CR/CRi/MLFS)率为69% [30] ,其中71%的患者MRD阴性。中位OS和EFS分别为14个月和8.5个月。

3. VEN在AML中的问题

3.1. VEN不良反应

AML患者对VEN治疗的总体耐受性良好,最常见的不良反应为胃肠道和血液学反应,主要为恶心、呕吐、腹泻、贫血、粒细胞减少和粒细胞缺乏伴发热等 [6] 。导致减量或停药的主要不良反应是粒细胞缺乏伴发热、粒细胞减少和血小板减少 [7] 。因此,在VEN整个治疗期间需监测血常规,发生严重粒细胞缺乏时,需暂停用药,同时采用支持治疗,包括抗真菌感染和使用生长因子等。AML患者发生TLS的风险相对较低,但仍应予以足够重视,预防TLS发生,例如控制WBC、服用别嘌醇 [31] 。与CYP3A抑制剂联用时,VEN需要减量50%~75%。VEN与P-糖蛋白(P-gp)底物联用时,也需适当减量 [31] 。

3.2. VEN耐药机制

目前,30%~40%的AML患者对以VEN为基础的治疗耐药 [32] 。在AML中,VEN耐药的主要机制包括其他BCL-2家族抗凋亡蛋白(MCL-1、BCL-XL)的表达上调,TP53突变或缺失导致的p53蛋白失活,FLT3和RAS激活激酶突变,线粒体结构改变以及异常氧化磷酸化(OXPHOS)等。

MCL-1和BCL-XL与BCL-2同为BCL-2家族中的抗凋亡蛋白,它们发挥作用的方式与BCL-2蛋白相似,通过与BIM结合,阻止BIM与BAX/BAK结合,进而抑制BAX/BAK的募集,最终阻止细胞凋亡 [6] 。当抗凋亡蛋白MCL-1或BCL-XL是AML细胞的主要的抗凋亡因子时,患者对VEN耐药。部分患者经VEN治疗后MCL-1表达上调,发生VEN耐药。此外,MCL-1还可以调节AML细胞的能量代谢,包括三羧酸(TCA)循环、糖酵解和磷酸戊糖途径,促进AML细胞耐药 [33] 。BAX/BAK基因编码的BAX/BAK蛋白是线粒体凋亡途径的凋亡效应因子,对于线粒体凋亡途径是不可或缺的。包括VEN在内的任何BH3类似物的功能都需要下游BAX/BAK的寡聚化激活才能发挥作用。在缺乏BAX基因的AML细胞中,VEN基本不能诱导细胞凋亡 [34] 。

与AML其他亚型相比,NPM1突变和IDH1/2突变通常对VEN的反应更好,而FLT3突变、RAS突变和TP53突变可能导致VEN耐药 [35] 。RAS/MAPK通路激活是MCL-1介导的VEN耐药的关键机制 [36] 。FLT3突变、TP53突变通过激活MAPK通路,上调MCL-1蛋白水平,导致VEN耐药。此外,TP53缺失导致BCL-2的表达下调,对VEN的敏感性降低 [37] 。

线粒体结构异常和异常OXPHOS也是导致VEN耐药的关键机制。正常AML细胞在VEN作用后,线粒体的嵴数量减少,嵴管腔宽度增加,使细胞色素C更容易释放到胞浆,导致细胞凋亡。而在VEN耐药的AML细胞中,线粒体嵴数量增多,并且线粒体蛋白OPA1和线粒体伴侣蛋白(CLPB)的表达水平显著上调,OPA1与CLPB相互作用,维持正常的线粒体嵴形态,使AML细胞逃避caspase依赖的细胞凋亡 [38] 。在代谢方面,白血病干细胞(LSCs)存活依赖于线粒体氨基酸代谢。VEN联合AZA通过减少LSCs的氨基酸摄取,下调其OXPHOS [39] 。然而,Stevens等人发现LSCs能够利用脂肪酸代谢代替氨基酸代谢,导致其对VEN的敏感性显著降低 [40] 。此外,LSCs代谢的成分也发生了改变,其烟酰胺水平升高导致烟酰胺腺嘌呤二核苷酸(NAD+)的产量增加,NAD+促进氨基酸和脂肪酸进入TCA循环来维持LSCs的OXPHOS [41] 。

