幼年特发性关节炎预后相关生物标记物研究进展
Advances in the Study of Prognosis-Related Biomarkers in Juvenile Idiopathic Arthritis
DOI: 10.12677/ACM.2024.142524, PDF, HTML, XML, 下载: 64  浏览: 112 
作者: 芦家卉, 朱洪涛*:新疆医科大学第一附属医院儿科中心,新疆 乌鲁木齐
关键词: 幼年特发性关节炎生物标记物儿童Juvenile Idiopathic Arthritis Biomarkers Children
摘要: 幼年特发性关节炎(JIA)是最常见的儿童慢性风湿性疾病,以慢性关节滑膜炎为主要表现,可伴全身多脏器功能损害,严重威胁患儿的生存质量。相关生物标记物的发现可能有助于早期诊断、评估疾病活动水平、预测临床缓解与复发、预测对药物治疗的反应等,为实现幼年特发性关节炎的合理诊疗提供希望。
Abstract: Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in children, with chronic synovitis as the main manifestation, which can be associated with systemic multi-organ functional impairment, seriously threatening the quality of survival of children. The discovery of biomarkers may help in early diagnosis, assessment of disease activity level, prediction of clinical remission and recurrence, and prediction of response to drug therapy, offering hope for rational treatment of juvenile idiopathic arthritis.
文章引用:芦家卉, 朱洪涛. 幼年特发性关节炎预后相关生物标记物研究进展[J]. 临床医学进展, 2024, 14(2): 3758-3763. https://doi.org/10.12677/ACM.2024.142524

1. 引言

幼年特发性关节炎(JIA)是一组异质性疾病,国际风湿病联盟(ILAR)将其定义为16岁以下儿童持续6周以上不明原因的关节肿、痛或活动受限 [1] 。根据国际风湿病协会联盟的分类分为七个亚组:少关节炎、类风湿因子阳性或阴性多关节炎、附着点炎相关关节炎、银屑病性关节炎、全身性关节炎和未分化性关节炎。JIA以慢性关节滑膜炎为主要表现,可伴全身多脏器功能损害,早期可发生巨噬细胞活化综合征及葡萄膜炎等严重并发症,远期可发生关节软骨的破坏及骨质侵蚀,导致关节畸形及功能障碍,未经治疗者,两年致残率达50%,3年致残率可达70% [1] 。因此对疾病的早期诊断、疾病活动度的准确评估、疾病复发的预测对于改善预后尤为关键 [2] [3] 。

JIA患儿常需长期用药,但病情易反复,长远预后难以预测。近年来,JIA的治疗取得了重要进展,包括早期积极干预,以及开发新的治疗药物和联合治疗策略,引入生物制剂、JAK抑制剂等靶向治疗药物,大大提高了JIA患儿的临床缓解率,2020年欧洲风湿病学大会上提出“T2T治疗方案及减停策略”,使缓解、或达到最小疾病活动度,成为大多数JIA的患儿可以达到的目标 [3] 。

但目前对于JIA的管理缺乏可靠的指标来反映疾病严重程度、药物治疗反应、达到停药后复发的风险,以及预测疾病相关并发症,如葡萄膜炎、巨噬细胞活化综合征(MAS)。目前临床常用评估疾病活动度的实验室指标是红细胞沉降率(erythrocyte sedimentation Rate, ESR)及C反应蛋白(C-reactive protein, CRP),但二者特异性不高,易受感染等多种因素影响。Foell等 [4] 发现,在JIA停药后病情稳定组与复发组监测ESR及CRP均无明显差异。而生物标志物的测量可以更好地反映病理过程。通过对其局部或全身浓度的测量,可以定义严重程度,并确定临界值,使得使用生物标志物作为治疗靶点成为可能 [5] 。因此,引入灵敏性及特异性更高的生物标志物用于指导JIA临床诊疗是近年来研究热点。

