ELK1在恶性肿瘤中的作用及调控机制的研究进展
Advances in the Role and Regulatory Mechanisms of ELK1 in Malignant Tumors
DOI: 10.12677/ACM.2024.142477, PDF, HTML, XML, 下载: 257  浏览: 447 
作者: 何 姣*, 韩志刚#, 俞婷婷:新疆医科大学第三临床医学院(附属肿瘤医院),新疆 乌鲁木齐
关键词: ELK1肿瘤分子机制文献综述ELK1 Tumor Molecular Mechanism Literature Review
摘要: ETS蛋白质家族由28个转录因子组成,ELK1是ETS转录因子家族和三元复合因子(ternary complex factor, TCF)亚家族成员。越来越多的研究显示,ELK1参与多种分子生物学进程,并且与人类恶性肿瘤的发生、发展、侵袭、转移等密切相关。本文通过总结ELK1在多种恶性肿瘤中的生物学过程,重点探讨其在人类恶性肿瘤中的主要功能和牵涉到的相关信号通路,探讨其潜在的临床意义及应用前景,为癌症的诊断、治疗及筛选预后生物标志物提供理论基础及参考依据。
Abstract: The ETS protein family consists of 28 transcription factors, and ELK1 is a member of the ETS tran-scription factor family and ternary complex factor (TCF) subfamily. More and more studies have shown that ELK1 is involved in a variety of molecular biological processes and is closely related to the occurrence, development, invasion and metastasis of human malignant tumors. In this paper, we summarize the biological processes of ELK1 in various malignant tumors, focus on its main func-tions and related signaling pathways in human malignant tumors, and explore its potential clinical significance and application prospects, so as to provide a theoretical basis for cancer diagnosis, treatment and screening of prognostic biomarkers.
文章引用:何姣, 韩志刚, 俞婷婷. ELK1在恶性肿瘤中的作用及调控机制的研究进展[J]. 临床医学进展, 2024, 14(2): 3391-3397. https://doi.org/10.12677/ACM.2024.142477

1. 引言

ETS域转录因子超家族的名字来自E-twenty-six (E26)白血病病毒的病毒oncogenev-ets-1及其原癌基因对应物c-ets-1 [1] 。所有ETS超家族成员都包含一个高度保守的DNA结合结构域,称为ETS结构域。ETS蛋白质参多种生物学过程,如细胞生长、细胞凋亡、组织形态发生和胚胎发育等 [2] 。ELK1是ETS结构域蛋白质的一个亚群,其在细胞的多种生物功能中发挥重要作用,也是维持肿瘤细胞增殖和迁移的重要基因之一 [3] [4] [5] 。本文通过对ELK1在人类恶性肿瘤中的作用及其分子调控机制进行综述,以期为后续相关研究提供理论基础及参考依据。

2. ELK1与头颈部肿瘤

鼻咽癌

鼻咽癌是头颈部主要的恶性肿瘤。Zhao等 [6] 的研究发现,ELK1在鼻咽鳞状细胞癌组织中高表达,并且与肿瘤分期呈正相关,KIAA0101被发现是鼻咽癌中细胞增殖、细胞周期停止和DNA复制的关键调节剂。ELK1可以与KIAA0101的启动子区域结合,并增强其转录活性,在介导鼻咽癌细胞的增殖和凋亡方面发挥重要作用。这一发现为探索鼻咽癌的治疗靶点提供了新的理论依据。

3. ELK1与呼吸系统肿瘤

3.1. 喉癌

喉癌是上呼吸道常见的原发性恶性肿瘤,喉鳞状细胞癌(LSCC)是最常见的喉癌类型,具有高度侵袭性,约占喉癌病例的95% [7] 。Shuang等发现 [8] ,ELK1在喉鳞状细胞癌组织中表达显著上调,并作为miR-340-3p的靶基因可逆转circPPFIA1在LSCC中的作用。体内试验表明敲除circPPFIA1可抑制Ki67及ELK1在肿瘤组织中的表达从而影响细胞增殖、迁移及侵袭。上述研究证实,circPPFIA1通过miR-340-3p/ELK1信号轴促进LSCC的进展,该信号轴可以作为LSCC的新预后或治疗靶点。

