新型冠状病毒感染对凝血功能、肝功能及心功能影响的研究进展
Research Progress on the Influence of Novel Coronavirus Infection on Coagulation Function, Liver Function and Cardiac Function
DOI: 10.12677/ACM.2024.142515, PDF, HTML, XML, 下载: 46  浏览: 114 
作者: 胡国佳, 齐博旭, 孙宝华*:河北医科大学沧州市中心医院,河北 沧州
关键词: 新型冠状病毒感染凝血指标肝功能指标心功能指标COVID-19 Coagulation Index Liver Function Index Cardiac Function Index
摘要: 检测新型冠状病毒感染(COVID-19,以下简称新冠)患者血中凝血指标、肝功能指标及心功能指标数值,探究这些指标在预测新冠严重程度中的价值,将这些指标作为新的潜在参数来区分重症新冠患者和非重症患者,对重症患者进行早期干预治疗,以此来控制疾病进展、降低入住重症监护室率和死亡率。本文将从新冠常见实验室指标对重症和非重症新冠患者的预测价值方面做一综述。
Abstract: To detect the blood coagulation index, liver function index and cardiac function index of patients with novel coronavirus infection (COVID-19, hereinafter referred to as COVID-19), and to explore the value of these indexes in predicting the severity of COVID-19, these indicators are regarded as new potential parameters to distinguish severe COVID-19 patients from non-severe patients, and early intervention treatment should be given to severe patients, so as to control the disease progress and reduce the rate of admission to intensive care unit and mortality. This article will summarize the predictive value of common laboratory indexes of new crown for severe and non-severe COVID-19 patients.
文章引用:胡国佳, 齐博旭, 孙宝华. 新型冠状病毒感染对凝血功能、肝功能及心功能影响的研究进展[J]. 临床医学进展, 2024, 14(2): 3693-3701. https://doi.org/10.12677/ACM.2024.142515

1. 引言

从2019年12月开始,中国湖北省武汉市陆续发现了很多呼吸道感染导致肺炎的病例 [1] 。通过微生物测序,确定了此次肺炎是由严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)引起的。SARS-CoV-2属于一组含有阳性单链RNA基因的包膜病毒 [2] ,它属于冠状病毒科(Coronaviridae)、冠状病毒亚科β属(Coronavirinea) [3] 。新型冠状病毒肺炎(COVID-19)是人类过去二十年中由β-冠状病毒(β-CoV)引起的第三种严重流行病,前两次分别是2002年的严重急性呼吸综合征(SARS-CoV-1)和2012年的中东呼吸综合征(MERS-CoV) [4] ,COVID-19的致死率远远小于后两者,但它的传染性、变异性及潜伏期大于前两者,这使得人类识别、追踪和消除COVID-19具有挑战性 [5] [6] 。自此次疫情出现以来,COVID-19已在中国和世界许多其他国家迅速传播 [7] ,于2020年3月被世界卫生组织宣布为大流行 [8] 。除了危及人类生命和加重全球医疗保健系统的负担,COVID-19还对全球经济和生计带来了一些挑战。我国人口基数大、老龄化严重,目前患病人数大幅增加,重症患者人数增多,给医疗机构带来收容压力,一个简单、有效的预测指标,可能对重症患者至关重要,以此来实现医疗资源的有效分配。

2. COVID-19的病理生理机制

COVID-19进展被认为是多种复杂病理生理机制相互作用的结果,虽然SARS-CoV-2与SARS-CoV-1和MERS-CoV相比,刺突表面糖蛋白的氨基酸发生了一些改变,但这三者都是属于β冠状病毒,SARS-CoV-2与SARS-CoV-1和MERS-CoV分别拥有79%和50%的同一性,都是以人体细胞上的血管紧张素转换酶2 (ACE2)为结合受体进入宿主细胞,所以推测COVID-19可能与SRAS具有相同的或相似的病理变化 [9] 。SARS-CoV-2的刺突蛋白包括两个亚基:S1用于结合人类细胞受体,S2用于融合病毒和细胞膜,其中刺突S1亚基的一部分被称为受体结合域(RBD),其与ACE2结合,导致两者复合物进入到靶细胞中,并下调ACE2 [10] ,病毒RNA随后被释放到细胞质中,建立感染 [11] 。之后病毒在体内的快速复制扩增,从而导致宿主细胞缺氧死亡,细胞组织衰变产物进入血液,刺激T细胞和巨噬细胞,激活补体系统和凝血系统,从而引起一系列与全身炎症发病相关的综合征 [12] [13] [14] 。SARS-CoV-2可以在下呼吸道复制并导致致命的肺炎 [15] ,随着急性呼吸窘迫综合征的发展,死亡的可能性急剧增加 [12] 。然而,ACE2广泛表达,其受体已在几乎所有器官的动脉和静脉内皮细胞以及动脉平滑肌细胞中发现,包括肺、心脏、肾脏和大脑,除此之外,在口腔和鼻粘膜、肺泡上皮细胞、小肠上皮细胞、心肌细胞、肾足细胞和近曲小管细胞中也都发现了丰富的ACE2受体 [7] [8] [16] [17] 。这可能在一定程度上有助于解释COVID-19中出现的一系列全身症状。