此外,VEN对髓系分化不同阶段的AML细胞具有不同的疗效 [42] 。Pei等回顾性分析了100例接受VEN联合治疗的ND AML患者,发现具有单核细胞表型的原代AML细胞比分化程度较低的AML细胞更容易产生耐药。进一步分析凋亡基因的表达发现,单核细胞表型的原代AML细胞中BCL-2的表达降低,而MCL-1的表达升高 [43] 。此外,White等人通过贝叶斯线性回归分析发现,单核细胞相关基因与VEN耐药相关 [44] ,与此前研究结果一致。

4. 总结与展望

VEN在AML治疗中展现出巨大的潜力。对于不适合强化化疗的患者,VEN联合低甲基化药物或低剂量阿糖胞苷可作为一种治疗选择,并且疗效显著;对于可耐受化疗的患者,VEN联合强化化疗可实现更高的缓解率和MRD转阴率。目前,多种靶向药物和免疫药物联合VEN治疗AML的临床试验正在进行中,有望进一步拓宽VEN在AML中的应用。可以预见,VEN未来将在AML的治疗中发挥更重要的作用。

NOTES

*通讯作者。

参考文献

[1] Döhner, H., Wei, A.H., Appelbaum, F.R., et al. (2022) Diagnosis and Management of AML in Adults: 2022 Recom-mendations from an International Expert Panel on Behalf of the ELN. Blood, 140, 1345-1377.
https://doi.org/10.1182/blood.2022016867
[2] Czabotar, P.E. and Garcia-Saez, A.J. (2023) Mechanisms of BCL-2 Family Proteins in Mitochondrial Apoptosis. Nature Reviews Molecular Cell Biology, 24, 732-748.
https://doi.org/10.1038/s41580-023-00629-4
[3] Diepstraten, S.T., Anderson, M.A., Czabotar, P.E., et al. (2022) The Manipulation of Apoptosis for Cancer Therapy Using BH3-Mimetic Drugs. Nature Reviews Cancer, 22, 45-64.
https://doi.org/10.1038/s41568-021-00407-4
[4] 中国临床肿瘤学会白血病专家委员会. 维奈克拉治疗恶性血液病临床应用指导原则(2021年版) [J]. 白血病∙淋巴瘤, 2021, 30(12): 710-718.
[5] 中华医学会血液学分会白血病淋巴瘤学组. 成人急性髓系白血病(非急性早幼粒细胞白血病)中国诊疗指南(2023年版) [J]. 中华血液学杂志, 2023, 44(9): 705-712.
[6] Konopleva, M., Pollyea, D.A., Potluri, J., et al. (2016) Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia. Cancer Dis-covery, 6, 1106-1117.
https://doi.org/10.1158/2159-8290.CD-16-0313
[7] DiNardo, C.D., Jonas, B.A., Pullarkat, V., et al. (2020) Aza-citidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. New England Journal of Medicine, 383, 617-629.
https://doi.org/10.1056/NEJMoa2012971
[8] Kwag, D., Cho, B.S., Bang, S.Y., et al. (2022) Venetoclax with Decitabine versus Decitabine Monotherapy in Elderly Acute Myeloid Leukemia: A Propensity Score-Matched Analysis. Blood Cancer Journal, 12, Article No. 169.
https://doi.org/10.1038/s41408-022-00770-x
[9] Wei, A.H., Montesinos, P., Ivanov, V., et al. (2020) Venetoclax plus LDAC for Newly Diagnosed AML Ineligible for Intensive Chemotherapy: A Phase 3 Randomized Place-bo-Controlled Trial. Blood, 135, 2137-2145.
https://doi.org/10.1182/blood.2020004856
[10] Kadia, T.M., Reville, P.K., Wang, X., et al. (2022) Phase II Study of Venetoclax Added to Cladribine plus Low-Dose Cytarabine Alternating with 5-Azacitidine in Older Patients with Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 40, 3848-3857.
https://doi.org/10.1200/JCO.21.02823
[11] Stahl, M., Menghrajani, K., Derkach, A., et al. (2021) Clinical and Molecular Predictors of Response and Survival Following Venetoclax Therapy in Relapsed/Refractory AML. Blood Ad-vances, 5, 1552-1564.
https://doi.org/10.1182/bloodadvances.2020003734
