股腘动脉病变的血管腔内治疗最新进展
The Latest Advances in Endovascular Treat-ment for Femoropopliteal Artery Disease
摘要: 全世界有超过2亿人患有外周动脉疾病(Peripheral Arterial Diseases, PAD)或其最严重的表现形式——危重肢体缺血(Critical Limb Ischemia, CLI)。尽管血管内治疗已成为大多数患者的首选治疗方法,但对于股腘动脉(Femoral-Popliteal, FP)疾病的最佳治疗仍面临诸多挑战,特别是当这些病变存在严重钙化、慢性完全闭塞(Chronictotal Occlusion, CTOs)或支架再狭窄(In-Stent Restenosis, ISR)时。但随着技术的不断进步,血管内治疗的效果显著改善。当前,许多新的材料正在积极研发中。其中包括新型的紫杉醇药物涂层支架和球囊,以及可吸收支架。这些创新材料的研发,为治疗各种类型的病变提供了新的选择。此外,血管内碎石术也被广泛应用于钙化病变的治疗,同时静脉滴注抗再狭窄药物也被用来减少再狭窄的发生率。另外,经皮股腘动脉旁路移植术等新的治疗方法也在不断涌现。
Abstract: Over 200 million people worldwide suffer from Peripheral Arterial Diseases (PAD) or its most se-vere form, Critical Limb Ischemia (CLI). While endovascular treatments have become the preferred approach for the majority of patients, the optimal treatment for Femoral-Popliteal (FP) disease still presents many challenges, particularly in cases of severe calcification, Chronic Total Occlusions (CTOs), or In-Stent Restenosis (ISR). However, with advancing technology, the effectiveness of endovascular interventions has significantly improved. Currently, many new materials are actively being developed. These include novel paclitaxel coated stents and balloons, as well as absorbable scaffolds. The development of these innovative materials provides new options for treating various types of lesions. In addition, intravascular lithotripsy is widely used for the treatment of calcified le-sions, and intravenous infusion of antirestenosis drugs is used to reduce restenosis rates. Further-more, new treatment methods such as percutaneous femoral-popliteal bypass grafting are con-stantly emerging.
文章引用:祁光伟, 白超. 股腘动脉病变的血管腔内治疗最新进展[J]. 临床医学进展, 2024, 14(1): 2136-2144. https://doi.org/10.12677/ACM.2024.141301

1. 引言

全球有近2亿人患有PAD [1] 。其中,间歇性跛行是PAD最常见的表现形式之一,而一部分患者在疾病终末期会出现静息痛或溃疡,严重情况下甚至可能导致截肢或死亡 [1] [2] 。CLI在糖尿病患者和其他动脉钙化患者中尤为常见。过去,PAD的治疗主要采用开放手术方式,但随着新技术的应用,血管腔内治疗作为干预治疗的首选逐渐增多 [3] [4] [5] [6] [7] 。然而,FP病变的血管腔内治疗相当具有挑战性 [8] [9] 。根据一项发布在Journal of Vascular Surgery的系统综述,作者指出由于FP的长度以及其参与膝关节运动的特点,使得该动脉段易于发生伸展、扭曲和压迫,大多数经过血管支架植入术后的患者存在血管内再狭窄(ISR)的情况,术后一年内的发生率高达20%~30%。该文献还提到,在膝关节附近的股动脉段存在较高的ISR风险,这与FP的长度、容易伸展、扭曲和压迫等特点密切相关。因此,这些数据支持了当前论述中提到的由于FP部位的特殊解剖结构,导致术后通畅性挑战及ISR风险增加的观点 [10] 。

近年来,随着科技的迅猛发展,FP病变的血管腔内治疗的效果得到了显著改善 [2] 。本综述将介绍股腘动脉病变血管腔内介入治疗的最新进展。

2. 新型药物涂层球囊

紫杉醇作为外周动脉药物涂层球囊(Drug Coated Balloon, DCBs)的成分之一,因其抗再狭窄、疏水性和亲脂性的概念而被选择 [11] 。在FP病变干预中,与单纯球囊扩张(Plain Old Balloon Angioplasty, POBA)相比,DCB已被证明能够改善预后 [12] ,DCB通过向局部血管壁释放抗增殖药物,从而达到抑制血管内膜增生的效果 [13] 。与药物洗脱支架(Drug Eluting Stent, DES)相比,DCB无聚合物基质,又无金属网格残留,从而减少内膜炎症反应,大大降低血栓形成风险。同时DCB治疗避免了异物置入,为患者保留了必要时的后续治疗机会。但单纯紫杉醇涂层的DCB存在生物利用度较低的问题,为提高紫杉醇生物利用度、增加药物与血管壁的接触面积、减弱药物分子之间的引力,紫杉醇常与一种亲水辅助剂结合,促进药物从球囊表面传递到动脉内膜 [14] 。

2.1. Ranger药物涂层球囊

Ranger DCB是由波士顿科学公司开发的一种药物球囊,采用了专利的TransPaxTM涂层系统 [15] 。该系统使用柠檬酸酯作为辅助药物,改善了紫杉醇的传递能力和稳定性,并延长了紫杉醇的释放时间。在针对FP病变的RangerTM SFA研究中,DCB组的TLR率在6个月和12个月时分别为5.6%和91.2%,而POBA组分别为12%和69.9%。同时,DCB组的(Primary Patency Rate, PPR)在12个月时为86.4%,而POBA组为56.5% [16] [17] 。