3. COVID-19的临床表现

一项来自中国的包括4.4万名COVID-19患者的大型队列研究表明,疾病的严重程度可以从轻度到危重度不等。轻度、中度、重度或危重症的发病率分别为81%、14%和5%;轻微症状包括干咳、喉咙痛或发烧,并可自行恢复。然而,在某些情况下,它可能会导致危及生命的情况,如肺水肿、严重肺炎、弥漫性肺血管内凝血病和急性呼吸窘迫综合征 [18] 。另外一些新冠患者还出现了消化系统、循环系统、泌尿系统的临床症状,如急性肝损伤和急性心肌损伤、急性肾衰竭等 [1] 。患严重或危重疾病的风险通常与糖尿病、高血压和心血管疾病等合并症有关 [19] 。

4. COVID-19与凝血系统的关系

4.1. COVID-19相关血栓形成的机制

凝血障碍和血栓形成是COVID-19的重要病理生理变化,它的机制十分复杂,可能与内皮细胞受损有关。由于SARS-CoV-2侵入宿主,损伤内皮细胞,会引起内皮细胞活化和功能障碍。内皮激活是由炎症介质引起的。高水平的白细胞介素-1、白细胞介素-6、肿瘤坏死因子和其他炎性细胞介质 [20] ,通过激活内皮细胞、血小板、单核细胞和组织因子以及改变纤维蛋白溶解、天然抗凝途径(例如,通过血栓调节蛋白、蛋白质C和S以及TFPI水平的变化)来促进血栓形成 [21] [22] ,而内皮功能障碍会导致vWF的释放和eNOS的损伤,两者都有助于血小板粘附并导致血栓形成 [23] 。COVID-19相关凝血障碍是重症或危重症患者的突出特征 [24] 。

4.2. COVID-19相关血栓事件

据报道,COVID-19具有高度血栓形成性。崔等人 [25] 报道了武汉危重COVID-19患者深静脉血栓形成的发生率为25%。Klok等人 [26] 发现,在COVID-19危重患者中,深静脉血栓形成、肺栓塞和动脉血栓形成的综合发病率为31% [28] ,其中81%为肺血栓栓塞。还有研究发现,静脉血栓栓塞(VTE)并发症在重症监护室患者中更为常见,其在重症监护室的发病率为59% (95% CI 42~72),而在普通病房中的发病率为9.2% (95% CI 2.6~21),并且静脉血栓栓塞发病率与死亡率增加有关(调整后的HR = 2.4,95% CI = 1.02~5.5) [27] 。重症监护室中COVID-19的患者也比非COVID-19患者更容易发生VTE [28] 。有研究显示,高达95%的COVID-19患者患有以D-二聚体升高、凝血酶原时间延长、血小板计数低和其他实验室异常为特征的凝血障碍,并且在死亡风险增加的危重病例中发现了血栓形成 [23] 。所以说,检测这些实验室指标有助于筛查COVID-19的严重程度,从而降低重症的死亡率。

4.3. COVID-19相关异常凝血指标

4.3.1. COVID-19与D-D

目前很多研究分析了与COVID-19患者最差预后相关的血栓或炎性志物,一些报告和荟萃分析并确定了COVID-19患者D-二聚体水平升高与严重程度和死亡率之间有联系 [29] 。D-二聚体是纤溶酶降解纤维蛋白的产物。血液中D-二聚体水平的升高表明凝血系统和纤维蛋白溶解的激活。因此,在COVID-19感染的情况下,D-D反映了凝血途径的病理激活。研究表明,入院时D-二聚体水平随时间增加3~4倍与血管内凝血障碍、细胞因子风暴、器官衰竭和败血症导致的死亡率有显著关系 [30] [31] 。Niraj Chawda等人回顾性分析了2021年3月至2022年7月古吉拉特邦瓦都达拉连续2087例COVID-19患者入院时D-D水平与疾病严重程度和住院死亡率的相关性。入院时纳入2087例RT-PCR阳性并确诊为COVID-19的患者。其中男性占65.78% (n = 1373),女性占34.21% (n = 714),平均年龄52 ± 4岁,研究发现,81.31%的患者出现D-D升高(250 âng/mL),D-D水平随着COVID-19严重程度的增加而显著升高,非存活者的中位D-D水平(15.29%)显著高于存活者(84.71%, n = 1768, RR 24.69%),结果表明入院时D-D水平 > 250 âng/mL是伴随死亡率增加的唯一波动值[(95% CI), P = 0.025],也是COVID-19住院死亡率的重要预后一线标志物 [32] 。Tahir Muhammad Junaid等人回顾性研究了巴基斯坦卡拉奇因实验室确诊COVID-19而入院的成年患者,入院后24小时内至少测量一次D-D,将出院患者组与死亡组进行比较再进行生存分析,发现高D-D与的COVID-19高死亡风险相关(OR:4.74;95%可信区间为2.38~9.46,P < 0.001) [33] 。

