纯红细胞再生障碍性贫血的诊断与治疗进展
Progress in Diagnosis and Treatment of Pure Red Cell Aplastic Anemia
DOI: 10.12677/ACM.2024.141290, PDF, HTML, XML, 下载: 159  浏览: 258 
作者: 王兰兰, 郝建萍*:新疆医科大学第一附属医院血液科,新疆 乌鲁木齐
关键词: 纯红细胞再生障碍性贫血克隆造血环孢素西罗莫司Pure Red Cell Aplasia Clonal Hematopoiesis Cyclosporine Sirolimus
摘要: 纯红细胞发育不全(PRCA)是一种罕见的血液学综合征,其特征是孤立的正红细胞贫血伴严重网状红细胞减少症,并以骨髓中红细胞前体缺失或几乎缺失为特征。PRCA可能是一种原发性自身免疫性或克隆性髓系或淋巴系疾病,但也可能继发于其他自身免疫疾病、感染、肿瘤或药物。PRCA导致的血细胞异常仅限于红细胞谱系,通常不影响其他细胞系。从PRCA研究中获得的见解有助于阐明对红细胞生成调控的理解。这篇综述总结了PRCA的分类、诊断和治疗方法。
Abstract: Pure red cell aplasia (PRCA) is a rare hematologic syndrome, characterized by an isolated normo-cytic anemia with severe reticulocytopenia, and defined by absence or near absence of erythroid precursors in the bone marrow. PRCA may be a primary autoimmune or clonal myeloid or lymphoid disorder, but may also be secondary to other disorders of autoimmunity, to infections, to neoplasms, or to drugs. Insights from the study of PRCA have helped illuminate the understanding of the regu-lation of erythropoiesis. This review summarizes the classification, diagnosis, and treatment of PRCA.
文章引用:王兰兰, 郝建萍. 纯红细胞再生障碍性贫血的诊断与治疗进展[J]. 临床医学进展, 2024, 14(1): 2058-2063. https://doi.org/10.12677/ACM.2024.141290

1. 引言

纯红细胞再生障碍性贫血(PRCA)是一种罕见的贫血综合征,其特征是伴严重网状红细胞减少的正红细胞正色素贫血,骨髓中缺乏或几乎缺乏可识别的红细胞前体 [1] 。Diamond-Blackfan贫血(DBA)通常被归类为先天性PRCA,与获得性PRCA不同,DBA与大细胞性贫血相关,通常伴有生长发育异常,50%~60%的DBA由调节核糖体生物发生的蛋白质的特定突变引起 [2] [3] [4] 。这篇综述将集中于获得性PRCA,它主要见于成人,但有时也出现在儿童人群中(如儿童的短暂性红细胞减少症,其病理生理学类似于原发性自身免疫性纯红细胞发育不全) [5] 。

2. PRCA的分类及病因

先天性PRCA大多被认为是DBA贫血。皮尔森综合征和类似的以严重网状细胞减少症为特征的先天性疾病可能更准确地描述为铁母细胞性贫血疾病 [6] [7] [8] 。获得性PRCA可能是一种原发性疾病,也可能是继发于其他并发临床状态。原发性PRCA可能是一种由红细胞生成IgG抑制剂引起的自身免疫性疾病(如上所述),也可能是一种与骨髓增生异常肿瘤最相似的克隆性疾病 [1] [9] 。最初,这第二次表现被认为是骨髓增生异常肿瘤的形态学变异。原发性PRCA中白血病转化的频率小于1% [10] 。

