内皮糖蕚在急性胰腺炎所致凝血功能障碍中的机制研究
Mechanisms of Endothelial Glycocalyx in Coagulation Abnormalities Due to Acute Pancreatitis
DOI: 10.12677/ACM.2024.142360, PDF, HTML, XML, 下载: 58  浏览: 107 
作者: 谭永娇*, 吴 蓉#:重庆医科大学附属第二医院消化内科,重庆
关键词: 急性胰腺炎凝血功能内皮糖蕚炎症反应Acute Pancreatitis Coagulation Endothelial Glycocalyx Inflammation
摘要: 急性胰腺炎(acute pancreatitis, AP)是一种常见的严重程度不等的炎症性疾病,从轻微的局部炎症到全身受累,炎症反应和凝血功能障碍贯穿始终,相互促进,并深刻影响着AP患者的治疗和预后。越来越多的研究表明凝血异常与该疾病的严重程度密切相关,而内皮糖萼作为抵抗内皮损伤的第一道防线,在维持凝血和抗凝之间的微妙平衡起着至关重要的作用。因此本综述旨在总结以下内容:1) 内皮糖萼的结构和功能,2) 它在AP所导致的凝血功能障碍中的潜在作用,以及3) 总结基于内皮糖蕚的保护机制,优化AP的治疗方案。
Abstract: Acute pancreatitis (AP) is a common inflammatory disease of varying severity, ranging from mild local inflammation to systemic involvement, with inflammation and coagulation abnormalities con-tributing to each other throughout and profoundly affecting the therapeutic process and prognosis of AP patients. A growing number of studies have shown that coagulation abnormalities are strongly correlated with the severity of the disease and that the endothelial glycocalyx, the first line of de-fense against endothelial injury, plays a vital role in maintaining the delicate balance between blood coagulation and anticoagulation. Therefore, this review aims to summarize: 1) the structure and function of the endothelial glycocalyx, 2) its potential role in the coagulation abnormalities caused by AP, and 3) to summarize the protective mechanisms based on the endothelial glycocalyx to optimize the therapeutic regimen for AP.
文章引用:谭永娇, 吴蓉. 内皮糖蕚在急性胰腺炎所致凝血功能障碍中的机制研究[J]. 临床医学进展, 2024, 14(2): 2555-2562. https://doi.org/10.12677/ACM.2024.142360

1. 引言

急性胰腺炎(acute pancreatitis, AP)是一种常见的急腹症,发病率约0.003% [1] ,其中15%~20%会进展为重症急性胰腺炎(severe acute pancreatitis, SAP),继发全身炎症反应综合征(systemic inflammatory response syndrome, SIRS)、凝血功能障碍、多器官功能障碍综合征(Multiple organ dysfunction syndrome, MODS)等,病死率高达20%~50% [2] [3] [4] 。

AP病因极其复杂,发病机制也尚未完全阐明,目前公认关键机制包括:胰酶的过早激活和释放引发腺泡细胞的凋亡、细胞因子介导的炎症反应、凝血系统的激活、血管内皮的损伤 [5] [6] 。这些机制相互影响、共同作用,促进AP发生和发展。研究表明,凝血系统激活在AP进展过程中扮演着至关重要的角色,且与AP的严重程度密切相关 [7] [8] ,但是关于引起AP凝血功能障碍的机制研究却不甚明了,已有研究中,炎症导致的血管内皮细胞损伤和内皮糖萼脱落是可以进一步探索的方向 [9] [10] 。

据报道,与血管内皮损伤、凝血功能紊乱相关的循环生物标志物,例如循环透明质酸、D-二聚体等的快速增长与急性胰腺炎的不良预后密切相关 [11] [12] [13] [14] 。而内皮糖萼既是抵抗内皮损伤的第一道防线,又在维持血液凝固和抗凝之间的微妙平衡中起着至关重要的作用 [15] 。因此为进一步探索内皮糖蕚在AP所致的凝血功能障碍中的潜在作用,本综述将总结以下内容:1) 内皮糖萼的结构和功能,2) 它在AP导致的凝血功能障碍中的潜在作用,以及3) 总结基于内皮糖蕚的保护机制,优化AP的治疗方案。

2. 内皮糖蕚的结构

内皮糖蕚是锚定于血管内皮腔表面的一层膜状结构,迄今为止,电子显微镜可视化成像仍是观察内皮糖蕚的主要手段 [15] 。它的主体由多种蛋白聚糖和糖蛋白构成 [16] 。

