SGLT-2抑制剂抗高血压作用及研究进展
Antihypertensive Effects of SGLT-2 Inhibitors and Progress in Research
DOI: 10.12677/ACM.2024.142429, PDF, HTML, XML, 下载: 199  浏览: 324 
作者: 夏小寒:山东第一医科大学(山东省医学科学院)研究生院,山东 济南;李嘉鑫:山东省济南市第三人民医院重症医学科,山东 济南;刘晓曼*:山东第一医科大学第一附属医院(山东省千佛山医院)保健心血管内科,山东 济南
关键词: SGLT-2抑制剂高血压临床应用作用机制Sodium-Glucose Transporter 2 Inhibitors Hypertension Clinical Application Pharmacology
摘要: 钠–葡萄糖协同转运蛋白2抑制剂(sodium-glucose transporter 2 inhibitors, SGLT-2i)是一类较新颖的降糖药物,不依赖于刺激胰岛素分泌,通过尿糖来降低血糖,大量的证据表明其在心血管领域具有突出应用价值。高血压患病人群基数庞大,高血压不单是众多疾病的合并症,同时也是许多疾病的危险因素并影响相关预后。随着对SGLT-2i的深入了解及受试者临床试验的结果总结,降压作用受到关注,突显了该药物单纯降糖之外的潜在价值及多效性。现就SGLT-2i临床应用中的降压证据及可能的降压机制进行综述。
Abstract: Sodium-glucose transporter 2 inhibitors (SGLT-2i) are a relatively new class of hypoglycemic agents that do not rely on stimulation of insulin secretion to lower blood glucose via urinary glucose, and a large body of evidence suggests that they have outstanding cardiovascular applications. With a large population base, hypertension is not only a comorbidity of many diseases, but also a risk fac-tor for many diseases and affects the prognosis. With the deeper understanding of SGLT-2i and the summary of results from clinical trials in subjects, the antihypertensive effect has come under scru-tiny, highlighting the potential value and multiplicity of the drug beyond glucose lowering alone. The evidence for antihypertensive effects and possible antihypertensive mechanisms in the clinical application of SGLT-2i are reviewed.
文章引用:夏小寒, 李嘉鑫, 刘晓曼. SGLT-2抑制剂抗高血压作用及研究进展[J]. 临床医学进展, 2024, 14(2): 3028-3036. https://doi.org/10.12677/ACM.2024.142429

1. 引言

高血压是一种以全身动脉压持续升高为特征的疾病,伴随神经–内分泌系统的激活与适应性改变,是糖尿病(Diabetes mellitus, DM)、心力衰竭(Heart failure, HF)、慢性肾脏病(Chronic kidney disease, CKD)等患者心血管事件的一个公认的危险因素。难治性高血压(Resistant hypertension, RH)在上述患者人群中非常普遍 [1] [2] ,尽管许多患者已经接受常规降压药物单药甚至联合治疗,但仍未能达到指南推荐的理想血压目标(<130/80 mmhg) [3] [4] 。越来越多的证据表明,降低血压至目标水平可以改善其临床预后 [5] 。SGLT-2是一类主要位于近曲小管顶端膜上的协同转运蛋白,负责肾脏内90%以上的葡萄糖重吸收 [6] 。SGLT-2i最初被设想为降糖药物,独立于葡萄糖依赖的胰岛素途径,通过抑制葡萄糖在肾近端小管的重吸收,增加尿糖排泄降糖。在SGLT-2i的临床研究中观察到了受试者血压的降低,SGLT-2i的出现弥补了一种兼有心肾益处及降压特性药物的空白。本文旨在总结SGLT-2i在DM、HF、高血压、CKD患者临床应用中降压的证据并阐述可能的降压机制。

2. SGLT-2i的临床降压作用

2.1. 降低DM患者的血压

DM与高血压常共存,血压得到最佳控制对DM患者的治疗至关重要,是预防血管并发症和降低相关死亡率的最有效方法之一。EMPA-REG OUTCOME是SGLT-2i首个且具有里程碑意义的临床试验,结果发现恩格列净能够显著减少具有高心血管疾病风险的2型糖尿病(Type 2 diabetes mellitus, T2DM)患者的主要心血管不良事件。其中,有90%以上的受试者应用降压药物,治疗16周后,恩格列净组收缩压较基线降低了4~6 mmHg [7] 。EMPA-REG OUTCOME试验中观察到的降压效果,在随后CANVAS [8] 、DECLARE-TIMI 58 [9] 、VERTIS CV [10] 试验中得到进一步证实。SGLT-2i针对1型糖尿病(Type 1 diabetes mellitus, T1DM)人群的应用价值仍在不断探索。其中,EASE [11] 、DEPICT [12] [13] [14] 、inTandem [15] [16] 等试验发现了SGLT-2i对T1DM患者的降收缩压作用。在一项针对DEPICT试验的事后分析中观察到,达格列净5mg组的降压效果最优,收缩压较基线下降6.64 mmhg,该降压作用一直持续到52周 [17] 。