COMPARE-1试验对于股浅动脉狭窄、卢瑟福II、III和IV型患者以及股浅动脉长段病变或腘动脉近端闭塞的患者进行了Ranger DCB和In.PACT DCB的比较。研究中,Ranger DCB使用的紫杉醇剂量较少(2 μg/mm2),共纳入150例患者。结果显示,两组在1年通畅率方面没有显示出差异(Ranger DCB组为84%,In.PACT DCB组为89%) [18] 。该项目的第二阶段长期实验计划将纳入更多患者,并预计在2024年完成,以验证非劣效性假设。

2.2. Surmodics SurVeil® DCB

PREVEIL试验对Surmodics SurVeil® DCB的早期可行性研究(Early Feasibility Studies, EFS)进行了分析,并在2020年公布了首批结果 [19] [20] 。PREVEIL试验(NCT02648620)是一项多中心、前瞻性单组临床试验,在三个临床地点进行。研究共纳入了13例使用SurVeil® DCB的固有FP病变患者,平均病变长度为56 mm。术后紫杉醇的血药浓度立即达到峰值(Cmax为1.07 ng/mL)。随访1年后,没有发生TLR事件,而Rutherford分级、踝肱指数(Ankle Brachial Index, ABI)、行走距离和行走速度均有改善。临床数据显示,与对照组相比,SurVeil DCB在靶组织中可实现高达5倍的药物浓度,且具有均匀的分布和持久的药物作用,同时降低了下游的药物浓度 [21] 。在成功完成PREVEIL试验后,Surmodics公司启动了TRANSCEND试验,这是一项前瞻性、多中心的RCT试验,在全球65个地点进行。共有446名FP病变患者以1:1的方式分组,接受SurVeil DCB或IN.PACT DCB治疗,他们将进行长达5年的随访(NCT03241459),预计于2024年4月1日完成。主要研究结果包括12个月原发病灶通畅率以及死亡、截肢和TLR的复合终点。

3. 新型药物涂层支架

过去的研究表明,POBA可改善FP病变患者的预后 [22] [23] 。然而,对于FP病变来说,治疗仍然具有挑战性 [24] [25] 。由于FP病变节段特殊的解剖特征,使得其承受拉伸、扭曲、压缩等复杂的力学作用,从而增加了支架骨折和支架失败的风险,包括支架内血栓形成(ST)和支架内再狭窄(ISR)。根据一项在Circulation Journal上发表的研究,研究者对FP病变的解剖特征进行了分析,并评估了其与支架骨折或再狭窄之间的关联。研究发现,FP病变病灶的扭曲程度与支架骨折之间存在显著的相关性。特别是在病变段弯曲角度较大、长度较长的情况下,支架的稳定性受到更大的挑战,增加了支架骨折的风险,研究发现,支架内血栓形成的发生率1年内<1%,随后每年的发生率约为0.2%~0.4%。支架内再狭窄的发生率约为5%。此外,该研究还发现,FP病变病段易受到血流的差异性压力和循环负荷的影响,这可能导致进一步的血管压缩和再狭窄。研究者分析和比较了使用DES和BMS治疗的外周动脉病变患者的主要安全终点,如全因死亡率、心肌梗死率等。在4.1年内,使用DES和BMS患者的死亡率相似(51.7% vs BMS/DES的50.1%;P = 0.16),心肌梗死率(51.7% vs BMS/DES的25.1%;P = 0.043) [26] ,综合以上结果,使用DES治疗外周动脉病变的患者在心肌梗死发生率等主要安全终点方面,相较于BMS治疗表现出更好的效果。

Eluvia药物涂层支架

EluviaTM DES采用InnovaTM自膨胀支架系统平台,该平台基于聚甲基丙烯酸正丁酯(PBMA)辅药层,使其具有超过一年的药物持续释放时间 [27] 。早期研究结果显示,与BMS相比,Eluvia DES能够潜在地改善预后 [28] 。Cook公司开发的Zilver PTX药物洗脱支架(Drug Eluting Stent, DES)在2年和5年的治疗效果上优于BA。与补救型支架相比,Zilver PTX也优于裸金属支架(Bare Metal Stent BMS) [29] 。

MAJESTIC是一项前瞻性单组临床试验,研究纳入了57例FP病灶长度 < 110 mm并接受Eluvia DES治疗的患者。随访12个月后,仅有2例患者需要进行TLR治疗,1年的PPR为96.4% [30] 。随后的IMPERIAL试验比较了Eluvia DES和Zilver PTX DES的疗效。该研究纳入了409例患者(Eluvia: n = 276; Zilver PTX: n = 133)。临床随访时间分别为1个月、6个月和12个月,并计划继续对这些患者进行长达5年的随访。主要疗效终点是12个月的主要通畅率,在12个月的随访中通过双超声进行评估。主要安全终点包括1个月的死亡率、12个月的TLR和12个月的目标肢体丧失等重大不良事件的综合结果。结果显示,Eluvia DES在疗效和安全性分析方面与Zilver PTX DES不相上下 [31] ,12个月的初始通畅率Eluvia DES组较高(87% vs 82%),与Zilver PTX DES组相比,Eluvia DES组的支架血栓或TLR事件数量显著减少 [32] ,综合考虑Eluvia DES和Zilver PTX DES的疗效和安全性分析,可以得出结论它们在治疗股腘动脉病变方面基本相当。然而,Eluvia DES在PPR和支架血栓或TLR事件方面表现更出色。这些发现为医生在选择适当的治疗方案时提供了更全面的信息和指导。但也需要进一步的研究和临床实践来验证这些结果,并确保患者能够受益于最佳的治疗选择。