继发性PRCA描述了与一系列自身免疫炎症、感染性或肿瘤疾病相关的PRCA病例,或者是各种药物的不良反应。在许多情况下,潜在的机制是免疫方面的,但通常不是由抗体介导的。目前认为T细胞参与介导这个过程 [1] [11] 。例如,大多数胸腺瘤相关的PRCA患者在胸腺切除术后需要免疫抑制才能获得更完全的缓解 [12] [13] 。继发于淋巴样肿瘤如T细胞大颗粒淋巴细胞(LGL)白血病的PRCA也对免疫抑制有反应 [10] 。PRCA也可能与自然杀伤(NK)细胞的慢性淋巴细胞增生性疾病 [14] ,如细小病毒B19在慢性免疫抑制(和慢性溶血性贫血的短暂再生危机)中通过红细胞膜p糖蛋白直接感染红细胞前体产生PRCA [15] ,其他感,如EB病毒(EBV)似乎通过T细胞介导的过程造成PRCA [16] 。在与PRCA有关的大量药物中,相对较少的药物已被研究以确定红细胞特异性毒性以外的机制。在这些研究中,只有苯妥英钠和利福平与诱导的IgG抑制剂有关 [17] [18] 。在肾衰竭患者中,由特异性重组人促红细胞生成素(Epo)产物诱导的抗红细胞生成素(Epo)抗体引起的PRCA是一种特殊情况,归因于特异性药物包装的辅助作用 [19] 。妊娠相关的PRCA非常罕见,但根据其对免疫抑制的反应,推测是自身免疫性的获得性PRCA [20] 。与胸腺瘤以外的非血液学肿瘤或细小病毒、人类免疫缺陷病毒、病毒性肝炎或EBV以外的感染相关的病例非常罕见,可能反映了偶然的关联——发病机制一般尚未确定 [1] 。

3. PRCA的诊断

PRCA被怀疑存在于孤立的正红细胞正色素贫血伴严重网状红细胞减少症的个体中。许多关于PRCA的文献可以追溯到使用生命染色进行手工网织红细胞计数的时代,并表明特征性网织红细胞百分比(未校正)为0.1%或更低。更敏感的基于流式细胞术的网织红细胞计数可能更高,但总是小于1%。网织红细胞绝对计数低于10,000/mL提示PRCA [1] [21] 。尽管少数再生障碍性贫血中网织红细胞绝对值与网织红细胞减少症的定义一致,但它至少部分基于以往报告中对网织红细胞绝对计数的回顾性估计。孤立性正色网状细胞减少性贫血的其他原因(慢性肾病贫血;缺铁的最新进展;同时缺乏铁和B12或叶酸)很少表现出这种程度的网状红细胞减少症,但应排除。

在PRCA中白细胞和血小板计数通常是正常的。当异常时,它们大多反映了并发的相关疾病,如慢性淋巴细胞白血病的淋巴细胞增多。

最终,PRCA是需要骨髓形态学诊断。典型的发现是在骨髓中没有或几乎没有红细胞(<1%的有核细胞)。在某些情况下,在原红母细胞和/或嗜碱性红母细胞阶段可能存在成熟阻滞,但这些祖细胞仍应占有核细胞的5%以下 [22] 。带有细胞质泡和核包涵体的巨型原母细胞强烈提示细小病毒感染,但这种诊断需要通过聚合酶链反应(PCR)检测来确认,这种检测可以在外周血中进行 [23] 。由于细小病毒诱导的PRCA几乎只出现在免疫功能低下的个体中,抗细小病毒抗体检测不能明确排除诊断。其他细胞系在没有并发疾病的情况下通常是正常的,除了偶尔浆细胞、淋巴细胞或非梁旁淋巴样聚集体的非克隆性反应性增加,反映了炎症的激活。环状铁母细胞的存在,明显的红细胞发育不良,或无效的红细胞生成提示其他诊断。

除了确定PRCA的诊断外,诊断评估还寻求确定可能具有特定治疗或预后意义的PRCA亚群。与其他用于调查不明原因的细胞减少症的骨髓一样,除了标准的抽吸和活检染色(包括铁染色)外,患者还应进行细胞免疫学研究,以确定克隆淋巴细胞或未成熟的髓细胞过程。

其中包括细胞遗传学。在PRCA中LGL白血病和其他克隆T细胞疾病的要求T细胞受体基因重排研究。最后,应通过NGS进行髓系突变检测,以确定可能具有治疗或预后意义的其他克隆异常。在部分的患者亚群中,可能还需要进行其他相关检查。

一度,人们认为多达50%的PRCA病例与胸腺瘤有关。尽管胸腺瘤可能在PRCA诊断后甚至在治疗后发生,这使得这个数字难以确定,但很可能只有7%~10%的PRCA患者会发生胸腺瘤 [22] [24] 。由于目前这类患者的治疗方案是胸腺切除术后进行免疫抑制,因此推定为原发性自身免疫性PRCA或除细小病毒感染以外的继发性病因的患者,应进行纵隔成像以排除胸腺瘤。