2.2. 降低HF患者的血压

基于大量研究与荟萃分析的研究结果,SGLT-2i显著减少了稳定性心血管疾病和急性心力衰竭患者HF住院次数,降低了心血管疾病风险 [18] [19] 。欧洲心脏病学会推荐SGLT-2i作为HF的基线治疗药物,意味着肾素–血管紧张素系统抑制剂、β受体阻滞剂、醛固酮受体拮抗剂和SGLT-2i治疗“新四联”时代的到来 [20] [21] 。面对射血分数降低性HF患者,DAPA-HF结果显示,达格列净组在干预第2周时收缩压显著降低2.54 mmHg,这种作用一直持续到试验结束——32周后收缩压较基线降低1.41 mmHg [22] 。然而,EMPEROR-Reduced试验 [23] 发现恩格列净组受试者收缩压与基线相比没有变化。在慢性(射血分数保留性/中间范围射血分数)HF患者中,EMPEROR-Preserved结果显示恩格列净10 mg组受试者在52周后,收缩压下降了1.2 mmHg [24] 。李敏等 [25] 人对纳入的16项有关HF患者的随机对照试验的meta分析表明——与对照组相比,受试者经SGLT-2i治疗后收缩压降低1.68 mmHg且有统计学意义(p = 0.001),舒张压降低1.06 mmHg而没有统计学意义(p = 0.33)。

2.3. 降低高血压患者的血压

Baker等 [26] 人总结了之前致力于了解SGLT-2i在高血压患者中降压特性的临床试验,试验中均监测患者的24小时动态血压,SGLT-2i组受试者收缩压显著降低3.76 mmhg,舒张压降低1.83 mmHg。RH作为一种特殊类型的高血压,更易并发靶器官损害,且预后差。RH的治疗方案较为局限,对传统降压药物不断提出新挑战,SGLT-2i的出现似乎带来了新的希望。Amira Obeid等人 [27] 报道了一名68岁男性高血压患者,尽管联合了三种降压药(雷米普利、非洛地平和阿替洛尔)并服用最大耐受剂量,血压也未能得到良好的控制(平均日间血压为168/99 mmHg)。当把卡格列净加入该患者降压方案后发现血压显著降低,最佳临床读数为137/80 mmHg。在EMPA-REG OUTCOME的事后分析中,定义假定RH患者为基线时使用 ≥ 3类抗高血压药物,至少包括利尿剂,且血压不受控制(收缩压 ≥ 140和/或舒张压 ≥ 90 mmHg)。恩格列净治疗12周后,假定难治性高血压组收缩压下降4.5 mmHg,无假定难治性高血压组收缩压下降3.7 mmHg,血压的下降在随访期间持续存在 [28] 。

2.4. 降低CKD患者的血压

DAPA-CKD [29] 旨在评估达格列净对CKD肾脏结局和心血管死亡率的影响,该试验发现,无论有无DM,达格列净均可减少CKD患者的肾脏不良结局并降低心血管死亡率。CKD,特别是合并高血压时,预示着进展为心肾功能衰竭的风险急剧增加。SGLT-2i的降糖作用在一定范围内随着应用者肾功能下降而下降,但其降压作用几乎不受影响 [30] ,可有效降低CKD患者的血压 [31] 。CREDENCE试验发现,相对于安慰剂组,卡格列净组收缩压在第3周时显著降低约3.5mmHg,该降压作用持续整个试验期间,最终收缩压、舒张压平均差异分别−3.30 mmHg,−0.95 mmHg [32] 。SCORED试验招募了有心血管疾病风险的CKD3期患者。受试者经索格列净干预4周后收缩压降低2.4 mmHg,舒张压降低0.80 mmHg [33] 。EMPA-KIDNEY [34] 在对CKD人群随访中同样观察到恩格列净组较对照组收缩压的降低。

3. SGLT2i可能的降压机制

3.1. 利钠、利尿

SGLT-2是一种主要位于近端小管S1段的转运蛋白,具有低亲和力、高容量的特性,主要负责经肾小球自由滤过的葡萄糖在近端小管绝大部分的重吸收。小管基底膜外侧的钠钾泵使小管上皮细胞内Na+浓度低于管腔滤液的Na+浓度,并维持这一钠电化学浓度梯度。钠离子沿电化学浓度梯度协同葡萄糖以1:1比例被转移到细胞内,然后通过基底膜外侧葡萄糖转运体2重新入血,借此完成对小管液中钠和葡萄糖的重吸收 [6] 。因此基于以上生理机制,抑制SGLT-2可减少肾脏近端小管对钠和葡萄糖的重吸收,进而利钠、利尿,降低血压。对于SGLT-2i的利尿、利钠作用,在部分试验中得到了证实 [35] [36] ,EMPA-KIDNEY试验通过对660例CKD患者的研究发现,恩格列净组“细胞外液”平均流失0.24 L,该效果持续并超过18个月 [37] 。另有动物试验表明,SGLT-2i可以减低非糖尿病CKD大鼠的盐敏感性 [38] 。Kawasoe等人通过SGLT-2i对T2DM合并肥胖患者降压潜在机制的研究发现,早期血压的下降与SGLT-2渗透性利尿作用有关,而长期血压降低可能与利钠作用更密切 [39] 。然而部分试验并未出现上述作用 [40] [41] ,DAPASALT试验观察到肾功能保留的T2DM患者在标准化钠摄入期间,达格列净组24小时动态收缩压下降,而尿钠排泄没有明显变化,这表明存在利钠作用以外的降压因素 [40] 。研究之间的差异可以由研究设计的不同、受试者特征、或使用潜在干扰药物作为背景治疗产生,但在大多数研究中,早期使用SGLT-2i治疗会导致尿钠浓度和尿量的增加,最大利钠作用出现在干预后的前3天,即使其会随着时间的推移逐渐恢复至基线水平 [42] 。