4. 外膜递送系统

这是一种名为牛蛙微输液装置(Bullfrog Micro-Infusion Device)的新型器械,通过微针输注导管进行外膜和血管周给药。该器械基于球囊技术,在输送抵达血管病变部位后通过球囊扩张,使用垂直微针精确给药 [33] 。相比传统器械,该系统的优势在于给药剂量和次数不再受限,并且可使用多种药物类型。TANGO试验使用了Bullfrog装置并注射坦罗莫司到靶病变部位,结果显示,在12个月时,Bullfrog治疗组的横位血管面积百分比(TVAL%)比常规血管成形术组有明显优势。特别是在泛大西洋协作组外周动脉疾病(Trans-Atlantic Inter-Society Consensus, TASC) TASC C和TASC D亚组中,Bullfrog治疗后的TVAL%分别为70.2%和31.0%,而常规血管成形术的结果分别为74.4%和47.2% [34] 。TANGO试验的独特之处在于它不仅采用了新设备,还选用了新药物坦罗莫司,为未来下肢腔内药物治疗提供了新的思路。

另外,外膜给药的一个优点是药物可以直接传递到目标组织,无需绕过动脉粥样硬化斑块和钙化组织。使用牛蛙微输注导管,可以直接将地塞米松注射到FP病变。DANCE研究是一项多中心研究,纳入了262名受试者0,患者接受动脉粥样硬化斑块切除术或球囊血管成形术,并联合静脉注射地塞米松。结果显示,12个月无TLR和基本通畅率分别为89.7%和79.5% [35] 。这些结果表明,通过使用牛蛙微输注导管直接注射地塞米松,可以在一定程度上提高血管通畅性。然而,仍需要进一步研究评估该治疗方法的长期效果和安全性,以确定其在临床实践中的价值和适用范围。

5. Tack优化球囊血管成形术(TOBA)

在周围动脉干预中,POBA导致夹层的发生率超过50%,并且TLR的风险呈指数增长,特别是对于C-E型夹层而言,其TLR的风险几乎是A-B型夹层成功治疗后无夹层病变风险的4倍 [36] 。在夹层形成后,常常需要置入支架作为补救措施,但这会增加再狭窄甚至支架断裂的风险 [37] 。

Tack血管内系统采用开放格状设计,长度为6毫米,表面金属总量减少了81%,但仍保持相对恒定的径向力,因此单个Tack植入物可用于不同血管直径范围,增强了动脉夹层内膜破口的相对位置 [38] 。TOBA I和TOBA II试验表明,Tack植入系统可以有效治疗POBA术后夹层,成功率高达98% [39] [40] 。TOBA III研究是一项多中心、单组临床、前瞻性研究,研究了Tack系统与IN.PACT DCB联合应用于FP病变。标准病变队列显示98.7%的夹层确诊率,治疗12个月后,血管通畅率和无TLR率分别为95%和97.5%,支架置换率仅为0.6% [41] 。TOBA的一系列研究结果表明,Tack植入系统是一种可靠、安全、有效的治疗手段,可用于动脉夹层内膜破口的修复。能够有效改善血管狭窄和夹层形成等FP病变症状。然而,该研究还面临着一些限制性因素,例如样本量较小、治疗过程中的药物和手术操作因素等。因此,需要进一步进行大规模、多中心、随机对照研究来确认此治疗方案的安全性和有效性,并为临床实践提供更加可靠的证据支撑。

6. 血管内碎石术(Intravascular Lithotripsy, IVL)

血管内冲击波碎石系统是一种球囊导管碎石系统,由球囊导管平台、碎石电极和发生器组成。该系统通过将球囊导管引导到下肢外周动脉系统中的钙化狭窄部位,在激活碎石功能时产生机械能,破坏动脉粥样硬化斑块 [42] 。它采用低膨胀压力以避免损伤血管内膜。球囊导管通过碎石电极传导脉冲声波,使钙化斑块松动。每个治疗周期发送30次脉冲,每个病变段至少治疗2个周期,球囊导管经过10个治疗周期和300次电击后失效。IVL的首个研究是DISRUPT I和II研究。DISRUPT是一项两期的前瞻性、非随机的多中心研究,共纳入95例(95个病灶)长度 ≤ 15 cm的中度或严重钙化的腹股沟下狭窄病灶(NCT02071108和NCT02369848)。平均病变长度为72 mm,55%的病灶属于严重钙化类型。手术成功率为100% (定义为狭窄<50%),无手术并发症,术前扩张率和术后扩张率分别为11.6%和7.4%。只有1例(解剖类型IV型)需要进行补救性支架置入术,6个月的TLR发生率为3.2%,通畅率为76.7% [43] 。