3.2. 肺癌

肺癌是世界上发病率最高的恶性肿瘤之一,也是全球癌症相关死亡的主要原因 [9] 。B细胞淋巴瘤6 (BCL6)在人类KRAS突变性肺腺癌中高度表达,并与患者生存率低下有关,Liu等 [10] 发现,ELK1是BCL6上游调控基因,可直接与BCL6启动子结合,并促进其表达。体外实验证实,敲低ELK1显著降低了BCL6表达,从而抑制了各种KRAS突变癌细胞系的克隆性生长。Yu等 [11] 人发现,ELK1在肺腺癌组织和细胞中的表达显著高于癌旁组织,ELK1上调与肺腺癌患者的TNM分期、远处转移和淋巴结转移密切相关,机制上ELK1与B7-H3启动子结合,诱导B7-H3的上调从而促进肺腺癌细胞的增殖、侵袭和诱导EMT。以上研究结果为进一步探索肺腺癌预后标记和治疗靶点提供新的线索。

4. ELK1与消化系统肿瘤

4.1. 食管癌

食管癌(EC)是最具侵袭性的胃肠道恶性肿瘤之一,占全球癌症相关死亡的大多数,其中食管鳞状细胞癌(ESCC)是亚洲人中最常见和最主要的亚型,每年约占全部新发EC的90% [12] [13] 。Zheng等 [14] 人研究表明,ELK1高表达与患者预后不良密切相关。体外研究发现细胞因子信号3 (SOCS3)是ELK1信号通路的关键下游靶基因,通过调节SOCS3基因的表达,促进食管鳞状细胞癌增殖、迁移和侵袭,还会影响细胞周期阻滞及细胞凋亡。由此可见,ELK1有潜力作为一种新的食管鳞状细胞癌诊断标志物和治疗靶点。

4.2. 胃癌

胃癌(GC)是世界上第五大常见癌症,同时也是引起世界癌症死亡的第三大原因 [15] 。Li等 [16] 发现,ELK1 mRNA在GC患者肿瘤组织中的表达水平明显高于邻近非癌组织,此外,ELK1高表达患者肿瘤复发率更高,而总生存期(OS)更短。体外试验发现,circ-PTPDC1通过调节ELK1,促进GC细胞系的增殖、迁移和入侵,从而促进GC的发生。另外有研究发现 [17] ,在胃癌组织中肿瘤抑制蛋白(CXXC4)的表达明显下降,而ELK1及MIR100HG水平显著增加,机制上,CXXC4过表达可通过抑制ELK1的磷酸化程度,抑制MIR100HG的转录,从而促进T细胞的激活。CXXC4/ELK1/MIR100HG通路抑制了胃癌细胞的免疫逃逸,为寻找胃癌潜在治疗靶点提供了理论依据。

4.3. 结直肠癌

结直肠癌(CRC)是全球第三大癌症 [18] 。肝转移是CRC相关死亡的最常见原因。Zhao等 [19] 发现,高度转移的CRC细胞释放富含miR-181a-5p的细胞外囊泡,能激活肝星状细胞(HSC)释放CCL20,通过ERK/ELK1途径上调了CRC中的miR-181a-5p表达,在CRC细胞和HSC之间形成正反馈回路,最终重塑肝脏肿瘤微环境从而促进CRC患者的肝转移,这一发现为CRC中肝转移的潜在机制提供了新的见解。Yan等 [20] 发现,miR-31-5p在结直肠癌组织和细胞中高表达,ELK1与miR-31-5p启动子结合并介导其转录,体外敲低ELK1显著减少了细胞迁移和细胞侵袭能力,促进了细胞凋亡活性和自噬。体内实验表明,ELK1/miR-31-5p轴对裸鼠的肿瘤生长进行了正调控。Ma等 [21] 发现,ELK1是CEA表达的关键转录因子,ELK1过度表达增加了体外CEA的表达,上调ELK1促进了CRC细胞的粘附、迁移和入侵。以上研究为进一步探究结直肠癌的治疗策略提供了有力理论依据。