3.2. 改善动脉硬化

动脉硬化,即血管壁硬度的增加,是血管功能障碍和衰老的重要标志 [43] 。动脉硬化与血压存有较密切的关系。随着管壁僵硬度的增加,动脉随血压变化而扩张和收缩的能力下降,久而久之,这种弹性的降低会导致收缩压升高、舒张压降低,脉压差增大。而收缩压的升高反而加剧内皮细胞的损伤,诱发炎症、氧化应激、纤维化、钙化进一步升高血压,致使脑、肾脏、心脏等低阻终末器官损伤。Solini等人首次在人类试验中证实,达格列净能够改善动脉硬化,即使校正了平均血压 [44] 。在动物实验中同样发现,相较于对照组,达格列净改善了DM小鼠的动脉僵硬度 [45] [46] 。多数研究均发现SGLT-2i降低T2DM患者血压的同时改善了动脉的僵硬度 [47] [48] [49] [50] ,尽管部分研究未能观察到 [51] [52] 。SGLT-2i改善动脉硬化的确切机制不甚明了,但相关研究发现SGLT-2i可通过改善内皮细胞功能 [53] [54] 、增加NO利用度 [55] 、改善内皮炎症 [56] 等在一定程度上发挥血管保护作用。

3.3. 改善胰岛素抵抗

胰岛素抵抗是指机体对胰岛素敏感性的降低,表现为胰岛素促使葡萄糖经细胞膜上的葡萄糖转运蛋白摄入胞内能力的下降。早在1966年,Welborn等 [57] 人通过对19例糖耐量正常的原发性高血压患者的临床观察中发现,这些患者血浆胰岛素浓度明显高于血压正常的对照组。后有研究对1933名非高血压志愿者进行了4年的随访,旨在评估这些参与者胰岛素敏感性与高血压发病率以及高血压进展情况的关系,结果发现胰岛素抵抗与高血压的发生、发展密不可分 [58] 。研究人员在动物实验中发现,达格列净组小鼠较对照组血糖和胰岛素水平降低,肌肉和脂肪组织胰岛素抵抗得到改善 [59] 。此外,有研究发现恩格列净可以通过抑制大鼠骨骼肌中甘油三脂的累积,从而提高胰岛素的敏感性,促进肌肉对葡萄糖的摄取和利用 [60] 。在T2DM患者中同样发现,应用SGLT-2i后血糖降低的同时,胰岛素抵抗得到了改善 [61] 。另一项研究表明,经鲁格列净治疗的T2DM患者,胰岛素抵抗指数从第12周开始得到显著改善,并持续到治疗期结束 [62] 。可能的机制有抑制葡萄糖毒性 [61] 、改善脂质代谢 [63] 、改善β细胞功能 [64] [65] 、抗炎和抗氧化应激 [66] 等。

3.4. 减轻体重

体重指数和血压几乎呈线性相关,该结果在不同的群体中可重复,尤其是超重或肥胖患者,有研究表明肥胖受试者罹患高血压的可能性增加2~3倍 [67] [68] 。SGLT-2i可以减轻T2DM患者的体重 [69] ,一项关于SGLT-2i与减重的综述中总结发现,DM受试者接受SGLT-2i干预后平均体重下降0.591~2.1 kg [70] 。一项在加拿大开展的回顾性队列研究中,1052名T2DM受试者在接受达格列净单药治疗3~6个月后体重下降2.2 ± 3.1 kg (p < 0.01) [71] 。随后的研究表明,SGLT-2i对T1DM患者同样有减轻体重的作用 [72] 。综上,当减轻体重作为治疗目标的一部分时,美国糖尿病学会推荐SGLT-2i作为初始降糖治疗药物 [73] 。在一项汇总8项随机对照试验的系统综述中,对纳入的750名超重或肥胖非DM患者数据分析显示SGLT-2i单药治疗组体重显著降低2.32 kg,而安慰剂组降低1.01 kg,两组平均差异为−1.31 kg (p < 0.0001) [74] 。可认为,无论有无糖尿病,SGLT2i均可以减轻应用者体重。SGLT-2i的减重作用得益于糖尿—尿中葡萄糖的排泄导致体液减少(主要是细胞外液)和渗透性利尿水分的排出 [75] 。SGLT-2i所致糖尿或直接、或间接改善胰岛素抵抗,从而使胰高血糖素/胰岛素比值升高,加速脂肪分解和脂质氧化 [76] ,减少身体脂肪含量进一步减轻体重。一项在日本2型DM的研究发现,应用伊格列净24周后,受试者内脏、身体脂肪含量显著降低 [77] 。在一项关于身体脂肪组成的观察性研究中,发现SGLT-2i组受试者内脏脂肪组织减少 [78] 。此外有研究认为,SGLT-2i的减重机制可能与促进脂肪褐变 [79] 、线粒体形态转变及功能改善 [80] 、交感神经系统受抑/副交感神经系统兴奋增加有关 [81] 。

4. 小结

起初,SGLT-2i作为一种降糖药被开发,但大规模随机试验显示了其超越单纯降糖的多效性。SGLT-2i的适应症正在迅速扩大,虽然目前不作为降压药物使用,但是相当多的证据表明,它通过利钠、利尿、改善动脉硬化、改善胰岛素抵抗、减轻体重等可能机制降低应用者血压。虽然这种降压效应背后的确切作用机制仍有待探索与明确,但总的证据表明,SGLT-2i作为一种有巨大潜力价值的药物类别,丰富了我们治疗多种疾病患者高血压的方法,为RH患者降压带来新的希望。