2. IL-18

IL-18属于IL-1细胞因子家族,最初是无活性的,以整合膜蛋白的形式出现,然后在含半胱氨酸的天冬氨酸蛋白水解酶-1 (caspase-1)的作用下转化为一种诱导IFN-的活性细胞因子,通过调节自然杀伤细胞及巨噬细胞活动性,诱导中性粒细胞迁移、脱颗粒和释放细胞因子而发挥作用。IL-18可以在几乎所有的人类细胞和健康动物中被发现。Lotito等 [6] 发现关节滑液(SF)和血清中IL-18的水平与疾病活动度和严重程度具有相关性。JIA患者血清中IL-18的浓度高于对照组,且血清中的IL-18水平与SF中的一样高,并且与IL-1、IL-6、CRP、活动关节数量呈正相关。并且,全身型JIA患者SF和血清中IL-18的水平远高于其他类型。Shimizu等 [7] 提出,合并MAS的全身型JIA(sJIA)患儿血清IL-18浓度显著升高。当IL-18血清浓度 > 47,750 pg/mL可预测MAS的发生。Grant S.Schulert等 [8] 对18例sJIA合并肺部病变患者进行评估,发现其血清及支气管肺泡灌洗液中IL-18浓度均较未发生肺部病变的sJIA患儿高。Julia E. Rood等 [9] 报告了一例难治性sJIA合并肺部病变患者,接受一种针对IL-1β和IL-18的特异性单克隆抗体MAS-825治疗后,其血清和支气管肺泡灌洗液中总IL-18和游离IL-18,以及CD4 T细胞、CD8 T细胞和巨噬细胞数量均减少,并且患者的基线氧饱和度、运动耐量和生活质量指标均有所改善,肺功能保持稳定。

3. CXCL9趋化因子

趋化因子是一类由细胞分泌的小细胞因子或信号蛋白,具有诱导附近反应细胞定向趋化的能力,作为介质、信号分子、迁移刺激因子和巨噬细胞激活因子参与炎症。趋化因子被分为四个主要亚家族:CXC、CC、CX3C和XC。所有这些蛋白都通过与G蛋白连接的跨膜受体(称为趋化因子受体)相互作用来发挥其生物学效应。趋化因子在生理和病理条件下作用于巨噬细胞的分化和极化,尤其是在炎症性疾病中。炎症期间,IFN-γ和TNFα激活M1型巨噬细胞,使其细胞膜表面表达CXCL9和CXCL10趋化因子,吸引Th1细胞,诱导其进入感染部位,参与炎症反应 [10] [11] 。Mizuta等人 [12] 发现,血清趋化因子CXCL9在sJIA合并MAS患儿中明显升高,其水平与疾病活动性呈正相关,监测该趋化因子的血清水平可以实现对sJIA-MAS的监测。此外,Hinze等 [13] 发现对卡那单抗治疗有反应的sJIA患者在基线时IL-18和IFN-γ水平较高,CXCL9水平较低,且IL-18/CXCL9和IFN-γ/CXCL9比值越高,sJIA患者对卡那单抗的治疗反应越好。

4. S100蛋白

S100蛋白是Ca2+结合蛋白家族的一个亚组;参与细胞信号转导、细胞分化、细胞运动调控、转录和细胞周期进程,在细胞外发挥与细胞因子相似的作用 [14] 。S100蛋白在被即单核细胞或中性粒细胞释放后,通过与toll样受体-4 (TLR4)和晚期糖基化终产物受体(RAGE)结合,参与炎症反应。TLR4是病原体相关分子模式(PAMPs)和损伤相关分子模式(DAMPs)的受体,RAGE是细胞表面分子超家族的多配体成员,TLR4和RAGE均在免疫细胞、内皮细胞和其它血管外细胞表面表达,参与感染和炎症期间的全身反应 [15] [16] [17] [18] 。