IVL是一种辅助治疗方法,类似于动脉粥样硬化斑块切除装置,可用于提高POBA、支架植入或紫杉醇的吸收 [44] 。Radaideh等报道了7例病例使用Shockwave治疗,成功率达到100%。有2例进行了切除手术,3例进行了剥离,所有病例均进行了支架植入,残余狭窄率为0% [45] 。研究结果显示,尽管病灶钙化程度高,冲击波碎石术仍具有出色的成功率且并发症较少。Disrupt PAD III (IVL For PAD)试验研究了股腘动脉中度或严重钙化的患者,在DCB或支架植入前进行IVL或PTA血管准备。结果显示,在接受IVL或PTA的患者中,IVL组的手术成功率和残余狭窄≤30%的比例较高,而PTA组的血流限制夹层、支架置入和术后扩张较高。IVL组和PTA组在主要不良事件发生率和术后30天临床驱动的TLR方面具有可比性 [46] 。研究结果提示,IVL是一种安全有效的血管准备策略,对于股腘动脉钙化患者来说,它可以促进“leave-nothing-behind”的血管内治疗理念。

7. 经皮旁路术

PQ Bypass经皮股腘动脉旁路支架植入系统是一种新型的透视引导下经皮股–腘动脉旁路转流治疗方法 [47] 。经皮FP旁路是通过使用特定的穿越装置、不透X射线的圈套器和Torus支架移植物来实现。专有的Torus支架以连续和重叠的方式从腘动脉进入股静脉,通过两个独立的吻合口进入股浅动脉(Superficial Femoral Artery, SFA),从而创建了从SFA到腘动脉的血管内旁路 [48] 。PQ Bypass搭桥术的基本原理是为FP病变较长的患者提供治疗选择,因为这些患者的血管内技术受限,与高发生率的TLR和低通畅率有关,而传统的开放旁路手术需要更长的住院时间和更高的手术并发症风险。

在DETOUR I (一项前瞻性单组临床研究)中,纳入了77名患者和81个病变长度超过10厘米的SFA病灶(平均长度为37.1厘米),其中96%为慢性完全闭塞(CTOs),近70%为严重钙化。ISR病变未被排除在研究之外。随访时间为3~6个月至36个月。该研究的技术成功率为98.8%。术后12个月的一次通畅率为72.5%,一次辅助通畅率为78%,二次通畅率为93.8%。12个月截肢率为0%,急性肢体缺血率为98.8%,TLR率为78.8%。18个月的初期通畅率、初期辅助通畅率和二次通畅率分别为67.6%、78.9%和94.1%。超过80%的患者在18个月时的Rutherford分级达到了0级,而平均ABI值从基线的0.64提高到18个月时的0.97 [49] 。针对难以治疗的长FP病变而言,PQ Bypass经皮股腘动脉旁路支架植入系统被视为一个可能的解决方案。这类病变通常与CTO、钙化和ISR的高发生率相关,并且往往被排除在临床试验之外。然而,在现实世界中,血管内治疗方案尚未能达到开放旁路手术的长期效果 [50] 。为此,PQ Bypass系统提供了一种有希望的手段,它通过经皮植入支架来建立新的血液通道,以迂回旁路的方式绕过病变部位。这种创新的治疗方法为患者提供了一种更可靠和持久的选择,以改善他们的血液循环和生活质量。

8. 生物可吸收支架

生物可吸收支架(Bioresorbable Scaffold, BRS)是一种用于治疗狭窄或阻塞的动脉的新型材料 [51] 。与传统的金属支架不同,BRS由可降解材料制成,可以在植入后逐渐被人体吸收和代谢,并具有抗增殖化合物的涂层。在短期内,BRS可以支撑血管壁,解决血管成形术后出现的夹层形成等问题。随着时间的推移,聚合物完全吸收,可恢复股腘血管的正常舒缩功能,降低支架内再狭窄等晚期风险。目前,生物可吸收支架在人体实验方面的数据有限,但在治疗短距离病变方面显示出潜力 [52] 。

Abbott ESPRIT BRS (生物可吸收血管支架)系统在SFA闭塞性血管疾病或引起症状性跛行的髂外动脉患者进行了ESPIRIT 1试验(n = 32)。该试验评估了依维莫司涂层聚L-乳酸支架在髂外和股腘动脉段的性能。在治疗的病变中,89%位于股腘动脉,1年和2年的再狭窄率分别为12.1%和16.1%,TLR分别为8.8%和11.8% [53] 。根据CREDIT II和CREDIT III的研究结果,EXCROSSAL支架置入术后5年的目标病变失败率(Target Lesion Failure, TLF)和心血管复合终点事件(Cardiovascular Composite Endpoint Event, PoCE)的发生率都较低,分别为10.6%和15.5%。大多数事件主要发生在支架植入后的第一年内(TLF发生率为6.1%;PoCE为7.7%),特别是在术后的第一个月,可能与支架植入后血管内皮受损有关。支架置入一年后,内皮开始修复,支架的小梁被完全覆盖,这相应地降低了事件的发生率。在5年内,有8例被确认或可能为支架内血栓(1.0%),这些事件多发生在晚期或极晚期 [54] 。总的来说,EXCROSSAL支架在置入术后的长期使用中显示了良好的疗效,并且具有较低的并发症风险。这些研究结果为支架选择和治疗决策提供了有益的信息。