NOTES

*通讯作者。

参考文献

[1] Noubiap, J.J., Nansseu, J.R., Nyaga, U.F., Sime, P.S., et al. (2019) Global Prevalence of Resistant Hypertension: A Meta-Analysis of Data from 3.2 Million Patients. Heart, 105, 98-105.
https://doi.org/10.1136/heartjnl-2018-313599
[2] Muntner, P., Davis, B.R., Cushman, W.C., Bangalore, S., et al. (2014) Treatment-Resistant Hypertension and the Incidence of Cardiovascular Disease and End-Stage Renal Disease: Results from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Hyperten-sion, 64, 1012-1021.
https://doi.org/10.1161/HYPERTENSIONAHA.114.03850
[3] Wang, Z., Chen, Z., Zhang, L., Wang, X., et al. (2018) Status of Hypertension in China: Results from the China Hypertension Survey, 2012-2015. Circulation, 137, 2344-2356.
https://doi.org/10.1161/CIRCULATIONAHA.117.032380
[4] Mancia, G., Kreutz, R., Brunström, M., Burnier, M., et al. (2023) 2023 ESH Guidelines for the Management of Arterial Hypertension the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). Journal of Hypertension, 41, 1874-2071.
https://doi.org/10.1097/HJH.0000000000003480
[5] Cheung, A.K., Chang, T.I., Cushman, W.C., et al. (2021) KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney In-ternational, 99, S1-S87.
https://doi.org/10.1016/j.kint.2020.11.003
[6] Bakris, G.L., Fonseca, V.A., Sharma, K. and Wright, E.M. (2009) Renal Sodium-Glucose Transport: Role in Diabetes Mellitus and Potential Clinical Implications. Kidney International, 75, 1272-1277.
https://doi.org/10.1038/ki.2009.87
[7] Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., et al. (2015) Empagli-flozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. The New England Journal of Medicine, 373, 2117-2128.
https://doi.org/10.1056/NEJMoa1504720
[8] Neal, B., Perkovic, V., Mahaffey, K.W., De Zeeuw, D., et al. (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. The New England Journal of Medicine, 377, 644-657.
https://doi.org/10.1056/NEJMoa1611925
[9] Wiviott, S.D., Raz, I., Bonaca, M.P., Mosenzon, O., et al. (2019) Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. The New England Journal of Medicine, 380,347-357.
https://doi.org/10.1056/NEJMoa1812389
[10] Cannon, C.P., Pratley, R., Dagogo-Jack, S., Mancuso, J., et al. (2020) Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. The New England Journal of Medicine, 383, 1425-1435.
https://doi.org/10.1056/NEJMoa2004967
[11] Rosenstock, J., Marquard, J., Laffel, L.M., Neubacher, D., et al. (2018) Empagliflozin as Adjunctive to Insulin Therapy in Type 1 Diabetes: The EASE Trials. Diabetes Care, 41, 2560-2569.
https://doi.org/10.2337/dc18-1749
[12] Dandona, P., Mathieu, C., Phillip, M., Hansen, L., et al. (2018) Efficacy and Safety of Dapagliflozin in Patients with Inadequately Controlled Type 1 Diabetes: The DEPICT-1 52-Week Study. Diabetes Care, 41, 2552-2559.
https://doi.org/10.2337/dc18-1087
[13] Mathieu, C., Rudofsky, G., Phillip, M., Araki, E., et al. (2020) Long-Term Efficacy and Safety of Dapagliflozin in Patients with Inadequately Controlled Type 1 Diabetes (The DEPICT-2 Study): 52-Week Results from a Randomized Controlled Trial. Diabetes, Obesity & Metabolism, 22, 1516-1526.
https://doi.org/10.1111/dom.14060
[14] Mathieu, C., Dandona, P., Gillard, P., Senior, P., et al. (2018) Efficacy and Safety of Dapagliflozin in Patients with Inadequately Controlled Type 1 Diabetes (The DEPICT-2 Study): 24-Week Re-sults from a Randomized Controlled Trial. Diabetes Care, 41, 1938-1946.
https://doi.org/10.2337/dc18-0623
[15] Buse, J.B., Garg, S.K., Rosenstock, J., Bailey, T.S., et al. (2018) Sotagli-flozin in Combination with Optimized Insulin Therapy in Adults with Type 1 Diabetes: The North American in Tandem1 Study. Diabetes Care, 41, 1970-1980.
https://doi.org/10.2337/dc18-0343
[16] Garg, S.K., Henry, R.R., Banks, P., Buse, J.B., et al. (2017) Effects of So-tagliflozin Added to Insulin in Patients with Type 1 Diabetes. The New England Journal of Medicine, 377, 2337-2348.
https://doi.org/10.1056/NEJMoa1708337
[17] Groop, P.H., Dandona, P., Phillip, M., Gillard, P., et al. (2020) Ef-fect of Dapagliflozin as an Adjunct to Insulin over 52 Weeks in Individuals with Type 1 Diabetes: Post-Hoc Renal Anal-ysis of the DEPICT Randomised Controlled Trials. The Lancet Diabetes & Endocrinology, 8, 845-854.
https://doi.org/10.1016/S2213-8587(20)30280-1
