具有避难所的Holling-Tanner捕食者-食饵扩散模型的稳定性与Hopf分支分析
Stability and Hopf Bifurcation Analysis ona Diffusion Holling-Tanner Predator-PreyModel with Prey Refuge
DOI: 10.12677/PM.2024.141027, PDF, 下载: 186  浏览: 328  国家自然科学基金支持
作者: 肖 雪, 张丽娜:西北师范大学,数学与统计学院,甘肃 兰州
关键词: Holling-Tanner 捕食者-食饵模型避难所扩散Hopf 分支Holling-Tanner Predator-Prey Model Prey Refuge Diffusion Hopf Bifurcation
摘要: 本文研究一类具有避难所的 Holling-Tanner型捕食者-食饵模型。 首先分析了常微分系统下平衡 点的稳定性,然后通过分析扩散模型平衡点的特征方程,讨论正平衡点的局部稳定性以及Hopf分 支存在的条件。 结果表明:避难所会导致Hopf分支产生,产生空间齐次周期解,扩散的加入会创 造新的Hopf分支点,产生空间非齐次周期解。这说明设立适当的食饵避难所有助于物种共存。
Abstract: In this paper, a Holling-Tanner predator-prey model with diffusion and prey refuge is considered. Firstly, the stability of the equilibrium points under the ordinary differential system is analyzed. Secondly, the local stability of the positive equilibrium point and the conditions for the existence of the Hopf branch are discussed by analyzing the characteristic equations of the equilibrium point of the diffusion model. The results show that the refuge will lead to the Hopf bifurcation and produce the spatial homogeneous periodic solution, and the addition of diffusion will create new Hopf bifurcation points and produce the spatial non-homogeneous periodic solution. This indicates that the establishment of appropriate prey refuge will be conducive to the coexistence of species.
文章引用:肖雪, 张丽娜. 具有避难所的Holling-Tanner捕食者-食饵扩散模型的稳定性与Hopf分支分析[J]. 理论数学, 2024, 14(1): 253-260. https://doi.org/10.12677/PM.2024.141027

参考文献

[1] 郑师章, 呈千红, 等, 编著. 普通生态学原理、方法和应用[M]. 上海: 复旦大学出版社, 1994.
[2] Gonz'alez-Olivares, E. and Ramos-Jiliberto, R. (2003) Dynamic Consequences of Prey Refuges in a Simple Model System: More Prey, Fewer Predators and Enhanced Stability. Ecological Modelling, 166, 135-146.
https://doi.org/10.1016/S0304-3800(03)00131-5
[3] Zhou, Y., Sun, W., Song, Y., Zheng, Z., Lu, J. and Chen, S. (2019) Hopf Bifurcation Analysis of a Predator-Prey Model with Holling-II Type Functional Response and a Prey Refuge. Nonlinear Dynamics, 97, 1439-1450.
https://doi.org/10.1007/s11071-019-05063-w
[4] Xiang, C., Huang J. andWang, H. (2023) Bifurcations in Holling-Tanner Model with Generalist Predator and Prey Refuge. Journal of Differential Equations, 343, 495-529.
https://doi.org/10.1016/j.jde.2022.10.018
[5] Collings, J.B. (1995) Bifurcation and Stability Analysis of a Temperature-Dependent Mite Predator-Prey Interaction Model Incorporating a Prey Refuge. Bulletin of Mathematical Biol- ogy, 57, 63-76.
https://doi.org/10.1016/0092-8240(94)00024-7
[6] Chen, F., Chen, L. and Xie, X. (2009) On a Leslie-Gower Predator-Prey Model Incorporating a Prey Refuge. Nonlinear Analysis-Real World Applications, 10, 2905-2908.
https://doi.org/10.1016/j.nonrwa.2008.09.009
[7] Ko, W. and Ryu, K. (2006) Qualitative Analysis of a Predator-Prey Model with Holling Type II Functional Response Incorporating a Prey Refuge. Journal of Differential Equations, 231, 534-550.
https://doi.org/10.1016/j.jde.2006.08.001
[8] Ma, Z., Li, W., Zhao, Y., Wang, W., Zhang, H. and Li, Z. (2009) Effects of Prey Refuges on a Predator-Prey Model with a Class of Functional Responses: The Role of Refuges (Review). Mathematical Biosciences, 218, 73-79.
https://doi.org/10.1016/j.mbs.2008.12.008