9. 总结

Ranger DCB是由波士顿科学公司开发的一种药物球囊,采用了专利的TransPaxTM涂层系统 [15] 。该系统使用柠檬酸酯作为辅助药物,改善了紫杉醇的传递能力和稳定性,并延长了紫杉醇的释放时间。在针对FP病变的RangerTM SFA研究中,DCB组的TLR率在6个月和12个月时分别为5.6%和91.2%,而POBA组分别为12%和69.9%。同时,DCB组的(Primary Patency Rate, PPR)在12个月时为86.4%,而POBA组为56.5% [16] [17] 。

COMPARE-1试验对于股浅动脉狭窄、卢瑟福II、III和IV型患者以及股浅动脉长段病变或腘动脉近端闭塞的患者进行了Ranger DCB和In.PACT DCB的比较。研究中,Ranger DCB使用的紫杉醇剂量较少(2 μg/mm2),共纳入150例患者。结果显示,两组在1年通畅率方面没有显示出差异(Ranger DCB组为84%,In.PACT DCB组为89%) [18] 。该项目的第二阶段长期实验计划将纳入更多患者,并预计在2024年完成,以验证非劣效性假设。

NOTES

*通讯作者。

参考文献

[1] Ryu, G.W., Park, Y.S., Kim, J., et al. (2022) Incidence and Prevalence of Peripheral Arterial Disease in South Korea: Retrospective Analysis of National Claims Data. JMIR Public Health and Surveillance, 8, e34908.
https://doi.org/10.2196/34908
[2] Mandaglio-Collados, D., Marín, F. and Rivera-Caravaca, J.M. (2023) Peripher-al Artery Disease: Update on Etiology, Pathophysiology, Diagnosis and Treatment. Medicina Clinica, 161, 344-350.
https://doi.org/10.1016/j.medcli.2023.06.005
[3] Bredikhin, R.A., Krepkogorskiĭ, N.V. and Khaĭrullin, R.N. (2021) Are There Alternatives to Dual Antiplatelet Therapy after Stenting of Peripheral Arteries? Angiology and Vascular Sur-gery, 27, 22-27.
https://doi.org/10.33529/ANGID2021313
[4] Kokkinidis, D.G., Katsaros, I., Jonnalagadda, A.K., Avner, S.J. and Chaitidis, N. (2019) Use, Safety and Effectiveness of Subintimal Angioplasty and Re-Entry Devices for the Treatment of Femoropopliteal Chronic Total Occlusions: A Systematic Review of 87 Studies and 4,665 Patients. Cardiovascular Re-vascularization Medicine: Including Molecular Interventions, 21, 34-45.
https://doi.org/10.1016/j.carrev.2019.03.016
[5] Golledge, J., Golledge, J. and Golledge, J. (2022) Update on the Pathophysiology and Medical Treatment of Peripheral Artery Disease. Nature Reviews Cardiology, 19, 456-474.
https://doi.org/10.1038/s41569-021-00663-9
[6] Polonsky, T.S., McDermott, M.M. and McDermott, M.M. (2021) Lower Extremity Peripheral Artery Disease without Chronic Limb-Threatening Ischemia: A Review. JAMA, 325, 2188-2198.
https://doi.org/10.1001/jama.2021.2126
[7] Lin, S.G., Lin, R.R., Zhang, H.K., Xu, Q.B. and He, Y.Y. (2022) Peripheral Vascular Remodeling during Ischemia. Frontiers in Pharmacology, 13, Article ID: 1078047.
https://doi.org/10.3389/fphar.2022.1078047
[8] Horváth, L., Horváth, L., Németh, N., Fehér, G. and Fehér, G. (2022) Epidemiology of Peripheral Artery Disease: Narrative Review. Life (Basel, Switzerland), 12, Article No. 1041.
https://doi.org/10.3390/life12071041
[9] Chuter, V., Schaper, N., Mills, J., Hinchliffe, R. and Russell, D. (2023) Effectiveness of Revascularisation for the Ulcerated Foot in Patients with Diabetes and Peripheral Artery Disease: A Systematic Review. Diabetes/Metabolism Research and Reviews, e3700.
https://doi.org/10.1002/dmrr.3700
[10] Feldman, D.N., Armstrong, E.J., Aronow, H.D., Gigliotti, O.S. and Jaff, M.R. (2018) SCAI Consensus Guidelines for Device Selection in Femoral-Popliteal Arterial Interventions. Catheteriza-tion and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions, 92, 124-140.
https://doi.org/10.1002/ccd.27635
[11] Katsanos, K., Spiliopoulos, S., Kitrou, P., Krokidis, M. and Kar-nabatidis, D. (2018) Risk of Death Following Application of Paclitaxel-Coated Balloons and Stents in the Femoropoplit-eal Artery of the Leg: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of the Ameri-can Heart Association, 7, e011245.
https://doi.org/10.1161/JAHA.118.011245
[12] Keefe, N., Shull, T., Botea, L. and McGinigle, K. (2023) Drug-Coated Balloon versus Drug-Eluting Stent: The Debate of Leave Nothing behind. Seminars in Interventional Radi-ology, 40, 161-166.
https://doi.org/10.1055/s-0043-57261
[13] Zeller, T., Brechtel, K., Meyer, D.-R., Noory, E. and Beschorner, U. (2020) Six-Month Outcomes from the First-in- Human, Single-Arm SELUTION Sus-tained-Limus-Release Drug-Eluting Balloon Trial in Femoropopliteal Lesions. Journal of Endovascular Therapy: An Of-ficial Journal of the International Society of Endovascular Specialists, 27, 683-690.