[18] Odutayo, A., Da Costa, B.R., Pereira, T.V., Garg, V., et al. (2021) Sodium-Glucose Cotransporter 2 Inhibitors, All-Cause Mortality, and Cardiovascular Outcomes in Adults with Type 2 Diabetes: A Bayesian Meta-Analysis and Meta-Regression. Journal of the American Heart Association, 10, e019918.
https://doi.org/10.1161/JAHA.120.019918
[19] Muscoli, S., Barillà, F., Tajmir, R., Meloni, M., et al. (2022) The New Role of SGLT2 Inhibitors in the Management of Heart Failure: Current Evidence and Future Perspective. Pharmaceutics, 14, Article 1730.
https://doi.org/10.3390/pharmaceutics14081730
[20] McDonagh, T.A., Metra, M., Adamo, M., Gardner, R.S., et al. (2021) 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Heart Journal, 42, 3599-3726.
https://doi.org/10.1093/eurheartj/ehab368
[21] McDonagh, T.A., Metra, M., Adamo, M., Gardner, R.S., et al. (2023) 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. European Heart Journal, 44, 3627-3639.
https://doi.org/10.1093/eurheartj/ehad195
[22] McMurray, J.J.V., Solomon, S.D., Inzucchi, S.E., Køber, L., et al. (2019) Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 381, 1995-2008.
https://doi.org/10.1056/NEJMoa1911303
[23] Packer, M., Anker, S.D., Butler, J., Filippatos, G., et al. (2020) Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. The New England Journal of Medicine, 383, 1413-1424.
https://doi.org/10.1056/NEJMoa2022190
[24] Anker, S.D., Butler, J., Filippatos, G., Ferreira, J.P., et al. (2021) Empagliflozin in Heart Failure with a Preserved Ejection Fraction. New England Journal of Medicine, 385, 1451-1461.
https://doi.org/10.1056/NEJMoa2107038
[25] Li, M., Yi, T., Fan, F., Qiu, L., et al. (2022) Effect of Sodi-um-Glucose Cotransporter-2 Inhibitors on Blood Pressure in Patients with Heart Failure: A Systematic Review and Me-ta-Analysis. Cardiovascular Diabetology, 21, Article No. 139.
https://doi.org/10.1186/s12933-022-01574-w
[26] Baker, W.L., Buckley, L.F., Kelly, M.S., Bucheit, J.D., et al. (2017) Effects of Sodium-Glucose Cotransporter 2 Inhibitors on 24-Hour Ambulatory Blood Pressure: A Systematic Review and Meta-Analysis. Journal of the American Heart Association, 6, e005686.
https://doi.org/10.1161/JAHA.117.005686
[27] Obeid, A., Pucci, M., Martin, U. and Hanif, W. (2016) Sodium Glucose Co-Transporter 2 Inhibitors in Patients with Resistant Hypertension: A Case Study. JRSM Open, 7.
https://doi.org/10.1177/2054270416649285
[28] Ferreira, J.P., Fitchett, D., Ofstad, A.P., Kraus, B.J., et al. (2020) Empagliflozin for Patients with Presumed Resistant Hypertension: A Post Hoc Analysis of the EMPA-REG OUTCOME Trial. American Journal of Hypertension, 33, 1092-1101.
https://doi.org/10.1093/ajh/hpaa073
[29] Heerspink, H.J.L., Stefánsson, B.V., Correa-Rotter, R., Chertow, G.M., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383, 1436-1446.
https://doi.org/10.1056/NEJMoa2024816
[30] Pollock, C. and Neuen, B.L. (2021) Sodium-Glucose Cotransporter 2 Inhibition: Rationale and Mechanisms for Kidney and Cardiovascular Protection in People with and without Diabetes. Advances in Chronic Kidney Disease, 28, 298-308.
https://doi.org/10.1053/j.ackd.2021.02.006
[31] Cherney, D.Z.I., Cooper, M.E., Tikkanen, I., Pfarr, E., et al. (2018) Pooled Analysis of Phase III Trials Indicate Contrasting Influences of Renal Function on Blood Pressure, Body Weight, and HbA1c Reductions with Empagliflozin. Kidney International, 93, 231-244.
https://doi.org/10.1016/j.kint.2017.06.017
[32] Ye, N., Jardine, M.J., Oshima, M., Hockham, C., et al. (2021) Blood Pressure Effects of Canagliflozin and Clinical Outcomes in Type 2 Diabetes and Chronic Kidney Disease: Insights from the CREDENCE Trial. Circulation, 143, 1735-1749.
https://doi.org/10.1161/CIRCULATIONAHA.120.048740
[33] Bhatt, D.L., Szarek, M., Pitt, B., Cannon, C.P., et al. (2021) Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. The New England Journal of Medicine, 384, 129-139.
https://doi.org/10.1056/NEJMoa2030186
[34] The EMPA-KIDNEY Collaborative Group, Her-rington, W.G., Staplin, N., Wanner, C., et al. (2023) Empagliflozin in Patients with Chronic Kidney Disease. New Eng-land Journal of Medicine, 388, 117-127.
https://doi.org/10.1056/NEJMoa2204233
[35] Damman, K., Beusekamp, J.C., Boorsma, E.M., Swart, H.P., et al. (2020) Randomized, Double-Blind, Placebo-Controlled, Multicentre Pilot Study on the Effects of Empagliflozin on Clin-ical Outcomes in Patients with Acute Decompensated Heart Failure (EMPA-RESPONSE-AHF). European Journal of Heart Failure, 22, 713-722.