4.4. 胰腺癌

胰腺癌是全球癌症死亡的主要原因之一,其全球负担在过去25年中增加了一倍以上 [22] 。Yan等 [23] 人发现,ELK1的表达与淋巴结转移、分化程度、TNM分期和患者预后密切相关,体外敲低ELK1会抑制胰腺癌细胞增殖、迁移和侵袭。LGMN是ELK1下游关键靶点,ELK1 通过调节LGMN基因表达促进胰腺癌进展。Chen等 [24] 发现,ELK1下游调控因子周期蛋白依赖性激酶亚基2 (CKS2)在胰腺癌组织中的表达水平明显高于相邻的正常组织,高水平的CKS2表达与胰腺癌患者的预后不良有关,敲低CKS2可抑制细胞增殖,诱导细胞周期停止和凋亡,并且减少体内肿瘤生长。总之,ELK1有潜力作为一种新的胰腺癌预后指标和治疗靶点。

4.5. 肝癌

肝细胞癌(HCC)是最常见的原发性肝癌,是全球癌症相关死亡的第三大常见原因 [25] 。Yan等人 [26] 发现,ELK1 和SPAG9在肝细胞癌组织中的表达显著高于癌旁组织,SPAG9高表达与ELK1表达呈正相关,并且与肿瘤TNM分期、远处转移相关。SPAG9 siRNA可抑制HCCLM3和HuH7细胞系迁移和侵袭,并降低ELK1和磷酸化p38表达,SPAG9诱导的HCC细胞的迁移和侵袭取决于ELK1的表达,敲低ELK1抑制了HCC细胞的迁移和侵袭。这一研究为未来发现更加有效的肝细胞癌治疗靶点提供了新思路。

5. ELK1与泌尿系统肿瘤

5.1. 膀胱癌

膀胱癌是成人泌尿生殖系统最常见的恶性肿瘤之一,在全球范围内,膀胱癌每年新发病例超过500万例,并且逐年增加 [27] 。Wang等 [28] 人发现,ELK1在膀胱癌组织和细胞中高表达,体外试验证实ELK1与组蛋白脱乙酰酶2 (HDAC2)协同,特异性地与SYTL1启动子结合,从而抑制SYTL1转录和蛋白质表达,SYTL1可抑制膀胱癌细胞的恶性表型,沉默ELK1抑制了BCA细胞的恶性表型。另外有学者发现 [29] ,ELK1通过与SNHG7的启动子区域结合来增加SNHG7的水平,SNHG7通过增强细胞生长、迁移和入侵从而发挥致癌功能。此外,SNHG7通过充当miR-2682-5p的海绵来增强ELK1的表达。ELK1/SNHG7/ miR-2682-5p反馈回路增强了膀胱癌细胞生长、迁移和入侵。以上研究为探索膀胱癌新的治疗策略提供了理论依据。

5.2. 前列腺癌

前列腺癌是成年男性最常见的恶性肿瘤之一。Li等人发现 [30] ,在晚期前列腺癌中ELK1表达显著增强,过表达ELK1不仅促进了前列腺癌细胞的增殖和菌落形成能力,且与较差的无进展间隔期(PFI)相关。在机制上,ELK1通过调节YTHDF1/PLK1/PI3K/AKT轴促进前列腺癌的发生及转移,并有望成为前列腺癌治疗的潜在靶点。Xie等 [31] 研究发现,雄激素受体(AR)可通过ERK/ELK1信号通路调节前列腺癌细胞中FEN1的表达,AR敲除导致ERK/ELK-1信号通路失活,进而导致FEN1的下调,增强了多西他赛诱导的s期细胞凋亡和细胞周期停止,提高了前列腺癌细胞对多西他赛的化学敏感性,这一发现为前列腺癌耐药患者提供一种潜在的治疗策略。

6. ELK1与生殖系统肿瘤及乳腺癌

6.1. 子宫内膜癌

子宫内膜癌(EC)是妇科常见的恶性肿瘤之一,对女性生命健康构成极大的威胁。Wei等人 [32] 研究发现,ELK1可直接与GPX4启动子结合调节其转录,体外敲低ELK1基因,GPX4的表达下调,继而抑制EC细胞增殖、迁移和侵袭,还会引起细胞周期阻滞和诱发细胞凋亡。ELK1/GPX4轴有望成为治疗EC的新方向。