钙卫蛋白(CP)也称为骨髓源蛋白8/14或S100A8/A9,主要由活化的中性粒细胞释放。当炎症发生,被激活的中性粒细胞和巨噬细胞内皮粘附,钙卫蛋白通过微管介导的钙依赖性途径分泌,与蛋白激酶C(PKC)和中性粒细胞胞外诱捕网(NETs)同分泌,反映了炎症部位吞噬细胞的活化 [19] 。目前,粪便钙卫蛋白已应用于临床检测,作为炎症性肠病的生物标志物。同时,钙卫蛋白在成人和儿童的慢性风湿性疾病中的作用也在逐渐突显。目前临床常用反映疾病活动度的实验室指标为C反应蛋白(CRP),CRP主要由肝细胞在非特异性全身炎症过程中产生,易受多种因素影响,缺乏特异性 [20] 。Altobelli等人 [21] 对钙卫蛋白作为JIA潜在生物标志物的作用进行了系统综述和荟萃分析。结果显示,与JIA的其他亚型、非活动期JIA患儿以及健康对照相比,活动性sJIA患者血清钙卫蛋白水平升高,具有统计学意义。Holzinger等人 [22] 研究了52例sJIA患者的血清钙卫蛋白浓度,以监测疾病活动度,并尝试对有复发风险的患者进行分类。结果表明,在疾病处于活动期患者中,钙卫蛋白的血清浓度明显升高,对药物治疗有反应的患者血清钙卫蛋白浓度显著降低。F. Remthangpuii等 [23] 测定了50名诊断为JIA的初治儿童血清钙卫蛋白和CRP水平,通过计算钙卫蛋白水平与CRP和幼年关节炎疾病活动评分(JADAS-27)的相关性,提出无论亚型如何。幼年特发性关节炎患儿血清钙卫蛋白与CRP和JADAS-27呈正相关(r = 0.418)。

5. HMGB1

高迁移率族蛋白-1 (HMGB1)是DNA结合蛋白HMG家族中最丰富的成员,是病毒和细菌感染中活化或坏死细胞释放到细胞外的PAMPs、急性或慢性炎症疾病中的警报蛋白或DAMPs,以及连接组织损伤和应激与先天免疫的关键分子。除了其促炎功能外,HMGB1还具有修复和再生组织的作用 [24] 。HMGB1通过与RAGE和TLR4等关键的跨膜受体相互作用,参与炎症性疾病的发病过程 [25] [26] 。细胞外HMGB1具有与RAGE一起放大炎症和调节免疫反应的能力。HMGB1参与由败血症、关节炎、系统性红斑狼疮等引起的全身炎症。细胞外HMGB1水平在JIA患者的炎症关节中增加,并且可能是炎症活性的生物标志物和治疗的靶点。Xu,Dan等 [27] 对64名平均年龄为9.25岁、平均病程为2.38个月(其中48.4%为女性)的儿童进行了前瞻性纵向研究,在首次就诊时以及1个月、3个月和6个月后采集了血液样本,与健康对照组以及首次就诊时反应性关节炎患者的样本进行比较。分析HMGB1水平、常规实验室数据和临床疾病特征,发现sJIA患者的血清HMGB1浓度显著升高,且初发JIA患者血清HMGB1水平与C反应蛋白、中性粒细胞百分比和铁蛋白之间存在正相关,表明血清HMGB1可能是sJIA中敏感的炎症生物标志物。

6. miRNA

miRNAs是内源性的非编码RNA,通过识别蛋白质编码基因3'非翻译区的位点来调节目标mRNA的活性。miRNAs不仅以组织和细胞特异性的方式表达,而且大量存在于血液中,在血液中可以检测到。Ma Xiaolin等 [28] 通过研究血浆miRNAs的差异表达,发现血浆miR-16和miR146a可以作为疾病活动的标志物,其浓度与肿胀关节计数和幼年关节炎磁共振成像评分(JAMRIS)相关。