[12] Weng, G., Zhang, Y., Yu, G., et al. (2023) Genetic Char-acteristics Predict Response to Venetoclax plus Hypomethylating Agents in Relapsed or Refractory Acute Myeloid Leu-kemia. Journal of Internal Medicine, 293, 329-339.
https://doi.org/10.1111/joim.13581
[13] Todisco, E., Papayannidis, C., Fracchiolla, N., et al. (2023) AVALON: The Italian Cohort Study on Real‐Life Efficacy of Hypomethylating Agents plus Venetoclax in Newly Diagnosed or Re-lapsed/Refractory Patients with Acute Myeloid Leukemia. Cancer, 129, 992-1004.
https://doi.org/10.1002/cncr.34608
[14] Jin, H., Zhang, Y., Yu, S., et al. (2023) Venetoclax Combined with Aza-citidine and Homoharringtonine in Relapsed/Refractory AML: A Multicenter, Phase 2 Trial. Journal of Hematology & Oncology, 16, Article No. 42.
https://doi.org/10.1186/s13045-023-01437-1
[15] Wang, H., Mao, L., Yang, M., et al. (2022) Venetoclax plus 3 + 7 Daunorubicin and Cytarabine Chemotherapy as First-Line Treatment for Adults with Acute Myeloid Leukaemia: A Multicentre, Single-Arm, Phase 2 Trial. The Lancet. Haematology, 9, E415-E424.
https://doi.org/10.1016/S2352-3026(22)00106-5
[16] Di Nardo, C.D., Lachowiez, C.A., Takahashi, K., et al. (2022) Venetoclax Combined with FLAG-IDA Induction and Consolidation in Newly Diagnosed Acute Myeloid Leukemia. American Journal of Hematology, 97, 1035-1043.
https://doi.org/10.1002/ajh.26601
[17] Di Nardo, C.D., Lachowiez, C.A., Takahashi, K., et al. (2021) Venetoclax Combined with FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Mye-loid Leukemia. Journal of Clinical Oncology, 39, 2768-2778.
https://doi.org/10.1200/JCO.20.03736
[18] Kadia, T.M., Reville, P.K., Borthakur, G., et al. (2021) Venetoclax plus Intensive Chemotherapy with Cladribine, Idarubicin, and Cytarabine in Patients with Newly Diagnosed Acute Myeloid Leukaemia or High-Risk Myelodysplastic Syndrome: A Cohort from a Single-Centre, Single-Arm, Phase 2 Trial. The Lancet. Haematology, 8, E552-E561.
https://doi.org/10.1016/S2352-3026(21)00192-7
[19] Suo, X., Zheng, F., Wang, D., et al. (2023) Venetoclax Combined with Daunorubicin and Cytarabine (2 + 6) as Induction Treatment in Adults with Newly Diagnosed Acute Myeloid Leukemia: A Phase 2, Multicenter, Single-Arm Trial. Experimental Hematology & Oncology, 12, Article No. 45.
https://doi.org/10.1186/s40164-023-00409-y
[20] Wang, H., Yao, Y., Mao, L., et al. (2023) Venetoclax plus “2 + 5” Modified Intensive Chemotherapy with Daunorubicin and Cytarabine in Fit Elderly Patients with Untreated De Novo Acute Myeloid Leukaemia: A Single-Centre Retrospective Analysis. British Journal of Haematology, 201, 568-572.
https://doi.org/10.1111/bjh.18709
[21] Janssen, M., et al. (2022) Venetoclax Synergizes with Gilteritinib in FLT3 Wild-Type High-Risk Acute Myeloid Leukemia By Suppressing MCL-1. Blood, 140, 2594-2610.
https://doi.org/10.1182/blood.2021014241