6.2. 宫颈癌

宫颈癌是全球女性第四大常见癌症,每年占所有女性癌症死亡人数的近8%。Huang等 [33] 发现,ELK1在宫颈癌组织和细胞中的表达显著增高。并且与肿瘤分化程度、TNM分期、淋巴结转移和远处转移密切相关,体内及体外试验证实,沉默ELK1可抑制宫颈癌干细胞的自我更新能力、菌落形成、增殖、迁移和侵袭能力,促进CC干细胞的凋亡,并降低裸鼠肿瘤的重量和体积。Hu等 [34] 发现,ELK1作为GPC3-AS1和GPC3的转录激活剂,通过诱导GPC3-AS1/GPC3轴促进了CC中的细胞增殖和迁移。以上研究为探索宫颈癌新的治疗策略提供了理论基础。

6.3. 乳腺癌

乳腺癌是发病率最高的恶性肿瘤,也是全球女性癌症死亡的主要原因 [35] 。ELK1在乳腺癌组织中的表达显著高于癌旁组织。Yang等 [36] 发现,ELK1是KIFC1的转录因子,可以与KIFC1启动子结合,以促进KIFC1转录。ELK1/KIFC1轴通过增加谷胱甘肽合成降低了细胞内活性氧水平,从而促进了BC细胞的增殖。此外,Wang等人 [37] 研究发现KIF26B在BC组织中明显上调,并且与患者淋巴结转移、肿瘤分期和细胞增殖密切相关。ELK1作为其上游调控因子可与KIF26B启动子结合激活其转录,从而调节BC细胞的生长及转移。总之,以上研究为ELK1可作为乳腺癌潜在治疗靶点提供了理论依据。

7. ELK1与其他肿瘤

骨肉瘤是儿科和青少年人口中最常见的骨恶性肿瘤之一。Zhang等 [38] 发现,ELK1在骨肉瘤组织和细胞系中的表达显著上调。ELK1能够通过上调miR-134靶向PTBP1来促进有氧糖酵解和骨肉瘤细胞的细胞活力,从而促进骨肉瘤细胞对阿霉素的化学耐药性。急性骨髓性白血病(AML)是世界上仅次于淋巴瘤的第二大血液学恶性肿瘤。Guo等 [39] 发现ELK1可诱导TNK2-AS1的表达升高,TNK2-AS1通过与EZH2结合来沉默CELF2,从而激活AML细胞中的PI3K/Akt通路,从而促进AML的发生。黑色素瘤是一种高度侵袭性的皮肤癌,有研究发现 [40] ,ELK1和细胞分裂周期7 (CDC7)在黑色素瘤组织中呈高表达,高表达的CDC7可促进黑色素瘤细胞增殖和转移,敲除ELK1可降低黑色素瘤细胞中的CDC7 mRNA和蛋白质水平,引起细胞周期停止、衰老和凋亡来阻止黑色素瘤的生长。国外学者发现 [41] ,ELK1作为上游转录因子可通过调节CD133基因影响脑肿瘤的发生、发展。甲状腺癌乳头状癌(PTC)是甲状腺癌最常见的类别,Lv等人 [42] 通过体外检测,发现ELK1可与LINC01638启动子结合以调节LINC01638的表达水平,从而促进了细胞增殖、转移和侵袭,加速PTC的进展。