7. 总结与展望

在过去的二十年里,JIA的治疗取得了显著的进展,使绝大多数患有这种疾病的儿童的疾病缓解成为一个可以实现的目标。但目前没有关于在达到非活动性疾病状态后停药策略的指南,对于停药方案的制定仍依赖于医生的经验。可靠和稳定的生物标志物有助于量化疾病活动水平,从生物学水平上而不仅仅是临床上定义疾病缓解,评估治疗反应,预测疾病缓解后的复发,预防并发症的发生,制定合理的停药减药方案。因此,使用更可靠的生物学指标以精确定义非活动性疾病状态并预测疾病复发风险,对于临床缓解后停药方案的制定是至关重要的。近年来,已经提出了许多生物标志物,血清S100、HMGB1、miRNA等有望成为关注重点,IL-18、CXCL9趋化因子可能为JIA合并MAS提供早期预测线索。然而到目前为止,仍处于临床研究阶段,没有被纳入临床管理中。此外,一些生物标志物的作用目前仍存在争议。因此,有必要进行进一步的研究,探讨在更多不同的患者群体中生物标志物的有效性。

NOTES

*通讯作者。

参考文献

[1] Prakken, B., Albani, S. and Martini, A. (2011) Juvenile Idiopathic Arthritis. The Lancet, 377, 2138-2149.
https://doi.org/10.1016/S0140-6736(11)60244-4
[2] Hinze, C., Gohar, F. and Foell, D. (2015) Management of Juvenile Idiopathic Arthritis: Hitting the Target. Nature Reviews Rheumatology, 11, 290-300.
https://doi.org/10.1038/nrrheum.2014.212
[3] Ravelli, A., Consolaro, A., Horneff, G., Laxer, R.M., Lovell, D.J., Wulffraat, N.M., Akikusa, J.D., Al-Mayouf, S.M., Antón, J., Avcin, T., et al. (2018) Treating Juvenile Idiopathic Arthri-tis to Target: Recommendations of an International Task Force. Annals of the Rheumatic Diseases, 2018, Article ID: 213030.
https://doi.org/10.1136/annrheumdis-2018-213030
[4] Foell, D., Wittkowski, H., Hammerschmidt, I., Wulffraat, N., Schmeling, H., Frosch, M., Horneff, G., Kuis, W., Sorg, C. and Roth, J. (2004) Monitoring Neutrophil Activation in Juvenile Rheumatoid Arthritis by S100A12 Serum Concentrations. Arthritis & Rheumatism, 50, 1286-1295.
https://doi.org/10.1002/art.20125
[5] Bobek, D., Grčević, D., Kovačić, N., Lukić, I.K. and Jelušić, M. (2014) The Presence of High Mobility Group Box-1 and Soluble Receptor for Advanced Glycation End-Products in Juvenile Idio-pathic Arthritis and Juvenile Systemic Lupus Erythematosus. Pediatric Rheumatology, 12, Article No. 50.
https://doi.org/10.1186/1546-0096-12-50
[6] Novick, D., Kim, S., Kaplanski, G. and Dinarello, C.A. (2013) In-terleukin-18, More than a Th1 Cytokine. Seminars in Immunology, 25, 439-448.
https://doi.org/10.1016/j.smim.2013.10.014
[7] Shimizu, M., Nakagishi, Y., Inoue, N., Mizuta, M., Ko, G., Saikawa, Y., Kubota, T., Yamasaki, Y., Takei, S. and Yachie, A. (2015) Interleukin-18 for Predicting the Development of Macrophage Activation Syndrome in Systemic Juvenile Idiopathic Arthritis. Clinical Immunology, 160, 277-281.
https://doi.org/10.1016/j.clim.2015.06.005
[8] Schulert, G.S., Yasin, S., Carey, B., Chalk, C., Do, T., Schapiro, A.H., Husami, A., Watts, A., Brunner, H.I., Huggins, J., et al. (2019) Systemic Juvenile Idiopathic Arthritis-Associated Lung Disease: Characterization and Risk Factors. Arthritis & Rheumatology, 71, 1943-1954.
https://doi.org/10.1002/art.41073
[9] Rood, J.E., Rezk, A., Pogoriler, J., Finn, L.S., Burnham, J.M., Josephson, M.B., Bar-Or, A., Behrens, E.M. and Canna, S.W. (2023) Improvement of Refractory Systemic Juvenile Idiopathic Ar-thritis-Associated Lung Disease with Single-Agent Blockade of IL-1β and IL-18. Journal of Clinical Immunology, 43, 101-108.