每个蛋白聚糖都有一个核心蛋白,根据其在细胞微环境中的定位,可分为膜蛋白聚糖和细胞外基质蛋白聚糖 [17] ,前者以与内皮细胞牢固连接的磷脂酰肌醇蛋白聚糖家族为代表,后者则主要包括各种分泌型基质蛋白聚糖 [15] 。这些蛋白聚糖充当着“骨架”的角色,通过核心蛋白与一个或多个带负电荷的糖胺聚糖(GAG)共价连接 [18] 。GAG作为内皮糖蕚中含量最多的成分,承担着“侧链”的作用,主要包括透明质酸(HA)、硫酸乙酰肝素(HS,占整个GAG的50%~90%)和硫酸软骨素(CS) [19] 。负电荷便来自于这些高度硫酸化的GAG的羧基,借此能够与白蛋白等血浆蛋白发生静电相互作用 [20] 。而HA不同于上述硫酸化的GAG,它虽不带电,却能够和其他硫酸化的GAG形成复合物,起着固水和稳定内皮糖蕚凝胶状结构的作用 [19] 。如此一来,多个蛋白聚糖骨架和糖胺聚糖侧链彼此相连,构成一网状结构,其间白蛋白、血栓调节蛋白、细胞外超氧化物歧化酶和抗凝血酶III (AT-III)等血浆蛋白,嵌入该筛网状结构中 [21] ,对维持血管的通透性、抗氧化、抗凝血等方面有着极为重要的作用 [22] [23] 。

糖蛋白则充当粘附分子,主要包括选择素(E和P)、整合素和免疫球蛋白,兼具粘附、促凝血和纤溶的作用。一方面,作为另一种“骨干”分子,它们将糖蕚和内皮细胞膜紧密连接;另一方面,它们又作为血小板和白细胞上整合素的配体,介导血小板、白细胞与内皮细胞间的粘附作用。在细胞活化或各种炎症因子的刺激下,其表达水平随之发生显著的变化 [24] 。

3. 内皮糖蕚的功能

3.1. 天然的屏障作用

内皮糖蕚覆盖着大部分的内皮细胞,介于内皮与血流之间,形成了一道保护内皮细胞的天然机械屏障。一方面,它有效防止血流中的有害成分直接损伤内皮细胞;另一方面,它还规避了血细胞直接与血管壁相互作用的风险 [15] 。

3.2. 调节血管通透性

位于血管管腔表面的内皮糖蕚在调节血管通透性方面具有独特的机制,主要体现在以下两点:1) 内皮糖蕚因富含大量的硫酸化结构而带有负电荷,可以充当负电荷分子筛的功能 [24] ,有效阻止带负电荷的或者大于70 kDa的分子穿过血管壁;但是这项功能依赖于侧链的硫酸化修饰情况,当受到外界病理生理刺激时,例如内皮细胞的损伤,该修饰情况也会动态变化,从而影响血管通透性的调节 [24] ;2) 其次,内皮糖蕚对白蛋白具有半透性,能够构建经血管的白蛋白梯度,进而完成调节经血管的流体通量 [24] [25] 。

3.3. 抑制凝血过程

抗凝是内皮糖蕚一关键特性。其抗凝特性体现在以下方面:1) 产生并释放前列腺环素(PG)、一氧化氮(NO)和组织因子途径抑制剂(TFPI) [26] ;2) 其次,血浆中的抗凝血酶与位于管腔表面和内皮基底膜上的硫酸乙酰肝素(HS)结合,大大增强了抗凝血酶的抗凝作用 [22] ;3) 不仅如此,嵌于糖蕚网状结构中的血栓调节蛋白,其本身就具有抗炎和抗凝的活性,可因全身性促凝刺激而导致其发挥作用 [27] ;4) 此外,内皮糖蕚还可以有效抑制血小板和内皮细胞的相互作用,机制涉及以下两点:a) 糖蕚自带负电荷,排斥血小板;b) 血小板/内皮细胞粘附分子1 (PECAM-1)隐于糖蕚结构中,减少血小板上整合素与内皮细胞的结合位点,有效避免血小板的粘附作用。这些关键的抗凝功能叠加到一起,使得内皮糖蕚在维持血流中抗凝与凝血间微妙平衡有着极为重要的作用。

3.4. 控制血管表面的炎症

生理状态下,白细胞-内皮细胞的相互作用是受限制的,此源于内皮上的细胞粘附因子被糖蕚所掩盖 [10] 。然而,一旦发生炎症,内皮糖蕚就会被多种炎症介质刺激导致脱落,细胞粘附分子也会因此暴露结合位点,促进配体–受体的相互作用,进而介导白细胞的粘附。因此糖蕚的存在有效地抑制了白细胞的粘附,控制了血管表面的炎症,保护血管免受损伤。