https://doi.org/10.1177/1526602820941811
[14] Amlani, V., Falkenberg, M. and Nordanstig, J. (2021) The Cur-rent Status of Drug-Coated Devices in Lower Extremity Peripheral Artery Disease Interventions. Progress in Cardio-vascular Diseases, 65, 23-28.
https://doi.org/10.1016/j.pcad.2021.02.002
[15] Soga, Y., Fujihara, M., Yamamoto, Y., Nakamura, S. and Iida, O. (2021) One-Year Results for Japanese Patients in RANGER II SFA. Heart and Vessels, 37, 568-573.
https://doi.org/10.1007/s00380-021-01947-3
[16] Schroë, H., Sachar, R., Keirse, K., Soga, Y. and Brodmann, M. (2022) The RANGER II Superficial Femoral Artery Trial: 1-Year Results of the Long Lesion Cohort. Vascular Medicine (London, England), 27, 457-465.
https://doi.org/10.1177/1358863X221097164
[17] Sachar, R., Soga, Y., Ansari, M.M., Kozuki, A. and Lopez, L. (2021) 1-Year Results from the RANGER II SFA Randomized Trial of the Ranger Drug-Coated Balloon. JACC: Cardi-ovascular Interventions, 14, 1123-1133.
https://doi.org/10.1016/j.jcin.2021.03.021
[18] Gray, W.A., Jaff, M.R., Parikh, S.A., Ansel, G.M. and Brodmann, M. (2019) Mortality Assessment of Paclitaxel-Coated Balloons: Patient-Level Meta-Analysis of the ILLUMENATE Clinical Program at 3 Years. Circulation, 140, 1145-1155.
https://doi.org/10.1161/CIRCULATIONAHA.119.040518
[19] Armstrong, A.J., Lin, P., Tombal, B., Saad, F. and Higano, C.S. (2020) Five-Year Survival Prediction and Safety Outcomes with Enzalutamide in Men with Chemothera-py-Naïve Metastatic Castration-Resistant Prostate Cancer from the PREVAIL Trial. European Urology, 78, 347-357.
https://doi.org/10.1016/j.eururo.2020.04.061
[20] El Khoury, R., Brodmann, M. and Schneider, P.A. (2021) Pro-gress on Developing an Effective Below-the-Knee Drug- Coated Balloon. Reviews in Cardiovascular Medicine, 22, 585-595.
https://doi.org/10.31083/j.rcm2203070
[21] Shishehbor, M.H., Scheinert, D., Jain, A., Brodmann, M. and Tepe, G. (2022) Comparison of Drug-Coated Balloons vs Bare-Metal Stents in Patients with Femoropopliteal Arteri-al Disease. Journal of the American College of Cardiology, 81, 237-249.
https://doi.org/10.1016/j.jacc.2022.10.016
[22] Sallustro, M., Peluso, A., Turchino, D., Maione, I. and Vita, F. (2022) Results of New Dual-Drug Coated Balloon Angioplasty versus POBA for Femoropopliteal Lesions. Annals of Vascular Surgery, 89, 52-59.
https://doi.org/10.1016/j.avsg.2022.09.047
[23] Zhen, Y.H., Ren, H.Y., Chen, J., Chang, Z.H. and Wang, C.Z. (2021) Systematic Review and Meta-Analysis of Drug-Coated Balloon Angioplasty for In-Stent Restenosis in Fem-oropopliteal Artery Disease. Journal of Vascular and Interventional Radiology: JVIR, 33, 368-374.e6.
https://doi.org/10.1016/j.jvir.2021.12.007
[24] Haine, A., Schmid, M.J., Schindewolf, M., Lenz, A. and Bernhard, S.M. (2019) Comparison between Interwoven Nitinol and Drug Eluting Stents for Endovascular Treatment of Fem-oropopliteal Artery Disease. European Journal of Vascular and Endovascular Surgery: The Official Journal of the Eu-ropean Society for Vascular Surgery, 58, 865-873.
https://doi.org/10.1016/j.ejvs.2019.09.002
[25] Kuramitsu, S., Sonoda, S., Ando, K., Otake, H. and Natsuaki, M. (2021) Drug-Eluting Stent Thrombosis: Current and Future Perspectives. Cardiovascular Intervention and Therapeutics, 36, 158-168.
https://doi.org/10.1007/s12928-021-00754-x
[26] Tsujimura, T., Takahara, M., Iida, O., Soga, Y. and Katsuki, T. (2021) Clinical Outcomes of Polymer-Free, Paclitaxel-Coated Stents vs Stent Grafts in Peripheral Arterial Disease Pa-tients with Femoropopliteal Artery Lesions. Journal of Vascular Surgery, 73, 1998-2008.E1.
https://doi.org/10.1016/j.jvs.2020.12.061
[27] Stavroulakis, K., Torsello, G., Bosiers, M., Argyriou, A. and Tsilimparis, N. (2021) 2-Year Outcomes of the Eluvia Drug-Eluting Stent for the Treatment of Complex Femoropopliteal Lesions. JACC: Cardiovascular Interventions, 14, 692-701.
https://doi.org/10.1016/j.jcin.2021.01.026