[22] Daver, N., Perl, A.E., Maly, J., et al. (2022) Venetoclax plus Gilteritinib for FLT3-Mutated Relapsed/Refractory Acute Myeloid Leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 40, 4048-4059.
https://doi.org/10.1200/JCO.22.00602
[23] Issa, G.C. and Di Nardo, C.D. (2021) Acute Myeloid Leukemia with IDH1 and IDH2 Mutations: 2021 Treatment Algorithm. Blood Cancer Journal, 11, Article No. 107.
https://doi.org/10.1038/s41408-021-00497-1
[24] Pollyea, D.A., Di Nardo, C.D., Arellano, M.L., et al. (2022) Impact of Venetoclax and Azacitidine in Treatment-Naïve Patients with Acute Myeloid Leukemia and IDH1/2 Mutations. Clinical Cancer Research, 28, 2753-2761.
https://doi.org/10.1158/1078-0432.CCR-21-3467
[25] Cathelin, S., Sharon, D., Subedi, A., et al. (2022) Enasidenib-Induced Differentiation Promotes Sensitivity to Venetoclax in IDH2-Mutated Acute Myeloid Leukemia. Leukemia, 36, 869-872.
https://doi.org/10.1038/s41375-021-01468-y
[26] Jasra, S., Kazemi, M., Shah, N., et al. (2021) Case Report of Combination Therapy with Azacytidine, Enasidenib and Venetoclax in Primary Refractory AML. Experimental Hematology & Oncology, 10, Article No. 1.
https://doi.org/10.1186/s40164-020-00186-y
[27] Molica, M., Perrone, S., Mazzone, C., et al. (2021) CD33 Ex-pression and Gentuzumab Ozogamicin in Acute Myeloid Leukemia: Two Sides of the Same Coin. Cancers, 13, Article No. 3214.
https://doi.org/10.3390/cancers13133214
[28] Morse, J.W., Rios, M., Ye, J., et al. (2023) Antibody Therapies for the Treatment of Acute Myeloid Leukemia: Exploring Current and Emerging Therapeutic Targets. Expert Opinion on Investigational Drugs, 32, 107-125.
https://doi.org/10.1080/13543784.2023.2179482
[29] Daver, N.G., Vyas, P., Kambhampati, S., et al. (2023) Tol-erability and Efficacy of the Anticluster of Differentiation 47 Antibody Magrolimab Combined with Azacitidine in Pa-tients with Previously Untreated AML: Phase Ib Results. Journal of Clinical Oncology, 41, 4893-4904.
https://doi.org/10.1200/JCO.22.02604
[30] Lane, A.A., Garcia, J.S., Raulston, E.G., et al. (2023) Phase 1b Trial of Tagraxofusp in Combination with Azacitidine with or without Venetoclax in Acute Myeloid Leukemia. Blood Advances, 8, 591-602.
https://doi.org/10.1182/bloodadvances.2023011721
[31] DiNardo, C.D., Rausch, C.R., Benton, C., et al. (2018) Clinical Experience with the BCL2-Inhibitor Venetoclax in Combination Therapy for Relapsed and Refractory Acute Myeloid Leukemia and Related Myeloid Malignancies. American Journal of Hematology, 93, 401-407.
https://doi.org/10.1002/ajh.25000
[32] Dhakal, P., Bates, M., Tomasson, M.H., et al. (2023) Acute Myeloid Leu-kemia Resistant to Venetoclax-Based Therapy: What Does the Future Hold? Blood Reviews, 59, Article ID: 101036.
https://doi.org/10.1016/j.blre.2022.101036