3.5. 信号传导作用

由于血流的冲刷,血管壁始终暴露于血流产生的机械应力下,而内皮糖蕚作为内皮细胞上的机械感受器 [28] ,可以感受由血流引起的剪切力。当增加剪切力时,可能会增加NO的产生,进而导致血管扩张 [29] 。有研究表明,糖萼的厚度与剪切依赖性白蛋白吸收过程有关,与静态条件下相比,暴露于剪切应力下的内皮细胞的糖蕚层会增加对白蛋白的摄取,糖蕚层的厚度也随之增厚 [30] 。当糖萼完整时,剪切应力可以通过核心蛋白传递到肌动蛋白细胞骨架,或直接传递到细胞膜,从而介导细胞信号转导 [31] 。对糖萼的损伤会损害这些机制,并扰乱内皮对机械应力的反应。

除了物理压力外,配体和酶与糖萼的结合还诱导信号转导和酶促修饰 [32] 。例如,抗凝血酶作为一种丝氨酸蛋白酶抑制剂,可与硫酸乙酰肝素蛋白聚糖(syndecan-4)结合,从而增加其抑制活性 [33] ;再例如,成纤维细胞生长因子(FGF)和上皮生长因子等生长因子的活性取决于与糖萼的相互作用 [34] 。总之,糖萼既能作为物理感受器,又能充当化学信号的受体,从而诱导血管内皮的生理反应。

4. 内皮糖蕚的破坏在急性胰腺炎所致凝血功能障碍中的机制和作用

4.1. 内皮糖蕚屏障功能受损,促进血小板和内皮细胞的相互作用

完整的内皮糖蕚覆盖于内皮细胞的表面,作为一道天然的负电荷屏障,有效规避血小板与内皮细胞的直接作用,进而防止血小板粘附和微血栓的形成 [24] [35] 。然而,AP促发炎症反应时,关键的炎症介质肿瘤坏死因子-α (TNF-α)直接激活白细胞释放自由基,引起糖蕚降解和脱落,肥大细胞则直接释放硫酸乙酰肝素酶(HPSE),破坏内皮糖蕚的结构 [36] [37] ,使其屏障功能随之丧失,难以抑制血小板和内皮细胞的相互作用,从而导致血小板粘附、微血栓的形成。

不仅如此,内皮糖蕚的脱落,使掩于其间的血小板/内皮细胞粘附分子1 (PECAM-1)彻底暴露,通过配体-受体作用,介导血小板粘附、激活、聚集,并与纤维蛋白原和纤维蛋白相结合,导致血栓的形成 [38] 。此外,血小板的激活会反馈促凝血P-选择素的表达 [39] ,P-选择素隶属于细胞粘附分子,它的过度表达,将进一步介导血小板、白细胞与内皮细胞的粘附,不但引起血栓形成,还导致组织炎症浸润 [40] ,促进血栓–炎症的相互作用。与此同时,炎症的发展也将进一步加速内皮糖蕚的降解,正反馈促进“炎症–糖蕚降解–血栓–炎症”的恶性循环。

4.2. 内皮糖蕚降解使得抗凝介质结合位点丢失

据报道,多种抗凝介质通过与内皮糖蕚结合发挥抗凝作用,例如:AT-III、TFPI和血栓调节蛋白 [35] 。AT-III是主要的内源性抗凝剂之一,有抑制凝血酶、活化因子X和IX(FXa和FIXa)的作用 [41] ,研究证实,其与硫酸乙酰肝素(HS)的特定区域结合相结合,会引起构象变化,抗凝活性将呈数量级增长 [22] [42] ;不仅如此,TFPI作为活化因子VII (FVIIa)和FXa的有效抑制剂,也通过HS与内皮糖蕚相结合,发挥其抗凝作用;此外,含有硫酸软骨素(CS)的血栓调节蛋白通过与凝血酶相结合,将凝血酶从促凝酶转化为蛋白C通路的激活剂,从而成为抗凝剂 [35] 。因此在内皮糖蕚脱落后,这些抗凝物质会丢失与糖蕚的结合位点,致使抗凝与促凝之间的平衡难以维系 [10] ,而与此同时,降解脱落到血液中的HS和CS的抗凝活性却得以保留,诱导内源性肝素化的发生 [43] 。如此一来,内皮糖蕚的破坏将会导致凝血的过度激活和病理性纤溶亢进,进而进展至弥漫性血管内凝血(DIC)。