https://doi.org/10.1007/s10875-022-01353-y
[10] Silva, T.A., Garlet, G.P., Lara, V.S., Martins, W., Silva, J.S. and Cunha, F.Q. (2005) Differential Expression of Chemokines and Chemokine Receptors in Inflammatory Periapical Dis-eases. Oral Microbiology and Immunology, 20, 310-316.
https://doi.org/10.1111/j.1399-302X.2005.00232.x
[11] Hasegawa, T., Venkata Suresh, V., Yahata, Y., Nakano, M., Suzuki, S., Suzuki, S., Yamada, S., Kitaura, H., Mizoguchi, I., Noiri, Y., et al. (2021) Inhibition of the CXCL9-CXCR3 Axis Suppresses the Progression of Experimental Apical Periodontitis by Blocking Macrophage Mi-gration and Activation. Scientific Reports, 11, Article No. 2613.
https://doi.org/10.1038/s41598-021-82167-7
[12] Shimizu, M., Inoue, N., Mizuta, M., Nakagishi, Y. and Yachie, A. (2018) Characteristic Elevation of Soluble TNF Receptor II : I Ratio in Macrophage Activation Syndrome with Sys-temic Juvenile Idiopathic Arthritis. Clinical and Experimental Immunology, 191, 349-355.
https://doi.org/10.1111/cei.13026
[13] Hinze, T., Kessel, C., Hinze, C.H., Seibert, J., Gram, H. and Foell, D. (2021) A Dysregulated Interleukin-18-Interferon- γ-CXCL9 Axis Impacts Treatment Response to Canakinumab in Systemic Ju-venile Idiopathic Arthritis. Rheumatology, 60, 5165-5174.
https://doi.org/10.1093/rheumatology/keab113
[14] Wang, S., Song, R., Wang, Z., Jing, Z., Wang, S. and Ma, J. (2018) S100A8/A9 in Inflammation. Frontiers in Immunology, 9, Article No. 1298.
https://doi.org/10.3389/fimmu.2018.01298
[15] Ahn, J.G. (2020) Role of Biomarkers in Juvenile Idiopathic Arthri-tis. Journal of Rheumatic Diseases, 27, 233-240.
https://doi.org/10.4078/jrd.2020.27.4.233
[16] Frosch, M., Ahlmann, M., Vogl, T., Wittkowski, H., Wulffraat, N., Foell, D. and Roth, J. (2009) The Myeloid-Related Proteins 8 and 14 Complex, a Novel Ligand of Toll-Like Receptor 4, and Interleukin-1β Form a Positive Feedback Mechanism in Systemic-Onset Juvenile Idiopathic Arthritis. Arthritis & Rheumatology, 60, 883-891.
https://doi.org/10.1002/art.24349
[17] Nirmala, N., Grom, A. and Gram, H. (2014) Biomarkers in Systemic Juve-nile Idiopathic Arthritis: A Comparison with Biomarkers in Cryopyrin-Associated Periodic Syndromes. Current Opinion in Rheumatology, 26, 543-552.
https://doi.org/10.1097/BOR.0000000000000098
[18] Miller, Y.I., Choi, S.-H., Wiesner, P., Fang, L., Harkewicz, R., Hartvigsen, K., Boullier, A., Gonen, A., Diehl, C.J., Que, X., et al. (2011) Oxidation-Specific Epitopes Are Dan-ger-Associated Molecular Patterns Recognized by Pattern Recognition Receptors of Innate Immunity. Circulation Re-search, 108, 235-248.
https://doi.org/10.1161/CIRCRESAHA.110.223875