4.3.2. COVID-19与纤维蛋白原

纤维蛋白原是一种糖蛋白复合物,在组织损伤时由凝血酶酶促转化为纤维蛋白,导致血液凝结并止血,并作为弥散性血管内凝血诊断的参数之一 [34] [35] 。武汉大学人民医院对收治的94例确诊为COVID-19的患者进行研究。前瞻性收集同期40例健康体检者的凝血指标。结果患者抗凝血酶值低于对照组(P < 0.001)。所有COVID-19患者的纤维蛋白原值均明显高于健康对照组(5.02比2.90 g/L;P < 0.001) [36] 。Di等人从2020年2月至3月连续在三家意大利医院的急诊科研究了85名确诊为COVID-19而无ARDS的患者和67名COVID-19合并ARDS的患者。与ARDS的COVID-19患者相比,COVID-19合并ARDS患者纤维蛋白原水平较高(720 (621~833)比490 (397.5~601.5);P = 1.8653 × 10−9 (0.0765)。血清纤维蛋白原水平为617 mg/dL可能有助于早期识别COVID-19合并ARDS患者,其敏感性为76%,特异性为79% [37] 。Sui Jingrui等人回顾性分析了阿拉巴马大学伯明翰医学中心119例COVID-19患者的人口学和实验室特征,分析入院时COVID-19严重程度和实验室参数的相关性,结果在119名COVID-19患者中,与非重症COVID-19患者相比,重症COVID-19患者入院时纤维蛋白原含量增加(P = 0.001),结果表明纤维蛋白原水平与炎症标志物和疾病严重程度显著相关,528.0 mg/dl的纤维蛋白原是预测疾病严重程度的最佳临界值,其敏感性和特异性分别为66.7%和70.3% (曲线下面积AUC 0.72,P = 0.0006),纤维蛋白原在COVID-19患者中普遍升高,尤其是在重症患者中,纤维蛋白原升高与COVID-19患者过度炎症、疾病严重程度和入住ICU相关 [38] 。

4.3.3. COVID-19与ATPP和PT

Citu Cosmin等人对2021年8月至10月罗马尼亚蒂米什瓦拉市紧急临床医院收治的COVID-19患者进行了一项回顾性、单中心、观察性研究。入院患者RT-PCR检测证实为COVID-19阳性,应用纳入/排除标准后,共有82名患者纳入分析,生成PT、APTT的受试者工作特征(ROC)曲线,以评估PT、ATPP的基线是否能准确预测COVID-19患者的死亡率,参与这项研究的患者死亡率为20.7%,与年龄较大和存在心脏病有关,其中PT与APTT的ROC曲线下面积(AUC-ROC)为0.706和0.753,PT、ATPP水平高于临界值的患者与低于临界值的患者相比,存活率的差异具有统计学意义。结果显示PT、ATPP在预测新冠COVID-19死亡率方面有显著性差异和良好表现 [39] 。

4.4. COVID-19与肝损伤机制及相关异常指标

肝酶紊乱被认为是COVID-19最常见的肺外表现 [40] 。据推测,肝损伤可能是由于病毒对肝细胞的直接细胞毒性损伤,或由缺血缺氧、肝毒性药物或严重炎症反应间接引起的 [41] 。有研究显示,全身炎症和细胞因子风暴可导致多器官功能障碍,包括肝脏受累 [42] [43] 。最近的研究表明,超过一半的COVID-19患者有肝损伤 [40] [44] 。Harapan等人从PubMed、Embase、Cochrane和Web of Science中检索相关论文,使用Z检验分析数据,总共鉴定了1331篇论文,分析了16篇论文,包括1254篇有ALI的COVID-19病例和4999篇无ALI的COVID-19病例。结果显示COVID-19患者中急性肝损伤的累积患病率为22.8%,与无ALI的COVID-19患者相比,有ALI的患者发生严重COVID-19的风险更高(OR:3.61;95%可信区间:2.60,5.02) [45] 。

4.4.1. COVID-19与ALT、AST

Yu等人进行了一项系统性回顾和荟萃分析,来评估重度和非重度COVID-19患者之间肝损伤的患病率和程度。他们对三个电子数据库(PubMed/MEDLINE、EMBASE和Cochrane Library)进行了系统搜索,使用随机效应模型评估了合并优势比(OR)、平均差异(MD)和95%置信区间(95% CI),在1543篇引用文献中,有24项研究(5961名受试者)符合纳入标准。结果显示ALT升高(OR = 2.5, 95% CI: 1.6~3.7, I2 = 57%)、AST升高(OR = 3.4, 95% CI: 2.3~5.0, I2 = 56%)、白蛋白降低(OR = 7.1, 95% CI: 2.1~24.1, I2 = 71%)的合并比值比在危重患者中较高,COVID-19相关肝损伤在重症COVID-19中比非重症COVID-19更常见 [46] 。Dong等人进行了一项系统性回顾和荟萃分析,来评估重度和非重度COVID-19患者之间肝损伤的患病率和程度。共纳入56项研究(包括11,052名患者),发现重症COVID-19患者的合并平均ALT为35.9 IU/L,而非重症COVID-19患者为27.3 IU/L。重症患者的平均AST水平为44.3 IU/L,而非重症患者为27.9 IU/L。结果发现严重的COVID-19更可能与异常的肝脏检查结果相关,密切监测肝脏化学成分有助于早期发现疾病进展 [47] 。