4. PRCA的治疗

4.1. 替代环孢素作为一线治疗或环孢素难治性PRCA

诊断评估的目标之一是确定需要特殊治疗的PRCA亚型。如上所述,胸腺瘤相关的PRCA患者应该进行胸腺切除术,然后进行免疫抑制治疗。单纯胸腺切除术的反应通常是不完全的 [13] [24] 。一个潜在的研究课题是胸腺切除术前后免疫抑制治疗的反应是否相同。静脉注射免疫球蛋白治疗细小病毒相关的PRCA或高γ-球蛋白血症的PRCA患者非常有效(有效率 > 90%) [25] [26] ;在其他情况下,它的效果要差得多,则应使用免疫抑制治疗PRCA。

环孢素最初是在其他一线治疗难治性PRCA中研究的,这些治疗通常是皮质类固醇或皮质类固醇联合细胞毒性药物(典型的是环磷酰胺或硫唑嘌呤)。然而,环孢素是目前最有效的一线治疗药物,反应率一直在70%~75%左右 [1] [25] 。环孢素可与强的松或其他皮质类固醇同时使用,这可能与更好的反应相关 [27] 。大多数其他药物的反应率在40%左右。利妥昔单抗的反应率似乎略高于此,利妥昔单抗是特异性治疗,但主要用于与淋巴增生性疾病相关的PRCA [28] 。

虽然环孢素在所有一线治疗中具有最高的反应率,但该反应率仍远低于100%,这使得大约四分之一的患者需要替代药物。此外,一些患者如肾衰竭患者可能无法耐受环孢素。皮质类固醇作为单一疗法一般只用于一线治疗设置。抗CD52单克隆抗体阿仑妥珠单抗也可用于与淋巴增生性疾病相关的耐药PRCA,但在个别报道中与PRCA的发展有关 [29] [30] [31] 。硼替佐米是一种用于治疗多发性骨髓瘤的蛋白酶体抑制剂,可能对单克隆伽玛病相关的PRCA特别有效 [32] 。干细胞移植已成功地应用于少数顽固难治性病例西罗莫司(雷帕霉素),该药物是一种哺乳动物雷帕霉素靶点(mTOR)抑制剂 [33] 。

西罗莫司用于对环孢素难治性或不耐受的PRCA患者的研究显示,对环孢素的反应率相当(>70%),优于其他治疗方式 [34] 。也有数据显示与一线治疗的效果相似 [35] 。大多数使用环孢素的患者将在6~8周内产生反应,而西罗莫司的中位反应时间为3个月,高峰反应约为6个月 [34] 。PRCA的毒性也没有很好地确定。然而,西罗莫司是环孢素难治性或无反应患者的合理选择,将是研究环孢素一线治疗试验的合适调查药物。

4.2. ABO不相容干细胞移植后的PRCA

ABO血型不相容的干细胞移植在大约7.5%的病例中与PRCA相关。受体同血凝素靶向供体红细胞前体上表达的ABO抗原。在两个月左右的输血支持后,自发性缓解的频率很高 [36] 。但在此之后,通常需要治疗ABO血型不相容干细胞移植相关的PRCA最常见于a血型供者和O血型受者 [37] 。采用的治疗方式包括免疫抑制、血浆交换、供体白细胞输注和利妥昔单抗,但这些都不是常规有效的。

达雷木单抗是一种用于多发性骨髓瘤治疗的抗CD38单克隆抗体,似乎对ABO不相容干细胞移植后的等血凝素介导的PRCA具有独特的效果。反应通常在2~4 d后出现 [38] 。硼替佐米也可能产生反应可以推测 [39] 。这两种药物的浆细胞靶向性解释了它们在这种纯抗体介导的综合征中的疗效。

5. 结论

PRCA的研究提供的见解有助于增进对红细胞生成的认识,其科学意义与PRCA的低发病率(1~2例/百万人口/年)不成比例 [40] [41] 。随着对PRCA的深入研究,我们不但需要阐明分子发病机制方面的问题,也需要明确如何诊断和最有效地管理这种罕见但通常可治疗的综合征患者。