8. 总结与展望

ELK1是MAPK/ERK信号通路的直接下游转录因子,在多种癌症中高表达。其通过调节靶基因启动子或通过蛋白质–蛋白质相互作用间接影响一些肿瘤抑制剂或癌基因的表达,在调节细胞生长、分化、生存和其他生物学行为方面发挥着关键作用,在癌症中,ELK1被证实会影响肿瘤细胞增殖和凋亡并与患者预后不良密切相关。下调ELK1可抑制肿瘤细胞增殖、迁移和侵袭。总之,ELK1有望成为癌症治疗的新靶点,并有望成为独立的预后判断指标。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Babal, Y.K., Sonmez, E. and Aksan Kurnaz, I. (2023) Nervous System-Related Gene Regulatory Networks and Func-tional Evolution of ETS Proteins across Species. Bio Systems, 227-228, Article ID: 104891.
https://doi.org/10.1016/j.biosystems.2023.104891
[2] Du, L., Liu, Y., Li, C., et al. (2022) The Interaction between ETS Transcription Factor Family Members and MicroRNAs: A Novel Approach to Cancer Therapy. Biomedicine & Pharmacotherapy, 150, Article ID: 113069.
https://doi.org/10.1016/j.biopha.2022.113069
[3] Kelle, D., Kırımtay, K., Selçuk, E., et al. (2019) Elk1 Affects Katanin and Spastin Proteins via Differential Transcriptional and Post-Transcriptional Regulations. PLOS ONE, 14, e0212518.
https://doi.org/10.1371/journal.pone.0212518
[4] Prise, I. and Sharrocks, A.D. (2019) ELK1 Has a Dual Activating and Repressive Role in Human Embryonic Stem Cells. Wellcome Open Research, 4, Article No. 41.
https://doi.org/10.12688/wellcomeopenres.15091.1
[5] Harel, S., Sanchez, V., Moamer, A., et al. (2021) ETS1, ELK1, and ETV4 Transcription Factors Regulate Angiopoietin-1 Signaling and the Angiogenic Response in Endothelial Cells. Frontiers in Physiology, 12, Article ID: 683651.
https://doi.org/10.3389/fphys.2021.683651
[6] Zhao, H., Chen, M., Wang, J., et al. (2020) PCNA-Associated Factor KIAA0101 Transcriptionally Induced by ELK1 Controls Cell Proliferation and Apoptosis in Nasopharyngeal Car-cinoma: An Integrated Bioinformatics and Experimental Study. Aging, 12, 5992-6017.
https://doi.org/10.18632/aging.102991
[7] Liu, J., Sun, Q., Zhao, J., et al. (2022) Early Death in Supraglottic Laryngeal Squamous Cell Carcinoma: A Population-Based Study. Ear, Nose & Throat Journal.
https://doi.org/10.1177/01455613221078184
[8] Shuang, Y., Liu, J., Niu, J., et al. (2021) A Novel Circular RNA CircPPFIA1 Promotes Laryngeal Squamous Cell Carcinoma Progression through Sponging MiR-340-3p and Regulating ELK1 Expression. Bioengineered, 12, 5220-5230.
https://doi.org/10.1080/21655979.2021.1959866
[9] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[10] Li, K., Liu, Y., Ding, Y., et al. (2022) BCL6 Is Regulated by the MAPK/ELK1 Axis and Promotes KRAS-Driven Lung Cancer. The Journal of Clinical Investigation, 132, e161308.
https://doi.org/10.1172/JCI161308
[11] Yu, T.-T., Zhang, T., Su, F., et al. (2021) ELK1 Promotes Epitheli-al-Mesenchymal Transition and the Progression of Lung Adenocarcinoma by Upregulating B7-H3. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 2805576.
https://doi.org/10.1155/2021/2805576
[12] Xia, C., Dong, X., Li, H., et al. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chinese Medical Journal, 135, 584-590.
https://doi.org/10.1097/CM9.0000000000002108
[13] Morgan, E., Soerjomataram, I., Rumgay, H., et al. (2022) The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortal-ity in 2020 and Projections to 2040: New Estimates from GLOBOCAN 2020. Gastroenterology, 163, 649-658.E2.
https://doi.org/10.1053/j.gastro.2022.05.054
[14] Zheng, Z.-Y., Chu, M.-Y., Lin, W., et al. (2022) Blocking STAT3 Signaling Augments MEK/ERK Inhibitor Efficacy in Esophageal Squamous Cell Carcinoma. Cell Death & Dis-ease, 13, Article No. 496.