4.4.2. COVID-19与白蛋白

白蛋白是全身炎症反应严重程度的一个指标,研究已表明其对COVID-19具有预测意义 [48] 。Khaoula等人对来自马德里社区公立医院的1555名COVID-19感染成人患者的多中心回顾性队列进行分析。Logistic回归分析显示年龄大于49岁的患者死亡率增加。在调整年龄、合并症和入院时血糖水平后,发现入院时血清白蛋白 ≥ 3.5 g/dL与死亡率降低(OR 0.48; 95% CI: 0.36~0.62)显著相关 [49] 。Ertekin等人对在急诊科诊断为重度COVID-19的总共619名患者进行回顾性分析,结果显示存活组和死亡组之间在白蛋白水平存在统计学显著差异(P < 0.001)。此外,在接受MV支持的患者中,白蛋白较低(P < 0.001)。根据受试者工作特征(ROC)分析,白蛋白AUC值为0.772 (P < 0.001) [50] 。福建省五家定点医院收集了2020年1月22日至2月27日期间的199名COVID-19患者信息,包括入院时的临床特征和实验室数值。在调整了潜在的混杂因素后,白蛋白降低和不良结果之间存在非线性关系,拐点为32.6 g/L。拐点左右两侧的比值比和置信区间分别为0.204 (0.061~0.681)和0.908 (0.686~1.203)。这表明,当白蛋白小于32.6 g/L时,白蛋白升高与不良结果呈负相关,白蛋白每增加1个单位,不良结果的风险就会降低79.6% [51] 。

5. COVID-19与心肌损伤机制

目前,COVID-19背景下心肌损伤的发生机制尚未完全阐明。一些科学家认为,COVID-19患者心肌损伤的主要机制包括:1)由病毒导致的过度原因和细胞因子风暴也可能导致心肌损伤;2) 病毒侵犯其他脏器导致低氧,从而引起心血管系统;3) 病毒直接作用于心肌细胞上对心血管系统具有保护作用的ACE2,导致心机细胞损伤 [52] [53] 。根据文献显示,在与COVID-19相关的急性心肌炎患者中,C-反应蛋白和前B型氨基末端利钠肽(NT-proBNP)/B型氨基末端利钠肽(BNP)水平高于与COVID-19无关的急性心肌炎患者。需要注意的是,急性心肌损伤伴随着肌钙蛋白、肌酸激酶同工酶和乳酸脱氢酶水平的升高 [54] [55] [56] [57] [58] 。基于一项回顾性队列研究显示,肌钙蛋白水平在预测COVID-19儿童心脏损害方面的潜在作用 [59] 。此外,研究儿童多系统炎症综合征背景下心肌损伤的研究人员报道,除了肌钙蛋白,NT-proBNP也可用于儿童COVID-19病理过程中心脏病的早期诊断 [55] [60] 。

5.1. COVID-19心肌损伤相关异常指标

5.1.1. COVID-19与肌钙蛋白

肌钙蛋白是心肌损伤标志物,急性冠脉综合征、脓毒症、卒中等疾病均可引起肌钙蛋白的升高。据报道,一些COVID-19患者的心肌坏死指数增加,如肌钙蛋白、肌酸激酶同工酶和肌红蛋白等。Liu等人前瞻性研究了2020年3月1日至5月10日在英国皇家伯克郡医院住院的191名COVID-19患者的实验室指标。其中124例(65%) hs-cTnT升高,67例(35%) hs-cTnT正常。与正常hs-cTnT患者的比较,高hs-cTnT的患者住院存活率更低(P = 0.0014 Kaplan-Meier分析)和有着更高的住院死亡率风险(HR 5.84 [95% CI 1.29~26.4];P = 0.02 Cox多变量回归) [61] 。Gupta等人回顾性研究了240名COVID-19住院患者的实验室指标,结果发现大多数心肌肌钙蛋白升高的患者入住重症监护室(90.3%比51.2%;P < 0.0001)、使用呼吸机的比例高(61.3%对21.5%;P < 0.0001),并具有较高的死亡率(64.5%比19.6%;P < 0.0001)。Kaplan-Meir生存分析显示,肌钙蛋白升高的患者生存较差(P log-rank < 0.0001)。cox回归分析显示,心肌肌钙蛋白升高与住院死亡率显著相关(校正风险比2.13 (95%可信区间[CI] 1.145~3.97;P = 0.017) [62] 。