NOTES

*通讯作者。

参考文献

[1] Means, R.T. (2016) Pure Red Cell Aplasia. Blood, 128, 2504-2509.
https://doi.org/10.1182/blood-2016-05-717140
[2] Da, Costa, L.M., Leblanc, T.M. and Narla, M. (2020) Dia-mond-Blackfan Anemia. Blood, 136, 1262-1273.
https://doi.org/10.1182/blood.2019000947
[3] Willig, T.N., Niemeyer, C.M., et al. (1999) Identification of New Prognosis Factors from the Clinical and Epidemiologic Analysis of a Registry of 229 Diamond-Blackfan Anemia Pa-tients. Pediatric Research, 46, 553-561.
https://doi.org/10.1203/00006450-199911000-00011
[4] Vlachos, A., Ball, S., et al. (2008) Diagnosing and Treating Diamond Blackfan Anaemia: Results of an International Clinical Consensus Conference. British Journal of Haematology, 142, 859-876.
https://doi.org/10.1111/j.1365-2141.2008.07269.x
[5] Dessypris, E.N., Krantz, S.B., Roloff, J.S. and Lukens, J.N. (1982) Mode of Action of the IgG Inhibitor of Erythropoiesis in Transient Erythroblastopenia of Childhood. Blood, 59, 114-123.
https://doi.org/10.1182/blood.V59.1.114.114
[6] Gagne, K.E., Ghazvinian, R., Yuan, D., et al. (2014) Pearson Marrow Pancreas Syndrome in Patients Suspected to Have Diamond-Blackfan Anemia. Blood, 124, 437-440.
https://doi.org/10.1182/blood-2014-01-545830
[7] Narla, A., Vlachos, A. and Nathan, D.G. (2011) Diamond Blackfan Anemia Treatment: Past, Present, and Future. Seminars in Hematology, 48, 117-123.
https://doi.org/10.1053/j.seminhematol.2011.01.004
[8] Ball, S.E., McGuckin, C.P., Jenkins, G. and Gor-don-Smith, E.C. (1996) Diamond-Blackfan Anaemia in the U.K.: Analysis of 80 Cases from a 20-Year Birth Cohort. British Journal of Haematology, 94, 645-653.
https://doi.org/10.1046/j.1365-2141.1996.d01-1839.x
[9] Wang, H., Niu, H., Zhang, T., Xing, L., Shao, Z. and Fu, R. (2021) Low-and Intermediaterisk Myelodysplastic Syndrome with Pure Red Cell Aplasia. Hematology, 26, 444-446.
https://doi.org/10.1080/16078454.2021.1929694
[10] Hirokawa, M., Sawada, K., Fujishima, N., et al. (2015) Long-Term Outcome of Patients with Acquired Chronic Pure Red Cell Aplasia (PRCA) Following Immunosup-pressive Therapy: A Final Report of the Nationwide Cohort Study in 2004/2006 by the Japan PRCA Collaborative Study Group. British Journal of Haematology, 169, 879-886.
https://doi.org/10.1111/bjh.13376
[11] Abkowitz, J.L., Kadin, M.E., Powell, J.S. and Adamson, J.W. (1986) Pure Red Cell Aplasia: Lymphocyte Inhibition of Erythropoiesis. British Journal of Haematology, 63, 59-67.
https://doi.org/10.1111/j.1365-2141.1986.tb07495.x
[12] Fujishima, N., Hirokawa, M., Fujishima, M., et al. (2006) Oligoclonal T Cell Expansion in Blood But Not in the Thymus from a Patient with Thymoma-Associated Pure Red Cell Aplasia. Haematologica, 91, ECR47.
[13] Hirokawa, M., Sawada, K., Fujishima, N., et al. (2008) Long-Term Response and Outcome Following Immunosuppressive Therapy in Thymoma-Associated Pure Red Cell Aplasia: A Na-tionwide Cohort Study in Japan by the PRCA Collaborative Study Group. Haematologica, 93, 27-33.
https://doi.org/10.3324/haematol.11655
[14] Ishida, F., Matsuda, K., Sekiguchi, N., et al. (2014) STAT3 Gene Mutations and Their Association with Pure Red Cell Aplasia in Large Granular Lymphocyte Leukemia. Cancer Science, 105, 342-346.