4.3. 内皮糖萼机械传导功能受损

内皮功能障碍是导致凝血紊乱的一大主要因素 [44] 。而血液流动时产生的剪切应力,对维持内皮功能的稳态有着极为重要的作用 [45] ,主要体现在:1) 它调节内皮细胞的增殖、存活和凋亡;2) 调节内皮细胞抗血栓活性;3) 调节内皮细胞与白细胞的粘附的相互作用;4) 参与内皮细胞的生物信号传导 [28] [45] [46] [47] 。糖蕚作为内皮细胞的机械感受器,更是信号传导过程中的关键一环。当血流流经血管壁,产生的剪切力会被糖蕚首先感知,通过衔接复杂的分子传递过程,触发一系列信号通路,达到调节生物学功能的目的,例如,当增加剪切力时,锚定于细胞质膜内陷处的硫酸乙酰肝素蛋白聚糖感知机械力变化,诱导内皮型一氧化氮合酶(eNOS)的激活,促进NO的合成和释放,进而发挥调控血管舒张,并抑制白细胞和血小板粘附的功能 [10] [48] 。而AP,尤其是SAP,作为一组序贯综合征,从局部炎症发展到全身炎症反应,内皮糖蕚开始脱落,随着这种机械感受器的丧失,内皮细胞多种信号传导功能难以维系,进而出现内皮功能障碍,尤其介导的血管舒缩、抗炎和抗凝血功能也会随之丧失。

5. 内皮糖蕚的保护

5.1. 使用胶体保护内皮糖蕚的完整性

液体复苏是AP早期救治的关键手段。白蛋白是一种常用于容量复苏的胶体,已被提议具有糖萼保护作用。它可以携带由红细胞衍生的1-磷酸鞘氨醇(S1P)进入内皮细胞,而SIP本身可以促进内皮糖蕚的再生和修复 [49] 。有临床试验研究显示,用白蛋白进行液体复苏的一组,糖蕚的降解产物明显降低,事实证明,输注白蛋白比使用羟乙基淀粉(HES)和0.9%生理盐水进行液体复苏,能更有效地防止糖萼降解 [50] [51] 。

5.2. 肝素改善内皮糖蕚的功能

肝素是治疗高脂血症胰腺炎的常用方案,它具有抗炎和抗凝的特性,本质其实是一种糖胺聚糖(GAG)。而GAG是内皮糖蕚的主要组成成分之一,因此肝素作为一种外源性GAG来修复或改善内皮糖萼的功能已有证据支持 [52] 。一方面,肝素可以抑制HPSE的活性,使得HS免于降解,从而达到保护糖蕚的目的 [53] ;另一方面,一项研究表明,肺内皮细胞上的糖萼的降解源于TNF-α依赖性肝素酶的激活,引起HS的分解所致,而加用肝素治疗,则有效地减弱了这种作用 [54] 。因此,肝素用于治疗AP,除了抗凝、降脂以外,其对内皮糖蕚的保护也是一重要原因。

5.3. 糖皮质激素(GCs)抑制内皮糖蕚的降解

TNF-α导致是AP进展的关键介质之一,据报道,它的释放与糖蕚降解密切相关,其机制在于TNF-α会激活白细胞释放自由基,这些自由基直接降解内皮糖蕚 [55] [56] 。已有研究证实,GCs的应用显著减少TNF-α诱导的糖蕚脱落 [57] ,可能的原因在于GCs具有抗炎与免疫抑制的特性,减弱了PI3K/AKT信号传导,从而显著抑制TNF-α表达 [56] [58] ,以此规避糖蕚降解。不仅如此,一些研究强调GCs对稳定肥大细胞的重要性,能有效防止肥大细胞脱颗粒,减少HPSE产生,从而进一步减弱对糖蕚的降解作用 [36] 。此外,AP进展过程中伴随着肠道黏膜受损,可引起内毒素移位形成肠源性内毒素血症,进而激活补体系统,促发TNF-α、IL-6、IL-8等炎性因子产生 [59] ,诱导糖蕚脱落,而GCs的应用能可以减弱机体对细菌内毒素刺激的反应性,减少炎症因子的释放 [59] ,从而减轻内毒素对糖蕚的破坏。因此GCs用于治疗AP,能从多方面抑制内皮糖蕚的降解,对维持其完整性有着重要作用。