[28] Gouëffic, Y., Torsello, G., Zeller, T., Esposito, G. and Vermassen, F. (2022) Efficacy of a Drug-Eluting Stent versus Bare Metal Stents for Symptomatic Femoropopliteal Peripheral Artery Disease: Primary Results of the EMINENT Randomized Trial. Circulation, 146, 1564-1576.
[29] Vanderland, M. and Gray, W.A. (2020) Zilver PTX Peripheral Paclitaxel-Eluting Stent: A Technology Evaluation. Expert Opinion on Drug Delivery, 17, 1335-1343.
https://doi.org/10.1080/17425247.2020.1789586
[30] Giannopoulos, S., Secemsky, E.A., Schneider, P.A. and Armstrong, E.J. (2022) Concomitant Drug-Coated Balloon Angioplasty with Bail-Out Use of Eluvia Drug-Eluting Stent: Is There Any Downside to a Double Dose of Paclitaxel? The Journal of Invasive Cardiology, 34, E469-E476.
[31] Iida, O., Fujihara, M., Kawasaki, D., Mori, S. and Yokoi, H. (2021) 24-Month Efficacy and Safety Results from Japanese Patients in the IMPERIAL Randomized Study of the Eluvia Drug-Eluting Stent and the Zilver PTX Drug-Coated Stent. Cardiovascular and Interventional Radiology, 44, 1367-1374.
https://doi.org/10.1007/s00270-021-02901-6
[32] Shibata, T., Iba, Y., Shingaki, M., Yamashita, O. and Tsu-bakimoto, Y. (2023) One Year Outcomes of Zilver PTX versus Eluvia for Femoropopliteal Disease in Real-World Prac-tice: REALDES Study. Journal of Endovascular Therapy: An Official Journal of the International Society of Endovas-cular Specialists.
https://doi.org/10.1177/15266028231179861
[33] Todd, M., Liu, L.B., Saul, J.M. and Yazdani, S.K. (2023) Pre-Clinical Investigation of Liquid Sirolimus for Local Drug Delivery. Frontiers in Cardiovascular Medicine, 10, Arti-cle ID: 1184816.
https://doi.org/10.3389/fcvm.2023.1184816
[34] Cawich, I., Armstrong, E.J., George, J.C., Gol-zar, J. and Shishehbor, M.H. (2022) Temsirolimus Adventitial Delivery to Improve ANGiographic Outcomes below the Knee. Journal of Endovascular Therapy: An Official Journal of the International Society of Endovascular Specialists.
https://doi.org/10.1177/15266028221131459
[35] Razavi, M.K., Donohoe, D., D’Agostino, R.B., Jaff, M.R. and Adams, G. (2018) Adventitial Drug Delivery of Dexamethasone to Improve Primary Patency in the Treatment of Super-ficial Femoral and Popliteal Artery Disease: 12-Month Results from the DANCE Clinical Trial. JACC: Cardiovascular Interventions, 11, 921-931.
https://doi.org/10.1016/j.jcin.2017.12.015
[36] Geraghty, P.J., Adams, G.L., Schmidt, A., Lichtenberg, M. and Wissgott, C. (2020) Twelve-Month Results of Tack- Optimized Balloon Angioplasty Using the Tack Endovascular Sys-tem in Below-the-Knee Arteries (TOBA II BTK). Journal of Endovascular Therapy: An Official Journal of the Interna-tional Society of Endovascular Specialists, 27, 626-636.
https://doi.org/10.1177/1526602820944402
[37] Gray, W.A., Cardenas, J.A., Brodmann, M., Werner, M. and Bernardo, N.I. (2019) Treating Post-Angioplasty Dissection in the Femoropopliteal Arteries Using the Tack Endovascular System: 12-Month Results from the TOBA II Study. JACC: Cardiovascular Interventions, 12, 2375-2384.
https://doi.org/10.1016/j.jcin.2019.08.005
[38] Vanderland, M., Ooi, Y.S. and Gray, W.A. (2021) Device Profile of the Tack Endovascular System® for the Treatment of Peripheral Arterial Disease: Overview of Safety and Efficacy. Expert Review of Medical Devices, 18, 717-726.
https://doi.org/10.1080/17434440.2021.1947243
[39] Adams, G.L., Lichtenberg, M., Wissgott, C., Schmidt, A. and Tarra, T. (2022) Twenty-Four Month Results of Tack- Optimized Balloon Angioplasty Using the Tack Endovascular System in Below-the-Knee Arteries. Journal of Endovascular Therapy: An Official Journal of the International Society of Endovascular Specialists, 30, 393-400.
https://doi.org/10.1177/15266028221083462
[40] Brodmann, M., Werner, M., Sood, A. and Gray, W.A. (2023) Treating Post-Angioplasty Dissection in the Femoropopliteal Arteries Using the Tack Endovascular System: Tack Opti-mized Balloon Angioplasty II 24-Month Results. Vascular.
https://doi.org/10.1177/17085381231162128