[33] Carter, B.Z., Mak, P.Y., Tao, W., et al. (2022) Targeting MCL-1 Dysregulates Cell Metabolism and Leukemia-Stroma Interactions and Resensitizes Acute Myeloid Leukemia to BCL-2 Inhibition. Haematologica, 107, 58-76.
https://doi.org/10.3324/haematol.2020.260331
[34] Moujalled, D.M., Brown, F.C., Chua, C.C., et al. (2023) Ac-quired Mutations in BAX Confer Resistance to BH3-Mi- metic Therapy in Acute Myeloid Leukemia. Blood, 141, 634-644.
https://doi.org/10.1182/blood.2022016090
[35] DiNardo, C.D., Tiong, I.S., Quaglieri, A., et al. (2020) Molecular Patterns of Response and Treatment Failure after Frontline Venetoclax Combinations in Older Patients with AML. Blood, 135, 791-803.
https://doi.org/10.1182/blood.2019003988
[36] Zhang, Q., Riley-Gillis, B., Han, L., et al. (2022) Activation of RAS/MAPK Pathway Confers MCL-1 Mediated Acquired Resistance to BCL-2 Inhibitor Venetoclax in Acute Myeloid Leukemia. Signal Transduction and Targeted Therapy, 7, Article No. 51.
https://doi.org/10.1038/s41392-022-00958-4
[37] Nechiporuk, T., Kurtz, S.E., Nikolova, O., et al. (2019) The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells. Cancer Discovery, 9, 910-925.
https://doi.org/10.1158/2159-8290.CD-19-0125
[38] Chen, X., Glytsou, C., Zhou, H., et al. (2019) Targeting Mi-tochondrial Structure Sensitizes Acute Myeloid Leukemia to Venetoclax Treatment. Cancer Discovery, 9, 890-909.
https://doi.org/10.1158/2159-8290.CD-19-0117
[39] Pollyea, D.A., Stevens, B.M., Jones, C.L., et al. (2018) Ve-netoclax with Azacitidine Disrupts Energy Metabolism and Targets Leukemia Stem Cells in Acute Myeloid Leukemia Pa-tients. Nature Medicine, 24, 1859-1866.
https://doi.org/10.1038/s41591-018-0233-1
[40] Stevens, B.M., Jones, C.L., Pollyea, D.A., et al. (2020) Fatty Ac-id Metabolism Underlies Venetoclax Resistance in Acute Myeloid Leukemia Stem Cells. Nature Cancer, 1, 1176-1187.
https://doi.org/10.1038/s43018-020-00126-z
[41] Jones, C.L., Stevens, B.M., Pollyea, D.A., et al. (2020) Nico-tinamide Metabolism Mediates Resistance to Venetoclax in Relapsed Acute Myeloid Leukemia Stem Cells. Cell Stem Cell, 27, 748-764.E4.
https://doi.org/10.1016/j.stem.2020.07.021
[42] Kuusanmäki, H., Leppä, A.M., Pölönen, P., et al. (2020) Pheno-type-Based Drug Screening Reveals Association between Venetoclax Response and Differentiation Stage in Acute Mye-loid Leukemia. Haematologica, 105, 708-720.
https://doi.org/10.3324/haematol.2018.214882
[43] Pei, S., Pollyea, D.A., Gustafson, A., et al. (2020) Monocytic Subclones Confer Resistance to Venetoclax-Based Therapy in Patients with Acute Myeloid Leukemia. Cancer Discovery, 10, 536-551.
https://doi.org/10.1158/2159-8290.CD-19-0710
[44] White, B.S., Khan, S.A., Mason, M.J., et al. (2021) Bayesian Multi-Source Regression and Monocyte-Associated Gene Expression Predict BCL-2 Inhibitor Resistance in Acute Mye-loid Leukemia. NPJ Precision Oncology, 5, Article No. 71.
https://doi.org/10.1038/s41698-021-00209-9