https://doi.org/10.1002/ejhf.1713
[36] Griffin, M., Rao, V.S., Ivey-Miranda, J., Fleming, J., et al. (2020) Empagli-flozin in Heart Failure: Diuretic and Cardiorenal Effects. Circulation, 142, 1028-1039.
https://doi.org/10.1161/CIRCULATIONAHA.120.045691
[37] Mayne, KJ., Staplin, N., Keane, DF., Wanner, C., et al. (2023) Effects of Empagliflozin on Fluid Overload, Weight and Blood Pressure in Chronic Kidney Disease. J Am Soc Nephrol.
[38] Wan, N., Fujisawa, Y., Kobara, H., Masaki, T., et al. (2020) Effects of an SGLT2 Inhibitor on the Salt Sensitivity of Blood Pressure and Sympathetic Nerve Activity in a Nondiabetic Rat Model of Chronic Kidney Dis-ease. Hypertension Research, 43, 492-499.
https://doi.org/10.1038/s41440-020-0410-8
[39] Kawasoe, S., Maru-guchi, Y., Kajiya, S., Uenomachi, H., et al. (2017) Mechanism of the Blood Pressure-Lowering Effect of Sodi-um-Glucose Cotransporter 2 Inhibitors in Obese Patientswith Type 2 Diabetes. BMC Pharmacology & Toxicology, 18, Article No. 23.
https://doi.org/10.1186/s40360-017-0125-x
[40] Scholtes, R.A., Muskiet, M.H.A., Van Baar, M.J.B., Hesp, A.C., et al. (2021) Natriuretic Effect of Two Weeks of Dapagliflozin Treatment in Patients with Type 2 Diabetes and Preserved Kidney Function During Standardized Sodium Intake: Results of the DAPASALT Trial. Diabe-tes Care, 44, 440-447.
https://doi.org/10.2337/dc20-2604
[41] Boorsma, E.M., Beusekamp, J.C., Ter Maaten, J.M., Figarska, S.M., et al. (2021) Effects of Empagliflozin on Renal Sodium and Glucose Handling in Patients with Acute Heart Failure. European Journal of Heart Failure, 23, 68-78.
https://doi.org/10.1002/ejhf.2066
[42] Verma, S., McMurray, J.J.V. and Cherney, D.Z.I. (2017) The Metabolodi-uretic Promise of Sodium-Dependent Glucose Cotransporter 2 Inhibition: The Search for the Sweet Spot in Heart Failure. JAMA Cardiology, 2, 939-940.
https://doi.org/10.1001/jamacardio.2017.1891
[43] Xiao, L., Nie, X., Cheng, Y. and Wang, N. (2021) Sodi-um-Glucose Cotransporter-2 Inhibitors in Vascular Biology: Cellular and Molecular Mechanisms. Cardiovascular Drugs and Therapy, 35, 1253-1267.
https://doi.org/10.1007/s10557-021-07216-9
[44] Wiviott, S.D., Raz, I., Bonaca, M.P., Mosenzon, O., et al. (2018) The Design and Rationale for the Dapagliflozin Effect on Cardiovascular Events (DECLARE)-TIMI 58 Trial. American Heart Journal, 200, 83-89.
https://doi.org/10.1016/j.ahj.2018.01.012
[45] Lee, D.M., Battson, M.L., Jarrell, D.K., Hou, S., et al. (2018) SGLT2 Inhibition via Dapagliflozin Improves Generalized Vascular Dysfunction and Alters the Gut Microbiota in Type 2 Diabetic Mice. Cardiovascular Diabetology, 17, Article No. 62.
https://doi.org/10.1186/s12933-018-0708-x
[46] Madonna, R., Barachini, S., Moscato, S., Ippolito, C., et al. (2022) Sodium-Glucose Cotransporter Type 2 Inhibitors Prevent Ponatinib-Induced Endothelial Senescence and Disfunction: A Potential Rescue Strategy. Vascular Pharmacology, 142, Article ID: 106949.
https://doi.org/10.1016/j.vph.2021.106949
[47] Hong, J.Y., Park, K.Y., Kim, J.D., Hwang, W.M., et al. (2021) Response: Effects of 6 Months of Dapagliflozin Treatment on Metabolic Profile and Endothelial Cell Dysfunction for Obese Type 2 Diabetes Mellitus Patients without Atherosclerotic Cardiovascular Disease. (J Obes Metab Syndr 2020; 29: 215-21). Journal of Obesity & Metabolic Syndrome, 30, 74-75.
https://doi.org/10.7570/jomes21006
[48] Van Bommel, E.J.M., Smits, M.M., Ruiter, D., Muskiet, M.H.A., et al. (2020) Effects of Dapagliflozin and Gliclazide on the Cardiorenal Axis in People with Type 2 Diabetes. Journal of Hypertension, 38, 1811-1819.
https://doi.org/10.1097/HJH.0000000000002480
[49] Hidalgo Santiago, J.C., Maraver Delgado, J., Cayón Blanco, M., López Saez, J.B., et al. (2020) Effect of Dapagliflozin on Arterial Stiffness in Patients with Type 2 Diabetes Mellitus. Medicina Clinica, 154, 171-174.
https://doi.org/10.1016/j.medcli.2019.05.028
[50] Papadopoulou, E., Loutradis, C., Tzatzagou, G., Kotsa, K., et al. (2021) Dapagliflozin Decreases Ambulatory Central Blood Pressure and Pulse Wave Velocity in Patients with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Journal of Hypertension, 39, 749-758.
https://doi.org/10.1097/HJH.0000000000002690