5.1.2. COVID-19与NT-pro-BNP/BNP

Orlando等人将2022年6月至2023年1月期间入住墨西拿大学医院的COVID-19患者,记录人口统计学资料、临床资料、检验检查数据和治疗参数,对康复出院的患者和住院期间死亡的患者进行了比较,通过多变量分析和逐步回归逻辑模型评估与住院死亡相关的独立参数。我们的研究结果表明,入院时高NT-pro-BNP/BNP水平会增加住院死亡率的风险,并且是COVID-19患者独立的死亡率指标。COVID-19患者应考虑心脏生物标志物的常规测量,尤其是NT-pro-BNP/BNP [63] 。Cilingir等人前瞻性研究了2020年7月至9月一家三级大学医院收集的COVID-19患者临床实验室资料。经过多变量分析,结果显示所有生物标志物中,只有高BNP水平与死亡率独立相关[平均1.012,95% CI (1.005~1.02 pg/mL) (P = 0.002)]。说明在COVID-19常规实验室检查中增加BNP水平的测量可能是确定COVID-19患者高死亡风险的一种实用方法 [64] 。

5.1.3. COVID-19与LDH

乳酸脱氢酶(LDH)是一种细胞内存在的蛋白酶,它可以催化丙酮酸发酵的过程、并且促进糖酵解,在细胞凋亡后,LDH就被释放到血液中。Fawzy Mohamed等人共纳入120名新冠患者和50名正常对照者。从医院电子信息系统中回顾性地获得患者的人口统计学数据、住院时间、病史、血氧饱和度、呼吸频率、氧气供应、实验室检查结果和胸部断层扫描,结果显示,与正常对照组相比,重症新冠患者的血清LDH水平显著升高(P < 0.001),与存活者相比,非存活者的血清LDH水平显著升高(P < 0.001),ROC曲线分析显示,LDH是敏感和特异的标志物,其预测死亡的敏感性为85.1%,特异性为82.8%,结果显示LDH可能是重症新冠肺炎患者死亡率的良好预测指标 [65] 。

6. 小结

COVID-19的病理生理机制十分复杂,了解COVID-19严重程度和死亡率的实验室预测因素仍然至关重要,将这些实验室潜在参数用来区分重症COVID-19患者和非重症患者,对重症患者进行早期干预治疗,以此来控制疾病进展、降低入住重症监护室率和死亡率。