[19] Ometto, F., Friso, L., Astorri, D., Botsios, C., Raffeiner, B., Punzi, L. and Doria, A. (2017) Calprotectin in Rheumatic Diseases. Experimental Biology and Medicine (Maywood), 242, 859-873.
https://doi.org/10.1177/1535370216681551
[20] Romand, X., Bernardy, C., Nguyen, M.V.C., Courtier, A., Trocme, C., Clapasson, M., Paclet, M.-H., Toussaint, B., Gaudin, P. and Baillet, A. (2019) Systemic Cal-protectin and Chronic Inflammatory Rheumatic Diseases. Joint Bone Spine, 86, 691-698.
https://doi.org/10.1016/j.jbspin.2019.01.003
[21] Altobelli, E., Angeletti, P.M., Petrocelli, R., Lapergola, G., Farello, G., Cannataro, G. and Breda, L. (2021) Serum Calprotectin a Potential Biomarker in Juvenile Idiopathic Arthritis: A Meta-Analysis. Journal of Clinical Medicine, 10, Article No. 4861.
https://doi.org/10.3390/jcm10214861
[22] Holzinger, D., Frosch, M., Kastrup, A., Prince, F.H.M., Otten, M.H., Van Suijlekom-Smit, L.W.A., Cate, R., Ten. Hoppenreijs, E.P.A.H., Hansmann, S., Moncrieffe, H., et al. (2012) The Toll-Like Receptor 4 Agonist MRP8/14 Protein Complex Is a Sensitive Indicator for Disease Activity and Predicts Re-lapses in Systemic-Onset Juvenile Idiopathic Arthritis. Annals of the Rheumatic Diseases, 71, 974-980.
https://doi.org/10.1136/annrheumdis-2011-200598
[23] Remthangpuii, F., Maheshwari, A., Gulati, S., Sharma, S., Mahto, D. and Chandra, J. (2023) Serum Calprotectin Levels in Different Subtypes of Juvenile Idiopathic Arthritis (JIA) and Its Correlation with Quantitative CRP and JADAS-27. Indian Journal of Pediatrics, 90, 1177-1181.
https://doi.org/10.1007/s12098-022-04414-7
[24] Gross, C., Belville, C., Lavergne, M., Choltus, H., Jabaudon, M., Blondonnet, R., Constantin, J.-M., Chiambaretta, F., Blanchon, L. and Sapin, V. (2020) Advanced Glycation End Prod-ucts and Receptor (RAGE) Promote Wound Healing of Human Corneal Epithelial Cells. Investigative Ophthalmology & Visual Science, 61, 14.
https://doi.org/10.1167/iovs.61.3.14
[25] Yang, H., Wang, H. and Andersson, U. (2020) Targeting Inflammation Driven by HMGB1. Frontiers in Immunology, 11, Article No. 484.
https://doi.org/10.3389/fimmu.2020.00484
[26] Klune, J.R., Dhupar, R., Cardinal, J., Billiar, T.R. and Tsung, A. (2008) HMGB1: Endogenous Danger Signaling. Molecular Medicine, 14, 476-484.
https://doi.org/10.2119/2008-00034.Klune
[27] Xu, D., Zhang, Y., Zhang, Z.-Y. and Tang, X.-M. (2021) Associa-tion between High Mobility Group Box 1 Protein and Juvenile Idiopathic Arthritis: A Prospective Longitudinal Study. Pediatric Rheumatology, 19, Article No. 112.
https://doi.org/10.1186/s12969-021-00587-1
[28] Ma, X., Wu, F., Xin, L., Su, G., He, F., Yang, Y., Sun, J. and Liu, Z. (2016) Differential Plasma MicroRNAs Expression in Juvenile Idiopathic Arthritis. Modern Rheumatology, 26, 224-232.
https://doi.org/10.3109/14397595.2015.1060663