https://doi.org/10.1111/cas.12341
[15] Frickhofen, N., Chen, Z.J., Young, N.S., Cohen, B.J., Heimpel, H. and Abkowitz, J.L. (1994) Parvovirus B19 as a Cause of Acquired Chronic Pure Red Cell Aplasia. British Journal of Haematology, 87, 818-824.
https://doi.org/10.1111/j.1365-2141.1994.tb06743.x
[16] Tanaka, Y., Matsui, K., Yamashita, K., Matsuda, K., Shinohara, K. and Matsutani, A. (2006) T-Gamma Delta Large Granular Lymphocyte Leukemia Preceded by Pure Red Cell Aplasia and Complicated with Hemophagocytic Syndrome Caused by Epstein-Barr Virus Infection. Internal Medi-cine, 45, 631-635.
https://doi.org/10.2169/internalmedicine.45.1594
[17] Dessypris, E.N., Redline, S., Harris, J.W. and Krantz, S.B. (1985) Diphenylhydantoininduced Pure Red Cell Aplasia. Blood, 65, 789-794.
https://doi.org/10.1182/blood.V65.4.789.789
[18] Mariette, X., Mitjavila, M.T., Moulinie, J.P., et al. (1989) Ri-fampicin-Induced Pure Red Cell Aplasia. The American Journal of Medicine, 87, 459-460.
https://doi.org/10.1016/S0002-9343(89)80833-2
[19] Bennett, C.L., Luminari, S., Nissenson, A.R., et al. (2004) Pure Red-Cell Aplasia and Epoetin Therapy. The New England Journal of Medicine, 351, 1403-1408.
https://doi.org/10.1056/NEJMoa040528
[20] Choudry, M.A., Moffett, B.K. and Laber, D.A. (2007) Pure Red-Cell Aplasia Secondary to Pregnancy, Characterization of a Syndrome. Annals of Hematology, 86, 233-237.
https://doi.org/10.1007/s00277-006-0211-4
[21] Gurnari, C. and Maciejewski, J.P. (2021) How I Manage Ac-quired Pure Red Cell Aplasia in Adults. Blood, 137, 2001-2009.
https://doi.org/10.1182/blood.2021010898
[22] Dessypris, E.N. (1988) Pure Red Cell Aplasia. Johns Hopkins University Press, Baltimore, 1-156.
[23] Au, W.Y., Cheng, V.C., Wan, T.S. and Ma, S.K. (2004) Myelodysplasia Masquerading as Parvovirus-Related Red Cell Aplasia with Giant Pronormoblasts. Annals of Hematology, 83, 670-671.
https://doi.org/10.1007/s00277-004-0894-3
[24] Thompson, C.A. and Steensma, D.P. (2006) Pure Red Cell Apla-sia Associated with Thymoma: Clinical Insights from a 50-Year Single-Institution Experience. British Journal of Hae-matology, 135, 405-407.
https://doi.org/10.1111/j.1365-2141.2006.06295.x
[25] Balasubramanian, S.K., Sadaps, M., Thota, S., et al. (2018) Rational Management Approach to Pure Red Cell Aplasia. Haematologica, 103, 221-230.
https://doi.org/10.3324/haematol.2017.175810
[26] Crabol, Y., Terrier, B., Rozenberg, F., et al. (2013) Intravenous Immunoglobulin Therapy for Pure Red Cell Aplasia Related to Human Parvovirus B19 Infection: A Retrospective Study of 10 Patients and Review of the Literature. Clinical Infectious Diseases, 56, 968-977.
https://doi.org/10.1093/cid/cis1046
[27] Wu, X., Yang, Y., Lu, X., et al. (2019) Induced Complete Remission Faster in Adult Patients with Acquired Pure Red Cell Aplasia by Combining Cyclosporine A with Corticosteroids. Medi-cine (Baltimore), 98, e17425.
https://doi.org/10.1097/MD.0000000000017425
[28] D’Arena, G., Vigliotti, M.L., Dell’Olio, M., et al. (2009) Rituximab to Treat Chronic Lymphoproliferative Disorder-Associated Pure Red Cell Aplasia. European Journal of Haematology, 82, 235-239.
https://doi.org/10.1111/j.1600-0609.2008.01187.x