NOTES

*通讯作者。

参考文献

[1] Malik, Y.S., Sircar, S., Bhat, S., et al. (2020) Emerging Novel Coronavirus (2019-NCoV)-Current Scenario, Evolu-tionary Perspective Based on Genome Analysis and Recent Developments. The Veterinary Quarterly, 40, 68-76.
https://doi.org/10.1080/01652176.2020.1727993
[2] Hu, B., Guo, H., Zhou, P., et al. (2021) Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 19, 141-154.
https://doi.org/10.1038/s41579-020-00459-7
[3] Rehman, U.S., Shafique, L., Ihsan, A., et al. (2020) Evolutionary Trajectory for the Emergence of Novel Coronavirus SARS-CoV-2. Pathogens, 9, 240-240.
https://doi.org/10.3390/pathogens9030240
[4] Goh, K.G., Dunker, K.A., Foster, A.J., et al. (2020) Shell Disorder Analysis Predicts Greater Resilience of the SARS-CoV-2 (COVID-19) outside the Body and in Body Fluids. Microbial Pathogenesis, 144, Article ID: 104177.
https://doi.org/10.1016/j.micpath.2020.104177
[5] Petersen, E., Koopmans, M., Go, U., et al. (2020) Comparing SARS-CoV-2 with SARS-CoV and Influenza Pandemics. The Lancet Infectious Diseases, 20, E238-E244.
https://doi.org/10.1016/S1473-3099(20)30484-9
[6] Wu, F., Zhao, S., Yu, B., et al. (2020) A New Coronavirus Associated with Human Respiratory Disease in China. Nature, 579, 265-269.
https://doi.org/10.1038/s41586-020-2008-3
[7] De Giorgio, A. (2020) Global Psychological Implications of Se-vere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Coronavirus Disease-2019 (COVID-19). What Can Be Learned from Italy. Reflections, Perspectives, Opportunities. Frontiers in Psychology, 11, Article No. 1836.
[8] Nikolich-Zugich, J., Knox, K.S., Rios, C., et al. (2020) Correction to: SARS-CoV-2 and COVID-19 in Older Adults: What We May Expect Regarding Pathogenesis, Immune Responses, and Outcomes. GeroScience, 42, Arti-cle No. 1013.
https://doi.org/10.1007/s11357-020-00193-1
[9] 丁彦青, 卞修武. 从SARS尸体解剖发现, 浅析冠状病毒性疾病-19(COVID-19) [J]. 中华病理学杂志, 2020(49): e003.
[10] Mahmudpour, M., Roozbeh, J., Keshavarz, M., et al. (2020) COVID-19 Cytokine Storm: The Anger of Inflammation. Cytokine, 133, Article ID: 155151.
https://doi.org/10.1016/j.cyto.2020.155151
[11] Ni, W., et al. (2020) Role of Angiotensin-Converting Enzyme 2 (ACE2) in COVID-19. Critical Care (London, England), 24, Article No. 422.
https://doi.org/10.1186/s13054-020-03120-0
[12] Narayan, A., et al. (2020) Pathophysiology of COVID-19-Associated Acute Respiratory Distress Syndrome. The Lancet Respiratory Medicine, 9, E3.
https://doi.org/10.1016/S2213-2600(20)30509-9
[13] Gusev, E., Sarapultsev, A., Hu, D. and Chereshnev, V. (2021) Problems of Pathogenesis and Pathogenetic Therapy of COVID-19 from the Perspective of the General Theory of Pathological Systems (General Pathological Processes). International Journal of Molecular Sciences, 22, 7582-7582.
https://doi.org/10.3390/ijms22147582
[14] Asakura, H. and Ogawa, H. (2020) COVID-19-Associated Coag-ulopathy and Disseminated Intravascular Coagulation. International Journal of Hematology, 113, 45-57.
https://doi.org/10.1007/s12185-020-03029-y
[15] Dhama, K., Khan, S., Tiwari, R., et al. (2020) Coronavirus Disease 2019-COVID-19. Clinical Microbiology Reviews, 33, e00028-20.
https://doi.org/10.1128/CMR.00028-20
[16] Lu, R.J., Zhao, X., Li, J., et al. (2020) Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. The Lancet, 395, 565-574.
[17] Meini, S., Zanichelli, A., Sbrojavacca, R., et al. (2020) Understanding the Pathophysiology of COVID-19: Could the Contact System Be the Key? Frontiers in Immunology, 11, Article No. 2014.
[18] Jin, Y., Yang, H., Ji, W., et al. (2020) Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses, 12, Article No. 372.
https://doi.org/10.3390/v12040372
[19] Nooh, F., Utzinger, J., Paris, D.H., et al. (2023) Association of Hyper-tension, Diabetes, and Cardiovascular Disease with COVID-19 in Africa: Scoping Review Protocol. Tropical Medicine and Infectious Disease, 8, Article No. 293.
https://doi.org/10.3390/tropicalmed8060293
[20] Huang, C., Wang, Y., Li, X., et al. (2020) Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet, 395, 497-506.
https://doi.org/10.1016/S0140-6736(20)30183-5
[21] Levi, M. and Scully, M. (2018) How I Treat Disseminated Intravascular Coagulation. Blood, 131, 845-854.
https://doi.org/10.1182/blood-2017-10-804096
[22] Liu, Y., Gao, W., Guo, W., et al. (2020) Prominent Coagula-tion Disorder Is Closely Related to Inflammatory Response and Could Be as a Prognostic Indicator for ICU Patients with COVID-19. Journal of Thrombosis and Thrombolysis, 50, 825-832.
https://doi.org/10.1007/s11239-020-02174-9
[23] Chen, A.-T., Wang, C.-Y., Zhu, W.-L., et al. (2022) Coagulation Disorders and Thrombosis in COVID-19 Patients and a Possible Mechanism Involving Endothelial Cells: A Review. Aging and Disease, 13, 144-156.
https://doi.org/10.14336/AD.2021.0704
[24] Mucha, S.R., Dugar, S., et al. (2020) Update to Coagulopathy in COVID-19: Manifestations and Management. Cleveland Clinic Journal of Medicine.