6. 总结与展望

内皮糖蕚的损伤在AP发生发展中的潜在作用已经越来越为人所关注,选择内皮糖蕚作为治疗靶点,更好地保护血管内皮的屏障功能,也将更有效地纠正凝血功能紊乱,更科学的指导液体复苏和抗炎治疗,这为AP和相关凝血功能紊乱的管理提供了一种新的理念。关于促进内皮糖蕚降解的机制仍需进一步的研究来指导治疗策略。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Roberts, S.E., Akbari, A., Thorne, K., et al. (2013) The Incidence of Acute Pancreatitis: Impact of Social Deprivation, Alcohol Consumption, Seasonal and Demographic Factors. Alimentary Pharmacology & Therapeutics, 38, 539-548.
https://doi.org/10.1111/apt.12408
[2] Zhou, H., Mei, X., He, X., et al. (2019) Severity Stratification and Prognos-tic Prediction of Patients with Acute Pancreatitis at Early Phase: A Retrospective Study. Medicine, 98, e15275.
https://doi.org/10.1097/MD.0000000000015275
[3] Banks, P.A., Bollen, T.L., Dervenis, C., et al. (2013) Classi-fication of Acute Pancreatitis—2012: Revision of the Atlanta Classification and Definitions by International Consensus. Gut, 62, 102-111.
https://doi.org/10.1136/gutjnl-2012-302779
[4] Zhang, F.X., Li, Z.L., Zhang, Z.D., et al. (2019) Prognostic Value of Red Blood Cell Distribution Width for Severe Acute Pancreatitis. World Journal of Gastroenterology, 25, 4739-4748.
https://doi.org/10.3748/wjg.v25.i32.4739
[5] Ince, A.T. and Baysal, B. (2014) Pathophysiology, Classification and Available Guidelines of Acute Pancreatitis. Turkish Journal of Gastroenterology, 25, 351-357.
https://doi.org/10.5152/tjg.2014.13005
[6] Do, J.H. (2015) Mechanism of Severe Acute Pancreatitis: Focusing on Development and Progression. The Korean Journal of Pancreas and Biliary Tract, 20, 115-123.
https://doi.org/10.15279/kpba.2015.20.3.115
[7] Cuthbertson, C.M. and Christophi, C. (2006) Disturbances of the Microcirculation in Acute Pancreatitis. British Journal of Surgery, 93, 518-530.
https://doi.org/10.1002/bjs.5316
[8] Tukiainen, E., Kylänpää, M.L., Repo, H., et al. (2009) Hemostatic Gene Polymorphisms in Severe Acute Pancreatitis. Pancreas, 38, e43-e46.
https://doi.org/10.1097/MPA.0b013e31819827ef
[9] Levi, M. and Van Der Poll, T. (2010) Inflammation and Coagulation. Critical Care Medicine, 38, S26-S34.
https://doi.org/10.1097/CCM.0b013e3181c98d21
[10] Iba, T. and Levy, J.H. (2019) Derangement of the Endothe-lial Glycocalyx in Sepsis. Journal of Thrombosis and Haemostasis, 17, 283-294.
https://doi.org/10.1111/jth.14371
[11] Dumnicka, P., Maduzia, D., Ceranowicz, P., et al. (2017) The Interplay Be-tween Inflammation, Coagulation and Endothelial Injury in the Early Phase of Acute Pancreatitis: Clinical Implications. International Journal of Molecular Sciences, 18, Article 354.
https://doi.org/10.3390/ijms18020354
[12] Dumnicka, P., Sporek, M., Mazur-Laskowska, M., et al. (2016) Serum Soluble Fms-Like Tyrosine Kinase 1 (SFlt-1) Predicts the Severity of Acute Pancreatitis. International Journal of Molecular Sciences, 17, Article 2038.
https://doi.org/10.3390/ijms17122038
[13] Liu, C., Zhou, X., Ling, L., et al. (2019) Prediction of Mortality and Organ Failure Based on Coagulation and Fibrinolysis Markers in Patients with Acute Pancreatitis: A Retrospective Study. Medicine, 98, e15648.
https://doi.org/10.1097/MD.0000000000015648
[14] Koźma, E.M., Kuźnik-Trocha, K., Winsz-Szczotka, K., et al. (2020) Significant Remodeling Affects the Circulating Glycosaminoglycan Profile in Adult Patients with Both Severe and Mild Forms of Acute Pancreatitis. Journal of Clinical Medicine, 9, Article 1308.
https://doi.org/10.3390/jcm9051308
[15] Zou, Z., Li, L., Schäfer, N., et al. (2021) Endothelial Glycocalyx in Trau-matic Brain Injury Associated Coagulopathy: Potential Mechanisms and Impact. Journal of Neuroinflammation, 18, Arti-cle No. 134.