[41] Brodmann, M., Wissgott, C., Brechtel, K., Lichtenberg, M. and Blessing, E. (2023) Optimized Drug-Coated Balloon Angioplasty of the Superficial Femoral and Proximal Popliteal Ar-teries Using the Tack Endovascular System: Tack Optimized Balloon Angioplasty (TOBA) III 24-Month Results in Standard and Long Lesions. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardi-ac Angiography & Interventions, 102, 701-712.
https://doi.org/10.1002/ccd.30800
[42] Thandra, A., Betts, L., Aggarwal, G., Gujjula, N. and Haddad, T.M. (2022) Intravascular Lithotripsy for Acute Stent Under-Expansion and In-Stent Restenosis: A Case Series. Current Problems in Cardiology, 48, Article ID: 101511.
https://doi.org/10.1016/j.cpcardiol.2022.101511
[43] Benfor, B., Sinha, K., Lumsden, A.B. and Roy, T.L. (2023) Scoping Review of Atherectomy and Intravascular Lithotripsy with or without Balloon Angioplasty in Below-the-Knee Lesions. Journal of Vascular Surgery Cases and Innovative Techniques, 9, Article ID: 101185.
https://doi.org/10.1016/j.jvscit.2023.101185
[44] Giannopoulos, S. and Armstrong, E.J. (2022) Intravascular Lith-otripsy for Optimal Angioplasty of Infrapopliteal Calcified Lesions. The Journal of Invasive Cardiology, 34, E132-E141.
[45] Vedani, S., Haligür, D., Jungi, S. and Bosiers, M.J. (2023) Intravascular Lithotripsy: A Powerful Tool to Treat Peripheral Artery Calcifications. The Journal of Cardiovascular Surgery, 64, 406-412.
https://doi.org/10.23736/S0021-9509.22.12535-8
[46] Tepe, G., Brodmann, M., Werner, M., Bachinsky, W. and Holden, A. (2021) Intravascular Lithotripsy for Peripheral Artery Calcification: 30-Day Outcomes from the Randomized Disrupt PAD III Trial. JACC: Cardiovascular Interventions, 14, 1352-1361.
https://doi.org/10.1016/j.jcin.2021.04.010
[47] Karimi, A., Lauria, A.L., Aryavand, B. and Neville, R.F. (2022) Novel Therapies for Critical Limb-Threatening Ischemia. Current Cardiology Reports, 24, 513-517.
https://doi.org/10.1007/s11886-022-01669-6
[48] Kereiakes, D.J., Virmani, R., Hokama, J.Y., Illindala, U. and Mena-Hurtado, C. (2021) Principles of Intravascular Lithotripsy for Calcific Plaque Modification. JACC: Cardiovascular Interventions, 14, 1275-1292.
https://doi.org/10.1016/j.jcin.2021.03.036
[49] Halena, G., Krievins, D.K., Scheinert, D., Savlovskis, J. and Szopiński, P. (2021) Percutaneous Femoropopliteal Bypass: 2-Year Results of the DETOUR System. Journal of Endo-vascular Therapy: An Official Journal of the International Society of Endovascular Specialists, 29, 84-95.
https://doi.org/10.1177/15266028211034862
[50] Krievins, D.K., Halena, G., Scheinert, D., Savlovskis, J. and Szopiński, P. (2020) One-Year Results from the DETOUR I Trial of the PQ Bypass DETOUR System for Percutaneous Femoropopliteal Bypass. Journal of Vascular Surgery, 72, 1648-1658.e2.
https://doi.org/10.1016/j.jvs.2020.02.043
[51] Rola, P., Rola, P., Włodarczak, S., Doroszko, A. and Lesiak, M. (2022) The Bioresorbable Magnesium Scaffold (Magmaris)-State of the Art: From Basic Concept to Clinical Application. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interven-tions, 100, 1051-1058.
https://doi.org/10.1002/ccd.30435
[52] Toong, D.W.Y., Toh, H.W., Toh, H.W., Ng, J.C.K. and Ng, J.C.K. (2020) Bioresorbable Polymeric Scaffold in Cardiovascular Applications. International Journal of Molecular Sciences, 21, Arti-cle No. 3444.
https://doi.org/10.3390/ijms21103444
[53] Wu, X.L., Wu, X.L., Wu, S.J., Wu, S.J. and Kawashima, H. (2021) Current Perspectives on Bioresorbable Scaffolds in Coronary Intervention and Other Fields. Expert Review of Medical Devices, 18, 1-15.
https://doi.org/10.1080/17434440.2021.1904894
[54] Barkholt, T.Ø., Neghabat, O., Holck, E.N., Andreasen, L.N. and Christiansen, E.H. (2021) Bioresorbable Magnesium Scaffold in the Treatment of Simple Coronary Bifurcation Le-sions: The BIFSORB Pilot II Study. Catheterization and Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions, 99, 1075-1083.
https://doi.org/10.1002/ccd.30051