[29] Au, W.Y., Lam, C.C., Chim, C.S., Pang, A.W. and Kwong, Y.L. (2005) Alemtuzumab Induced Complete Remission of Therapy-Resistant Pure Red Cell Aplasia. Leukemia Research, 29, 1213-1215.
https://doi.org/10.1016/j.leukres.2005.02.018
[30] D’Arena, G. and Cascavilla, N. (2009) Chronic Lymphocytic Leukemia-Associated Pure Red Cell Aplasia. International Journal of Immunopathology and Pharmacology, 22, 279-286.
https://doi.org/10.1177/039463200902200204
[31] Elimelakh, M., Dayton, V., Park, K.S., et al. (2007) Red Cell Aplasia and Autoimmune Hemolytic Anemia Following Immunosuppression with Alemtuzumab, Mycopheno-late, and Daclizumab in Pancreas Transplant Recipients. Haematologica, 92, 1029-1036.
https://doi.org/10.3324/haematol.10733
[32] Zhang, L., Chen, N., Xu, Z., et al. (2021) Good Treatment-Free Sur-vival of Monoclonal Gammopathy of Undetermined Significance Associated Pure Red Cell Aplasia after Bortezomib plus Dexamethasone. Blood Cells, Molecules, and Diseases, 89, Article ID: 102573.
https://doi.org/10.1016/j.bcmd.2021.102573
[33] Halkes, C., De, Wreede, L.C., Knol, C., et al. (2019) Allogeneic Stem Cell Transplantation for Acquired Pure Red Cell Aplasia. American Journal of Hematology, 94, E294-E296.
https://doi.org/10.1002/ajh.25609
[34] Huang, Y., Chen, M., Yang, C., Ruan, J., Wang, S. and Han, B. (2022) Si-rolimus Is Effective for Refractory/Relapsed/ Intolerant Acquired Pure Red Cell Aplasia: Results of a Prospective Sin-gle-Institutional Trial. Leukemia, 36, 1351-1360.
https://doi.org/10.1038/s41375-022-01532-1
[35] Chen, Z., Liu, X., Chen, M., Yang, C. and Han, B. (2020) Suc-cessful Sirolimus Treatment of Patients with Pure Red Cell Aplasia Complicated with Renal Insufficiency. Annals of Hematology, 99, 737-741.
https://doi.org/10.1007/s00277-020-03946-2
[36] Worel, N. (2016) ABO-Mismatched Allogeneic Hematopoietic Stem Cell Transplantation. Transfusion Medicine and Hemotherapy, 43, 3-12.
https://doi.org/10.1159/000441507
[37] Aung, F.M., Lichtiger, B., Bassett, R., et al. (2013) Incidence and Natural History of Pure Red Cell Aplasia in Major ABO-Mismatched Haematopoietic Cell Transplantation. British Journal of Haematology, 160, 798-805.
https://doi.org/10.1111/bjh.12210
[38] Martino, R., García-Cadenas, I. and Esquirol, A. (2022) Daratumumab May Be the Most Effective Treatment for Post-Engraftment Pure Red Cell Aplasia Due to Persistent Anti-Donor Isohemag-glutinins after Major ABO-Mismatched Allogeneic Transplantation. Bone Marrow Transplantation, 57, 282-285.
https://doi.org/10.1038/s41409-021-01507-3
[39] Poon, L.M. and Koh, L.P. (2012) Successful Treatment of Iso-hemagglutinin-Mediated Pure Red Cell Aplasia after ABO-Mismatched Allogeneic Hematopoietic Cell Transplant Using Bortezomib. Bone Marrow Transplantation, 47, 870-871.
https://doi.org/10.1038/bmt.2011.176
[40] Means, R.T. (2022) Update on Pure Red Cell Aplasia: Etiology, Diagnosis, and Treatment. Clinical Advances in Hematology & On-cology, 20, 18-21.
[41] Nakazawa, H., Sakai, K., Ohta, A., et al. (2022) Incidence of Acquired Pure Red Cell Aplasia: A Nationwide Epidemiologic Analysis with 2 Registry Databases in Japan. Blood Advances, 6, 6282-6290.
https://doi.org/10.1182/bloodadvances.2021006486