https://doi.org/10.1186/s12974-021-02192-1
[16] Jedlicka, J., Becker, B.F. and Chappell, D. (2020) Endothelial Glycocalyx. Critical Care Clinics, 36, 217-232.
https://doi.org/10.1016/j.ccc.2019.12.007
[17] Rosenberg, R.D., Shworak, N.W., Liu, J., et al. (1997) Heparan Sulfate Proteoglycans of the Cardiovascular System. Specific Structures Emerge But How Is Synthesis Regulated? Journal of Clinical Investigation, 99, 2062-2070.
https://doi.org/10.1172/JCI119377
[18] Sarrazin, S., Lamanna, W.C. and Esko, J.D. (2011) Heparan Sulfate Pro-teoglycans. Cold Spring Harbor Perspectives in Biology, 3, a004952.
https://doi.org/10.1101/cshperspect.a004952
[19] Broekhuizen, L.N., Mooij, H.L., Kastelein, J.J., et al. (2009) En-dothelial Glycocalyx as Potential Diagnostic and Therapeutic Target in Cardiovascular Disease. Current Opinion in Lip-idology, 20, 57-62.
https://doi.org/10.1097/MOL.0b013e328321b587
[20] Chappell, D., Jacob, M., Paul, O., et al. (2009) The Gly-cocalyx of the Human Umbilical Vein Endothelial Cell: An Impressive Structure ex Vivo But Not in Culture. Circulation Research, 104, 1313-1317.
https://doi.org/10.1161/CIRCRESAHA.108.187831
[21] Adamson, R.H. and Clough, G. (1992) Plasma Proteins Modify the Endothelial Cell Glycocalyx of Frog Mesenteric Microvessels. The Journal of Physiology, 445, 473-486.
https://doi.org/10.1113/jphysiol.1992.sp018934
[22] De Agostini, A.I., Watkins, S.C., Slayter, H.S., et al. (1990) Localization of Anticoagulantly Active Heparan Sulfate Proteoglycans in Vascular Endothelium: Antithrombin Binding on Cultured Endothelial Cells and Perfused Rat Aorta. Journal of Cell Biology, 111, 1293-1304.
https://doi.org/10.1083/jcb.111.3.1293
[23] Schött, U., Solomon, C., Fries, D. and Bentzer, P. (2016) The Endo-thelial Glycocalyx and Its Disruption, Protection and Regeneration: A Narrative Review. Scandinavian Journal of Trau-ma, Resuscitation and Emergency Medicine, 24, Article No. 48.
https://doi.org/10.1186/s13049-016-0239-y
[24] Alphonsus, C.S. and Rodseth, R.N. (2014) The Endothelial Gly-cocalyx: A Review of the Vascular Barrier. Anaesthesia, 69, 777-784.
https://doi.org/10.1111/anae.12661
[25] Pillinger, N.L. and Kam, P. (2017) Endothelial Glycocalyx: Basic Science and Clinical Implications. Anaesth Intensive Care, 45, 295-307.
https://doi.org/10.1177/0310057X1704500305
[26] Ott, I., Miyagi, Y., Miyazaki, K., et al. (2000) Reversible Reg-ulation of Tissue Factor-Induced Coagulation by Glycosyl Phosphatidylinositol-Anchored Tissue Factor Pathway Inhib-itor. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 874-882.
https://doi.org/10.1161/01.ATV.20.3.874
[27] Helms, J., Clere-Jehl, R., Bianchini, E., et al. (2017) Thrombomod-ulin Favors Leukocyte Microvesicle Fibrinolytic Activity, Reduces NETosis and Prevents Septic Shock-Induced Coag-ulopathy in Rats. Annals of Intensive Care, 7, Article No. 118.
https://doi.org/10.1186/s13613-017-0340-z
[28] Zeng, Y., Zhang, X.F., Fu, B.M. and Tarbell, J.M. (2018) The Role of Endothelial Surface Glycocalyx in Mechanosensing and Transduction. Advances in Experimental Medicine and Biology, 1097, 1-27.
https://doi.org/10.1007/978-3-319-96445-4_1
[29] Pries, A.R., Secomb, T.W. and Gaehtgens, P. (2000) The En-dothelial Surface Layer. Pflügers Archiv, 440, 653-666.
https://doi.org/10.1007/s004240000307