https://doi.org/10.1038/s41419-022-04941-3
[15] López, M.J., Carbajal, J., Alfaro, A.L., et al. (2023) Characteris-tics of Gastric Cancer around the World. Critical Reviews in Oncology/Hematology, 181, Article ID: 103841.
https://doi.org/10.1016/j.critrevonc.2022.103841
[16] Li, Z., Cheng, Y., Fu, K., et al. (2021) Circ-PTPDC1 Pro-motes the Progression of Gastric Cancer through Sponging Mir-139-3p by Regulating ELK1 and Functions as a Prog-nostic Biomarker. International Journal of Biological Sciences, 17, 4285-4304.
https://doi.org/10.7150/ijbs.62732
[17] Li, P., Ge, D., Li, P., et al. (2020) CXXC Finger Protein 4 Inhibits the CDK18‐ERK1/2 Axis to Suppress the Immune Escape of Gastric Cancer Cells with Involvement of ELK1/MIR100HG Pathway. Journal of Cellular and Molecular Medicine, 24, 10151-10165.
https://doi.org/10.1111/jcmm.15625
[18] Shinji, S., Yamada, T., Matsuda, A., et al. (2022) Recent Advances in the Treatment of Colorectal Cancer: A Review. Journal of Nippon Medical School, 89, 246-254.
https://doi.org/10.1272/jnms.JNMS.2022_89-310
[19] Zhao, S., Mi, Y., Zheng, B., et al. (2022) Highly‐Metastatic Colorectal Cancer Cell Released MiR‐181a‐5p‐Rich Extracellular Vesicles Promote Liver Metastasis by Activating He-patic Stellate Cells and Remodelling the Tumour Microenvironment. Journal of Extracellular Vesicles, 11, e12186.
https://doi.org/10.1002/jev2.12186
[20] Yan, G. and Lei, W. (2023) Role of ELK1 in Regulating Colorectal Cancer Progression: MiR-31-5p/CDIP1 Axis in CRC Pathogenesis. PeerJ, 11, e15602.
https://doi.org/10.7717/peerj.15602
[21] Ma, J., Liu, X., Chen, H., et al. (2021) C-KIT-ERK1/2 Signaling Activat-ed ELK1 and Upregulated Carcinoembryonic Antigen Expression to Promote Colorectal Cancer Progression. Cancer Science, 112, 655-667.
https://doi.org/10.1111/cas.14750
[22] Klein, A.P. (2021) Pancreatic Cancer Epidemiology: Understanding the Role of Lifestyle and Inherited Risk Factors. Nature Reviews. Gastroenterology & Hepatology, 18, 493-502.
https://doi.org/10.1038/s41575-021-00457-x
[23] Yan, Q., Ni, C., Lin, Y., et al. (2021) ELK1 Enhances Pancreatic Cancer Progression via LGMN and Correlates with Poor Prognosis. Frontiers in Molecular Biosciences, 8, Article ID: 764900.
https://doi.org/10.3389/fmolb.2021.764900
[24] Chen, Q., Fu, Y., Liu, X., et al. (2023) Aberrant Expres-sion of CKS2 Induced by ELK1 Contributes to Malignant Progression of Pancreatic Cancer. Molecular Carcinogenesis.
https://doi.org/10.1002/mc.23627
[25] Madani, S.P., Mirza‐Aghazadeh‐Attari, M., Mohseni, A., et al. (2023) Dif-fuse Infiltrative Hepatocellular Carcinoma: Multimodality Imaging Manifestations. Journal of Surgical Oncology, 127, 385-393.
https://doi.org/10.1002/jso.27138
[26] Yan, Q., Lou, G., Qian, Y., et al. (2016) SPAG9 Is Involved in Hepatocarcinoma Cell Migration and Invasion via Modulation of ELK1 Expression. OncoTargets and Therapy, 9, 1067-1075.
https://doi.org/10.2147/OTT.S98727
[27] Gilyazova, I., Enikeeva, K., Rafikova, G., et al. (2023) Epi-genetic and Immunological Features of Bladder Cancer. International Journal of Molecular Sciences, 24, Article No. 9854.
https://doi.org/10.3390/ijms24129854
[28] Wang, J., Luo, J., Wu, X., et al. (2022) ELK1 Suppresses SYTL1 Expression by Recruiting HDAC2 in Bladder Cancer Progression. Human Cell, 35, 1961-1975.
https://doi.org/10.1007/s13577-022-00789-z