[25] Cui, S.P., Chen, S., Li, X.N., et al. (2020) Prevalence of Venous Thromboembolism in Patients with Severe Novel Coronavirus Pneumonia. Journal of Thrombosis and Haemostasis: JTH, 18, 1421-1424.
https://doi.org/10.1111/jth.14830
[26] Klok, F., Kruip, M., Meer, D.V.N., et al. (2020) Incidence of Thrombotic Complications in Critically Ill ICU Patients with COVID-19. Thrombosis Research, 191, 145-147.
https://doi.org/10.1016/j.thromres.2020.04.013
[27] Middeldorp, S., Coppens, M., Van Haaps, T.F., et al. (2021) Incidence of Venous Thromboembolism in Hospitalized Patients with COVID-19. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 9, Article No. 536.
https://doi.org/10.1016/j.jvsv.2020.12.004
[28] Kollias, A., Kyriakoulis, K.G., et al. (2020) Thromboembolic Risk and Anticoagulant Therapy in COVID-19 Patients: Emerging Evidence and Call for Action. British Journal of Haematology, 189, 846-847.
https://doi.org/10.1111/bjh.16727
[29] Arachchillage, D.R.J. and Laffan, M. (2020) Abnormal Coagulation Pa-rameters Are Associated with Poor Prognosis in Patients with Novel Coronavirus Pneumonia. Journal of Thrombosis and Haemostasis: JTH, 18, 1233-1234.
https://doi.org/10.1111/jth.14820
[30] Mamta, S., Ram, G., Raju, V., et al. (2020) D-Dimer Level Is a Useful Pre-dictor for Mortality in Patients with COVID-19: Analysis of 483 Cases. Diabetes Metabolic Syndrome: Clinical Re-search Reviews, 14, 2245-2249.
https://doi.org/10.1016/j.dsx.2020.11.007
[31] Rostami, M. and Mansouritorghabeh, H. (2020) D-Dimer Level in COVID-19 Infection: A Systematic Review. Expert Review of Hematology, 13, 1265-1275.
https://doi.org/10.1080/17474086.2020.1831383
[32] Chawda, N., Jain, S., Solanki, B., et al. (2023) D-Dimer: A Primer Biomarker in COVID-19. Asian Journal of Medicine and Health, 21, 107-113.
https://doi.org/10.9734/ajmah/2023/v21i10883
[33] Tahir, M.J., Yasmin, F., et al. (2023) Association of D-Dimer Levels with In-Hospital Outcomes among COVID-19 Positive Patients: A Developing Country Multicenter Retrospec-tive Cohort. Annals of Medicine and Surgery (2012), 85, 1527-1533.
[34] Hayıroğlu, M.İ., et al. (2020) Fibrinogen and D-Dimer Variances and Anticoagulation Recommendations in Covid-19: Current Literature Review. Revista Da Associacao Medica Brasileira (1992), 66, 842-848.
https://doi.org/10.1590/1806-9282.66.6.842
[35] Levi, M., et al. (2009) Guidelines for the Diagnosis and Man-agement of Disseminated Intravascular Coagulation. British Committee for Standards in Haematology. British Journal of Haematology, 145, 24-33.
https://doi.org/10.1111/j.1365-2141.2009.07600.x
[36] Han, H., Yang, L., Liu, R., et al. (2020) Prominent Changes in Blood Coagulation of Patients with SARS-CoV-2 Infection. Clinical Chemistry and Laboratory Medicine, 58, 1116-1120.
https://doi.org/10.1515/cclm-2020-0188
[37] Di Micco, P., Russo, V., Carannante, N., et al. (2020) Prognostic Value of Fibrinogen among COVID-19 Patients Admitted to an Emergency Department: An Italian Cohort Study. Journal of Clinical Medicine, 9, Article No. 4134.
https://doi.org/10.3390/jcm9124134
[38] Sui, J.R., Noubouossie, D.F., et al. (2021) Elevated Plasma Fibrinogen Is Associated with Excessive Inflammation and Disease Severity in COVID-19 Patients. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 734005.
https://doi.org/10.3389/fcimb.2021.734005
[39] Citu, C., Burlea, B., Gorun, F., et al. (2022) Predictive Value of Blood Coagulation Parameters in Poor Outcomes in COVID-19 Patients: A Retrospective Observational Study in Ro-mania. Journal of Clinical Medicine, 11, 2831-2831.
https://doi.org/10.3390/jcm11102831
[40] Papadopoulos, N., Vasileiadi, S. and Deutsch, M. (2020) COVID-19 and Liver Injury: Where Do We Stand? Annals of Gastroenterology, 33, 459-464.
[41] Sivandzadeh, G.R., Askari, H., Safarpour, A.R., et al. (2021) COVID-19 Infection and Liver Injury: Clinical Features, Biomarkers, Potential Mecha-nisms, Treatment, and Management Challenges. World Journal of Clinical Cases, 9, 6178-6200.
https://doi.org/10.12998/wjcc.v9.i22.6178
[42] Mustafa, I.M., Abdelmoneim, H.A., Mahmoud, M.E., et al. (2020) Cytokine Storm in COVID-19 Patients, Its Impact on Organs and Potential Treatment by QTY Code-Designed Deter-gent-Free Chemokine Receptors. Mediators of Inflammation, 2020, Article ID: 8198963.
https://doi.org/10.21467/preprints.139
[43] Ali, F.E.M., Mohammedsaleh, Z.M., Ali, M.M., et al. (2021) Impact of Cytokine Storm and Systemic Inflammation on Liver Impairment Patients Infected by SARS-CoV-2: Prospective Therapeutic Challenges. World Journal of Gastroenterology, 27, 1531-1552.
https://doi.org/10.3748/wjg.v27.i15.1531
[44] Fan, Z., Chen, L., Li, J., et al. (2020) Clinical Features of COVID-19-Related Liver Functional Abnormality. Clinical Gastroenterology and Hepatology, 18, 1561-1566.
https://doi.org/10.1016/j.cgh.2020.04.002