[30] Ueda, A., Shimomura, M., Ikeda, M., et al. (2004) Effect of Gly-cocalyx on Shear-Dependent Albumin Uptake in Endothelial Cells. American Journal of Physiology-Heart and Circula-tory Physiology, 287. H2287-H2294.
https://doi.org/10.1152/ajpheart.00808.2003
[31] Thi, M.M., Tarbell, J.M., Weinbaum, S., et al. (2004) The Role of the Glycocalyx in Reorganization of the Actin Cytoskeleton Under Fluid Shear Stress: A “Bumper-Car” Model. Pro-ceedings of the National Academy of Sciences of the United States of America, 101, 16483-16488.
https://doi.org/10.1073/pnas.0407474101
[32] Gouverneur, M., Spaan, J.A., Pannekoek, H., et al. (2006) Fluid Shear Stress Stimulates Incorporation of Hyaluronan into Endothelial Cell Glycocalyx. American Journal of Physiolo-gy-Heart and Circulatory Physiology, 290, H458- H452.
https://doi.org/10.1152/ajpheart.00592.2005
[33] Shriver, Z., Sundaram, M., Venkataraman, G., et al. (2000) Cleavage of the Antithrombin III Binding Site in Heparin by Hepa-rinases and Its Implication in the Generation of Low Molecular Weight Heparin. Proceedings of the National Academy of Sciences of the United States of America, 97, 10365-10370.
https://doi.org/10.1073/pnas.97.19.10365
[34] Yang, Y., Haeger, S.M., Suflita, M.A., et al. (2017) Fibroblast Growth Factor Signaling Mediates Pulmonary Endothelial Gly-cocalyx Reconstitution. American Journal of Respiratory Cell and Molecular Biology, 56, 727-737.
https://doi.org/10.1165/rcmb.2016-0338OC
[35] Reitsma, S., Slaaf, D.W., Vink, H., et al. (2007) The Endothelial Glycocalyx: Composition, Functions, and Visualization. Pflügers Archiv—European Journal of Physiology, 454, 345-359.
https://doi.org/10.1007/s00424-007-0212-8
[36] Kolářová, H., Ambrůzová, B., Svihálková, Šindlerová, L., et al. (2014) Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions. Mediators of Inflam-mation, 2014, Article ID: 694312.
https://doi.org/10.1155/2014/694312
[37] Vaccaro, M.I., Ropolo, A., Grasso, D., et al. (2000) Pancreatic Acinar Cells Submitted To Stress Activate TNF-α Gene Expression. Biochemical and Biophysical Research Communications, 268, 485-490.
https://doi.org/10.1006/bbrc.2000.2151
[38] Kohli, S., Shahzad, K., Jouppila, A., et al. (2022) Thrombosis and In-flammation—A Dynamic Interplay and the Role of Glycosaminoglycans and Activated Protein C. Frontiers in Cardio-vascular Medicine, 9, Article 866751.
https://doi.org/10.3389/fcvm.2022.866751
[39] Croce, K. and Libby, P. (2007) Intertwining of Thrombosis and In-flammation in Atherosclerosis. Current Opinion in Hematology, 14, 55-61.
https://doi.org/10.1097/00062752-200701000-00011
[40] Henn, V., Slupsky, J.R., Gräfe, M., et al. (1998) CD40 Ligand on Activated Platelets Triggers an Inflammatory Reaction of Endothelial Cells. Nature, 391, 591-594.
https://doi.org/10.1038/35393
[41] Quinsey, N.S., Greedy, A.L., Bottomley, S.P., et al. (2004) Antithrombin: In Control of Coagulation. The International Journal of Biochemistry & Cell Biology, 36, 386-389.
https://doi.org/10.1016/S1357-2725(03)00244-9
[42] Bohdan, N., Espín, S., Águila, S., et al. (2016) Heparanase Activates Antithrombin through the Binding to Its Heparin Binding Site. PLOS ONE, 11, e0157834.
https://doi.org/10.1371/journal.pone.0157834
[43] Ostrowski, S.R. and Johansson, P.I. (2012) Endothelial Gly-cocalyx Degradation Induces Endogenous Heparinization in Patients with Severe Injury and Early Traumatic Coagulopa-thy. Journal of Trauma and Acute Care Surgery, 73, 60-66.
https://doi.org/10.1097/TA.0b013e31825b5c10