[51] Patoulias, D., Papadopoulos, C., Zografou, I., Katsimardou, A., et al. (2022) Effect of Empagliflozin and Dapagliflozin on Ambulatory Arterial Stiffness in Patients with Type 2 Dia-betes Mellitus and Cardiovascular Co-Morbidities: A Prospective, Observational Study. Medicina, 58, Article 1167.
https://doi.org/10.3390/medicina58091167
[52] Wei, R., Wang, W., Pan, Q. and Guo, L, (2022) Effects of SGLT-2 Inhibitors on Vascular Endothelial Function and Arterial Stiffness in Subjects with Type 2 Diabetes: A Systematic Re-view and Meta-Analysis of Randomized Controlled Trials. Frontiers in Endocrinology, 13, Article 826604.
https://doi.org/10.3389/fendo.2022.826604
[53] Sawada, T., Uzu, K., Hashimoto, N., Onishi, T., et al. (2020) Em-pagliflozin;s Ameliorating Effect on Plasma Triglycerides: Association with Endothelial Function Recovery in Diabetic Patients with Coronary Artery Disease. Journal of Atherosclerosis and Thrombosis, 27, 644-656.
https://doi.org/10.5551/jat.50807
[54] Sposito, A.C., Breder, I., Soares, A.A.S., Kimura-Medorima, S.T., et al. (2021) Dapagliflozin Effect on Endothelial Dysfunction in Diabetic Patients with Atherosclerotic Disease: A Randomized Active-Controlled Trial. Cardiovascular Diabetology, 20, Article No. 74.
https://doi.org/10.1186/s12933-021-01264-z
[55] Juni, R.P., Al-Shama, R., Kuster, D.W.D., Van Der Velden, J., et al. (2021) Empagliflozin Restores Chronic Kidney Disease-Induced Impairment of Endothelial Regulation of Cardio-myocyte Relaxation and Contraction. Kidney International, 99, 1088-1101.
https://doi.org/10.1016/j.kint.2020.12.013
[56] Mancini, S.J., Boyd, D., Katwan, O.J., Strembitska, A., et al. (2018) Canagliflozin Inhibits Interleukin-1β-Stimulated Cytokine and Chemokine Secretion in Vascular Endothelial Cells by AMP-Activated Protein Kinase-Dependent and -Independent Mechanisms. Scientific Reports, 8, Article No. 5276.
https://doi.org/10.1038/s41598-018-23420-4
[57] Welborn, T.A., Breckenridge, A., Rubinstein, A.H., Dollery, C.T., et al. (1966) Serum-Insulin in Essential Hypertension and in Peripheral Vascular Disease. Lancet, 1, 1336-1337.
https://doi.org/10.1016/S0140-6736(66)92132-5
[58] Arnlöv, J., Pencina, M.J., Nam, B.H., Meigs, J.B., et al. (2005) Relations of Insulin Sensitivity to Longitudinal Blood Pressure Tracking: Variations with Baseline Age, Body Mass Index, and Blood Pressure. Circulation, 112, 1719-1727.
https://doi.org/10.1161/CIRCULATIONAHA.105.535039
[59] Joannides, C.N., Mangiafico, S.P., Waters, M.F., Lamont, B.J., et al. (2017) Dapagliflozin Improves Insulin Resistance and Glucose Intolerance in a Novel Transgenic Rat Model of Chronic Glucose Overproduction and Glucose Toxicity. Diabetes, Obesity & Metabolism, 19, 1135-1146.
https://doi.org/10.1111/dom.12923
[60] O;Brien, T.P., Jenkins, E.C., Estes, S.K., Castaneda, A.V., et al. (2017) Correcting Postprandial Hyperglycemia in Zucker Diabetic Fatty Rats with An SGLT2 Inhibitor Restores Glucose Effec-tiveness in the Liver and Reduces Insulin Resistance in Skeletal Muscle. Diabetes, 66, 1172-1184.
https://doi.org/10.2337/db16-1410
[61] Merovci, A., Solis-Herrera, C., Daniele, G., Eldor, R., et al. (2014) Dapagliflozin Improves Muscle Insulin Sensitivity But Enhances Endogenous Glucose Production. The Journal of Clin-ical Investigation, 124, 509-514.
https://doi.org/10.1172/JCI70704
[62] Jinnouchi, H., Yoshida, A., Tsuyuno, H., Iwamoto, K., et al. (2021) Changes in Urinary Glucose Concentration and Body Weight in Patients Treated with the Selective SGLT2 Inhibitor Luseogliflozin. Diabetes Research and Clinical Practice, 182, Article ID: 108916.
https://doi.org/10.1016/j.diabres.2021.108916
[63] Xu, L., Nagata, N., Nagashimada, M., Zhuge, F., et al. (2017) SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Re-sistance by Polarizing M2 Macrophages in Diet-Induced Obese Mice. eBioMedicine, 20,137-149.
https://doi.org/10.1016/j.ebiom.2017.05.028
[64] Okauchi, S., Shimoda, M., Obata, A., Kimura, T., et al. (2016) Protective Effects of SGLT2 Inhibitor Luseogliflozin on Pancreatic β-Cells in Obese Type 2 Diabetic Db/Db Mice. Bio-chemical and Biophysical Research Communications, 470, 772-782.
https://doi.org/10.1016/j.bbrc.2015.10.109
[65] Hogan, M.F., Hackney, D.J., Aplin, A.C., Mundinger, T.O., et al. (2021) SGLT2-I Improves Markers of Islet Endothelial Cell Function in Db/Db Diabetic Mice. The Journal of Endocri-nology, 248, 95-106.