[45] Harapan, H., Karunia, J.F., Supriono, S., et al. (2021) The Preva-lence, Predictors and Outcomes of Acute Liver Injury among Patients with COVID-19: A Systematic Review and Me-ta-Analysis. Reviews in Medical Virology, 32, e2304.
[46] Wong, J.Y., Tan, M., Zheng, Q., et al. (2020) A Systematic Review and Meta-Analysis of the COVID-19 Associated Liver Injury. Annals of Hepatology, 19, 627-634.
https://doi.org/10.1016/j.aohep.2020.08.064
[47] Dong, X., Zeng, D.-Y., Xing, Q.-Q., et al. (2022) Liver Chem-istries in Severe or Non-Severe Cases of COVID-19: A Systematic Review and Meta-Analysis. World Journal of Hepatology, 14, 2012-2024.
https://doi.org/10.4254/wjh.v14.i12.2012
[48] Kheir, M., et al. (2021) Higher Albumin Levels on Admission Predict Better Prognosis in Patients with Confirmed COVID-19. PLOS ONE, 16, e0248358.
https://doi.org/10.1371/journal.pone.0248358
[49] Zekri-Nechar, K., Zamorano-León, J.J., Segura-Fragoso, A., et al. (2022) Albumin Binds COVID-19 Spike 1 Subunit and Predicts In-Hospital Survival of Infected Patients—Possible Alteration by Glucose. Journal of Clinical Medicine, 11, 587.
https://doi.org/10.3390/jcm11030587
[50] Ertekin, B. and Acar, T. (2023) The Relationship between Albumin and Its Proportion to Other Markers in Predicting Mortality in Severe COVID-19 Patients. European Review for Medical and Pharmacological Sciences, 27, 6429-6436.
[51] Xie, C.Y., Wang, S.J., Zhou, J., et al. (2022) Albumin Level as an Independent Predictive Factor for Adverse Outcomes in COVID-19 Patients: A Retrospective Cohort Study. Journal of Infection in Developing Countries, 16, 1696-1702.
https://doi.org/10.3855/jidc.16880
[52] Yao, X.H., Li, T.Y., He, Z.C., et al. (2020) A Pathological Report of Three COVID-19 Cases by Minimal Invasive Autopsies. Chinese Journal of Pathology, 49, 411-417.
[53] Tavazzi, G., Pellegrini, C., Maurelli, M., et al. (2020) Myocardial Localization of Coronavirus in COVID-19 Cardiogenic Shock. European Journal of Heart Failure, 22, 911-915.
https://doi.org/10.1002/ejhf.1828
[54] Rahman, T., Al-Ishaq, F.A., Al-Mohannadi, F.S., et al. (2021) Mortality Prediction Utilizing Blood Biomarkers to Predict the Severity of COVID-19 Using Machine Learning Technique. Diagnostics, 11, 1582-1582.
https://doi.org/10.3390/diagnostics11091582
[55] Ozenen, G.G., Kara, A.A., Kiymet, E., et al. (2022) The Eval-uation of Troponin I Levels and Myocarditis in Children with COVID-19: A Pediatric Single-Center Experience. Pedi-atric Cardiology, 44, 873-881.
https://doi.org/10.1007/s00246-022-03017-5
[56] Patel, T., Kelleman, M., West, Z., et al. (2022) Comparison of Multisystem Inflammatory Syndrome in Children-Related Myocarditis, Classic Viral Myocarditis, and COVID-19 Vac-cine-Related Myocarditis in Children. Journal of the American Heart Association, 11, e024393.
https://doi.org/10.1161/JAHA.121.024393
[57] Lara, D., Young, T., Del Toro, K., et al. (2020) Acute Fulminant Myocarditis in a Pediatric Patient with COVID-19 Infection. Pediatrics, 146, e20201509.
https://doi.org/10.1542/peds.2020-1509
[58] Sirico, D., Basso, A., Sabatino, J., et al. (2022) Evolution of Echo-cardiographic and Cardiac Magnetic Resonance Imaging Abnormalities during Follow-Up in Patients with Multisystem Inflammatory Syndrome in Children. European Heart Journal. Cardiovascular Imaging, 23, 1066-1074.
https://doi.org/10.1093/ehjci/jeac096
[59] Güllü, U.U., Güngör, Ş., İpek, S., et al. (2021) Predictive Value of Cardiac Markers in the Prognosis of COVID-19 in Children. American Journal of Emergency Medicine, 48, 307-311.
https://doi.org/10.1016/j.ajem.2021.06.075
[60] Rodriguez-Gonzalez, M., Castellano-Martinez, A., Maria Cascales-Poyatos, H., et al. (2020) Cardiovascular Impact of COVID-19 with a Focus on Children: A Systematic Re-view. World Journal of Clinical Cases, 8, 5250-5283.
https://doi.org/10.12998/wjcc.v8.i21.5250
[61] Liu, A., et al. (2023) Normal High-Sensitivity Cardiac Troponin for Ruling-Out Inpatient Mortality in Acute COVID-19. PLOS ONE, 18, e0284523.
https://doi.org/10.1371/journal.pone.0284523
[62] Gupta, P., Gupta, A., Bansal, S. and Balakrishnan, I. (2023) Cardiac Troponin in Hospitalized COVID-19 Patients: Incidence, Predictors, and Outcomes. Annals of Clinical Bio-chemistry.
[63] Orlando, L., et al. (2023) Natural Course of COVID-19 and Independent Predictors of Mortality. Bio-medicines, 11, 939-939.
https://doi.org/10.3390/biomedicines11030939
[64] Cilingir, B.M., Askar, S., Meral, A. and Askar, M. (2022) Can B-Type Natriuretic Peptide (BNP) Levels Serve as an Early Predictor of Clinical Severity in Patients with COVID-19 Pneumonia? Clinical Laboratory, 68, No. 1.
https://doi.org/10.7754/Clin.Lab.2021.210602
[65] Fawzy, M., Ahmed, S.S. and Abdelhady, S.A. (2023) As-sessment of Diagnostic and Prognostic Laboratory Biomarkers in Severe COVID-19 Patients Admitted to Intensive Care Unit. The Egyptian Journal of Immunology, 30, 11-13.
https://doi.org/10.55133/eji.300101