[44] Wolberg, A.S., Aleman, M.M., Leiderman, K., et al. (2012) Procoagulant Activity in Hemostasis and Thrombosis: Virchow’s Triad Revisited. Anesthesia & Analgesia, 114, 275-285.
https://doi.org/10.1213/ANE.0b013e31823a088c
[45] Lupu, F., Kinasewitz, G. and Dormer, K. (2020) The Role of Endothelial Shear Stress on Haemodynamics, Inflammation, Coagulation and Glycocalyx during Sepsis. Journal of Cel-lular and Molecular Medicine, 24, 12258-12271.
https://doi.org/10.1111/jcmm.15895
[46] Chatterjee, S. (2018) Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways. Frontiers in Physiology, 9, Article 524.
https://doi.org/10.3389/fphys.2018.00524
[47] Peghaire, C., Dufton, N.P., Lang, M., et al. (2019) The Transcrip-tion Factor ERG Regulates a Low Shear Stress-Induced Anti-Thrombotic Pathway in the Microvasculature. Nature Communications, 10, Article No. 5014.
https://doi.org/10.1038/s41467-019-12897-w
[48] Ebong, E.E., Lopez-Quintero, S.V., Rizzo, V., et al. (2014) Shear-Induced Endothelial NOS Activation and Remodeling via Heparan Sulfate, Glypican-1, and Syndecan-1. Integra-tive Biology, 6, 338-347.
https://doi.org/10.1039/C3IB40199E
[49] Mensah, S.A., Cheng, M.J., Homayoni, H., et al. (2017) Regeneration of Glycocalyx by Heparan Sulfate and Sphingosine 1-Phosphate Restores Inter-Endothelial Communication. PLOS ONE, 12, e0186116.
https://doi.org/10.1371/journal.pone.0186116
[50] Jacob, M., Bruegger, D., Rehm, M., et al. (2006) Contrasting Effects of Colloid and Crystalloid Resuscitation Fluids on Cardiac Vascular Permeability. Anesthesiology, 104, 1223-1231.
https://doi.org/10.1097/00000542-200606000-00018
[51] Jacob, M., Paul, O., Mehringer, L., et al. (2009) Albu-min Augmentation Improves Condition of Guinea Pig Hearts after 4 Hr of Cold Ischemia. Transplantation, 87, 956-965.
https://doi.org/10.1097/TP.0b013e31819c83b5
[52] Masola, V., Zaza, G., Onisto, M., et al. (2014) Glycosamino-glycans, Proteoglycans and Sulodexide and the Endothelium: Biological Roles and Pharmacological Effects. International Angiology, 33, 243-254.
[53] Yang, R., Chen, M., Zheng, J., et al. (2021) The Role of Heparin and Glycocalyx in Blood-Brain Barrier Dysfunction. Frontiers in Immunology, 12, Article 754141.
https://doi.org/10.3389/fimmu.2021.754141
[54] Schmidt, E.P., Yang, Y., Janssen, W.J., et al. (2012) The Pulmo-nary Endothelial Glycocalyx Regulates Neutrophil Adhesion and Lung Injury during Experimental Sepsis. Nature Medi-cine, 18, 1217-1223.
https://doi.org/10.1038/nm.2843
[55] Henry, C.B. and Duling, B.R. (2000) TNF-α Increases Entry of Macromole-cules into Luminal Endothelial Cell Glycocalyx. American Journal of Physiology-Heart and Circulatory Physiology, 279, H2815-H2823.
https://doi.org/10.1152/ajpheart.2000.279.6.H2815
[56] Yu, W.Q., Zhang, S.Y., Fu, S.Q., et al. (2019) Dexame-thasone Protects the Glycocalyx on the Kidney Microvascular Endothelium during Severe Acute Pancreatitis. Journal of Zhejiang University-SCIENCE B, 20, 355-362.
https://doi.org/10.1631/jzus.B1900006
[57] Chappell, D., Hofmann-Kiefer, K., Jacob, M., et al. (2009) TNF-α In-duced Shedding of the Endothelial Glycocalyx Is Prevented by Hydrocortisone and Antithrombin. Basic Research in Cardiology, 104, 78-89.
https://doi.org/10.1007/s00395-008-0749-5
[58] Zhang, J., Yao, Y., Xiao, F., et al. (2013) Administration of Dexamethasone Protects Mice against Ischemia/Reperfu- sion Induced Renal Injury by Suppressing PI3K/AKT Signaling. International Journal of Clinical and Experimental Pathology, 6, 2366-2375.
[59] 潘静, 徐晨阳, 宋嗣恩, 等. 糖皮质激素治疗重症急性胰腺炎的研究进展[J]. 医学综述, 2019, 25(1): 82-86.