https://doi.org/10.1530/JOE-20-0354
[66] Qiang, S., Nakatsu, Y., Seno, Y., Fujishiro, M., et al. (2015) Treatment with the SGLT2 Inhibitor Luseogliflozin Improves Nonalcoholic Steatohepatitis in a Rodent Model with Diabetes Melli-tus. Diabetology & Metabolic Syndrome, 7, Article No. 104.
https://doi.org/10.1186/s13098-015-0102-8
[67] Forman, J.P., Stampfer, M.J. and Curhan, G.C, (2009) Diet and Lifestyle Risk Factors Associated with Incident Hypertension in Women. JAMA, 302, 401-411.
https://doi.org/10.1001/jama.2009.1060
[68] Stamler, R., Stamler, J., Riedlinger, W.F., Algera, G., et al. (1978) Weight and Blood Pressure. Findings in Hypertension Screening of 1 Million Americans. JAMA, 240, 1607-1610.
https://doi.org/10.1001/jama.1978.03290150053024
[69] Cai, X., Ji, L., Chen, Y., Yang, W., et al. (2017) Com-parisons of Weight Changes Between Sodium-Glucose Cotransporter 2 Inhibitors Treatment and Glucagon-Like Pep-tide-1 Analogs Treatment in Type 2 Diabetes Patients: A Meta-Analysis. Journal of Diabetes Investigation, 8, 510-517.
https://doi.org/10.1111/jdi.12625
[70] Lee, P.C., Ganguly, S. and Goh, S.Y. (2018) Weight Loss Associated with Sodium-Glucose Cotransporter-2 Inhibition: A Review of Evidence and Underlying Mechanisms. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 19, 1630-1641.
https://doi.org/10.1111/obr.12755
[71] Brown, R.E., Gupta, N. and Aronson, R, (2017) Effect of Dapagliflozin on Glycemic Control, Weight, and Blood Pressure in Patients with Type 2 Diabetes Attending a Specialist Endocrinology Practice in Canada: A Retrospective Cohort Analysis. Diabetes Technology & Therapeutics, 19, 685-691.
https://doi.org/10.1089/dia.2017.0134
[72] Tandon, S., Ayis, S., Hopkins, D., Harding, S., et al. (2021) The Im-pact of Pharmacological and Lifestyle Interventions on Body Weight in People with Type 1 Diabetes: A Systematic Re-view and Meta-Analysis. Diabetes, Obesity & Metabolism, 23, 350-362.
https://doi.org/10.1111/dom.14221
[73] American Diabetes Association Professional Practice Committee (2022) 9 Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2022. Diabetes Care, 45, S125-S143.
https://doi.org/10.2337/dc22-S009
[74] Wong, J., Chan, K.Y. and Lo, K. (2021) Sodium-Glucose Co-Transporter 2 Inhibitors on Weight Change and Cardiometabolic Profiles in Individuals with Overweight Or Obesity and without Diabetes: A Meta-Analysis. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 22, e13336.
https://doi.org/10.1111/obr.13336
[75] Ohara, K., Masuda, T., Murakami, T., Imai, T., et al. (2019) Effects of the Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin on Fluid Distribution: A Comparison Study with Furosemide and Tolvaptan. Nephrology, 24, 904-911.
https://doi.org/10.1111/nep.13552
[76] Ferrannini, E., Baldi, S., Frascerra, S., Astiarraga, B., et al. (2016) Shift to Fatty Substrate Utilization in Response to Sodium-Glucose Cotransporter 2 Inhibition in Subjects without Diabetes and Patients with Type 2 Diabetes. Diabetes, 65, 1190-1195.
https://doi.org/10.2337/db15-1356
[77] Ohta, A., Kato, H., Ishii, S., Sasaki, Y., et al. (2017) Ipragliflozin, a Sodium Glucose Co-Transporter 2 Inhibitor, Reduces Intrahepatic Lipid Content and Abdominal Visceral Fat Volume in Patients with Type 2 Diabetes. Expert Opinion on Pharmacotherapy, 18, 1433-1438.
https://doi.org/10.1080/14656566.2017.1363888
[78] Yamamoto, C., Miyoshi, H., Ono, K., Sugawara, H., et al. (2016) Ipragliflozin Effectively Reduced Visceral Fat in Japanese Patients with Type 2 Diabetes under Adequate Diet Therapy. Endocrine Journal, 63, 589-596.
https://doi.org/10.1507/endocrj.EJ15-0749
[79] Xu, L. and Ota, T. (2018) Emerging Roles of SGLT2 Inhibitors in Obesity and Insulin Resistance: Focus on Fat Browning and Macrophage Polarization. Adipocyte, 7, 121-128.
https://doi.org/10.1080/21623945.2017.1413516
[80] Ost, A., Svensson, K., Ruishalme, I., Brännmark, C., et al. (2010) Attenuated MTOR Signaling and Enhanced Autophagy in Adipocytes from Obese Patients with Type 2 Diabetes. Molecular Medicine, 16, 235-246.
https://doi.org/10.2119/molmed.2010.00023
[81] Costa, J., Moreira, A., Moreira, P., Delgado, L., et al. (2019) Ef-fects of Weight Changes in the Autonomic Nervous System: A Systematic Review and Meta-Analysis. Clinical Nutrition, 38, 110-126.
https://doi.org/10.1016/j.clnu.2018.01.006