[29] Wang, W., Chen, S., Song, X., et al. (2020) ELK1/LncRNA-SNHG7/MiR-2682-5p Feedback Loop Enhances Bladder Cancer Cell Growth. Life Sciences, 262, Arti-cle ID: 118386.
https://doi.org/10.1016/j.lfs.2020.118386
[30] Li, P., Shi, Y., Gao, D., et al. (2022) ELK1-Mediated YTHDF1 Drives Prostate Cancer Progression by Facilitating the Translation of Polo-Like Kinase 1 in an M6A Dependent Manner. International Journal of Biological Sciences, 18, 6145-6162.
https://doi.org/10.7150/ijbs.75063
[31] Xie, W., Li, S., Guo, H., et al. (2023) Androgen Receptor Knockdown En-hances Prostate Cancer Chemosensitivity by Down‐Regulating FEN1 through the ERK/ELK1 Signalling Pathway. Can-cer Medicine, 12, 15317-15336.
https://doi.org/10.1002/cam4.6188
[32] Wei, S., Yu, Z., Shi, R., et al. (2022) GPX4 Suppresses Ferroptosis to Promote Malignant Progression of Endometrial Carcinoma via Transcriptional Activation by ELK1. BMC Cancer, 22, Article No. 881.
https://doi.org/10.1186/s12885-022-09986-3
[33] Huang, Y. and Luo, F. (2021) Elevated MicroRNA-130b-5p or Silenced ELK1 Inhibits Self-Renewal Ability, Proliferation, Migration, and Invasion Abilities, and Promotes Apoptosis of Cervical Cancer Stem Cells. IUBMB Life, 73, 118-129.
https://doi.org/10.1002/iub.2409
[34] Hu, R. and Zhu, Z. (2019) ELK1‐Activated GPC3‐AS1/GPC3 Axis Promotes the Proliferation and Migration of Cervical Cancer Cells. The Journal of Gene Medicine, 21, e3099.
https://doi.org/10.1002/jgm.3099
[35] Trapani, D., Ginsburg, O., Fadelu, T., et al. (2022) Global Challenges and Policy Solutions in Breast Cancer Control. Cancer Treatment Reviews, 104, Article ID: 102339.
https://doi.org/10.1016/j.ctrv.2022.102339
[36] Yang, B., Wang, H., Xiao, J., et al. (2023) ELK1 / KIFC1 Axis Promotes Breast Cancer Cell Proliferation by Regulating Glutathione Metabolism. Journal of Obstetrics and Gynaecology Research, 49, 2175-2184.
https://doi.org/10.1111/jog.15710
[37] Wang, S., Zhang, H., Liu, H., et al. (2021) ELK1-Induced Up-Regulation of KIF26B Promotes Cell Cycle Progression in Breast Cancer. Medical Oncology (Northwood, London, England), 39, Ar-ticle No. 15.
https://doi.org/10.1007/s12032-021-01607-6
[38] Zhang, Q., Wu, J., Zhang, X., et al. (2021) Transcription Factor ELK1 Accelerates Aerobic Glycolysis to Enhance Osteosarcoma Chemoresistance through MiR-134/PTBP1 Signaling Cascade. Aging, 13, 6804-6819.
https://doi.org/10.18632/aging.202538
[39] Guo, D., Zhang, A., Suo, M., et al. (2023) ELK1-Induced Upregula-tion of Long Non-Coding TNK2-AS1 Promotes the Progression of Acute Myeloid Leukemia by EZH2-Mediated Epige-netic Silencing of CELF2. Cell Cycle (Georgetown, Tex.), 22, 117-130.
https://doi.org/10.1080/15384101.2022.2109898
[40] Chava, S., Bugide, S., Malvi, P., et al. (2022) Co-Targeting of Specific Epigenetic Regulators in Combination with CDC7 Potently Inhibit Melanoma Growth. IScience, 25, Article ID: 104752.
https://doi.org/10.1016/j.isci.2022.104752
[41] Sogut, M.S., Venugopal, C., Kandemir, B., et al. (2021) ETS-Domain Transcription Factor Elk-1 Regulates Stemness Genes in Brain Tumors and CD133+ Brain Tu-mor-Initiating Cells. Journal of Personalized Medicine, 11, Article No. 125.
https://doi.org/10.3390/jpm11020125
[42] Lv, P. and Xue, Y. (2021) ETS Like-1 Protein ELK1-Induced LncRNA LINC01638 Accelerates the Progression of Papillary Thyroid Cancer by Regulating Axin2 through Wnt/β-Catenin Sig-naling Pathway. Bioengineered, 12, 3873- 3885.
https://doi.org/10.1080/21655979.2021.1935404