甘油三酯葡萄糖指数在心力衰竭合并房颤患者中的研究进展
Research Progress of Triglyceride Glucose Index in Patients with Heart Failure and Atrial Fibrillation
DOI: 10.12677/ACM.2024.141262, PDF, HTML, XML, 下载: 150  浏览: 231  科研立项经费支持
作者: 路家瑶:重庆医科大学研究生院,重庆;李兴升*:重庆医科大学附属第二医院老年医学科,重庆
关键词: 甘油三酯葡萄糖指数心力衰竭心房颤动Triglyceride Glucose Index Heart Failure Atrial Fibrillation
摘要: 甘油三酯葡萄糖指数是一项简单评估胰岛素抵抗的标志物,胰岛素抵抗对心血管疾病的发生发展有明确的作用。老年患者心力衰竭和心房颤动发病率及病死率高。甘油三酯葡萄糖指数是HF及AF发生发展的影响因素,现就甘油三酯葡萄糖指数在心力衰竭合并房颤患者中的研究进展作一综述。
Abstract: The triglyceride glucose index is a biomarker for evaluating insulin resistance, which has a clear role in the occurrence and development of cardiovascular diseases. The incidence rate and mortali-ty of heart failure and atrial fibrillation in elderly patients are high. The triglyceride glucose index is an influencing factor for the occurrence and development of HF and AF. This article reviews the re-search progress of the triglyceride glucose index in patients with heart failure and atrial fibrillation.
文章引用:路家瑶, 李兴升. 甘油三酯葡萄糖指数在心力衰竭合并房颤患者中的研究进展[J]. 临床医学进展, 2024, 14(1): 1841-1846. https://doi.org/10.12677/ACM.2024.141262

1. 引言

心力衰竭是由于心脏的结构和/或功能异常,导致心脏内压力升高和/或在休息和/或运动时心输出量不足的一种临床综合征。据统计目前全球HF的患病率为1%~2%,预计到2060年将翻一番。患病率随年龄增长而增加:70岁以上人群患病率从1%左右增加到10%左右 [1] 。心衰患者常并发心房颤动(Atrial Fibrillation,AF,简称房颤),同时房颤也是心衰、血栓栓塞、脑卒中等多种疾病的诱因之一 [2] [3] [4] 。心衰和房颤共同增加了卒中、因心衰加重住院和全因死亡的风险,对生活质量(quality of life, QOL)、运动能力和重复住院有协同的负面影响 [3] 。甘油三酯葡萄糖乘积指数(triglyceride glucose index,TyG指数)是评估胰岛素抵抗(insulin resistance, IR)的标志物。既往多项研究证据表明TyG指数是HF及AF发生发展的影响因素,现就TyG指数在老年心衰合并房颤患者中的研究进展进行阐述。

2. TyG指数

用于评估IR的金标准有高胰岛素正葡萄糖胰岛素钳夹术和静脉葡萄糖耐量试验,但这两种方法有创且价格昂贵;在临床实践中并没有完全应用。稳态模型评估的胰岛素抵抗指数(HOMA-IR)和β细胞功能指数(HOMA-β)广泛应用于检测β细胞功能和IR,但在接受胰岛素治疗或无功能β细胞的人群中应用价值有限 [4] 。为了克服这一局限性,甘油三酯–葡萄糖(triglyceride-glucose, TyG)指数被开发出来,并被证明在评估糖尿病患者和非糖尿病患者的IR方面优于HOMA-IR [5] 。TyG指数是由ln [空腹甘油三酯(mg/dL) × 空腹血糖(mg/dL)/2]计算得出,于2008年首次提出。因检测成本低、操作简便,在临床中可广泛推广。现有许多研究证实了TyG指数评估IR的合理性。在2008年发表的一项针对表观健康个体的大型横断面研究 [5] 中,TyG指数被发现是比HOMA-IR指数更好地识别IR的替代指标,灵敏度(84.0%),特异度(45.0%)。2010年,格雷罗-Romero等 [6] 对99名不同体重和糖耐量的个体进行横断面研究,发现与正常血糖–高胰岛素血症钳夹试验相比TyG指数是评估IR的最佳工具,具有较高的灵敏度(96.5%)和特异度(85.0%)。2014年,Lee等 [7] 的一项研究在2014年招募了5354名中年非糖尿病韩国人进行长期随访,研究发现,TyG指数最高四分位数的个体与最低四分位数的个体相比,其患糖尿病的风险高4倍(RR, 4.095; 95% CI, 2.701~6.207)。表明了TyG指数可能是识别糖尿病高风险受试者的有用标志物。此外,该研究发现TyG指数对IR的预测能力优于HOMA-IR指数。2016年,David等 [8] 的一项研究显示,在4820例个体中,TyG指数比空腹血糖测量和TG水平在诊断糖尿病受试者中具有更好的预测能力。

3. TyG指数在心血管疾病中的应用

心血管疾病(CVD)是全球过早死亡的主要原因,也是造成全球疾病负担的一个主要因素 [9] 。近年来许多研究都证实了TyG指数与心血管疾病(CVD)之间的相关性。Da Silva等 [10] 纳入了过去10年中至少患有一种心血管疾病(CVD)的巴西患者,得出TyG指数仅在有症状组中观察到有统计学差异。Wu等研究 [11] 证实,TyG指数与传统心血管风险因素和Gensini评分(GS)有明显相关性。与通常的IR评估工具相比,TyG指数与CVD发展的风险有关。Barzegar等 [12] 的研究对伊朗7521名参与者进行的社区队列研究确定,TyG指数高与随访3年后心血管疾病/冠状动脉粥样硬化风险增加有显著关系。Laura等 [13] 对血管代谢CUN队列(VMCUN队列)的5014名患者进行了中位为期10年的随访,证实TyG指数对心血管疾病的预测价值更高。

4. TyG指数和HF

HF主要表现为呼吸困难、咳嗽咳痰、乏力、心悸、颈静脉怒张、双下肢水肿、少尿无尿等一系列临床综合征,是多种心血管疾病的终末期也是致死致残的主要原因之一 [1] 。

4.1. TyG指数与HF发生机制

既往多项研究证实,TyG指数现可作为IR的评估标准。在生理条件下,胰岛素通过增强胰岛素敏感组织中的葡萄糖处置来调节葡萄糖稳态,同时也通过其对小供血动脉的舒张作用来调节营养物质的输送。出现IR时,高血糖诱导过度糖基化,促进平滑肌细胞增殖、胶原交联和胶原沉积,导致舒张期左心室僵硬度增加,心脏纤维化,最终导致心力衰竭 [14] 。IR可能导致心衰的病理生理因素包括全身代谢紊乱、肾素–血管紧张素–醛固酮系统的不适当激活、亚细胞组分异常、氧化应激、炎症和免疫调节功能失调。这些异常共同促进了心脏组织间质纤维化,心脏僵硬/舒张功能障碍,以及随后的收缩功能障碍,最终导致临床心力衰竭的发生 [15] 。最近的证据表明,IR可能增加心脏对脂肪酸的摄取和β氧化,使其超过线粒体氧化能力,导致线粒体功能障碍 [16] 。IR也会导致内皮功能受损,包括屏障功能障碍、一氧化氮(NO)活性受损、活性氧(ROS)产生过多等。反过来,内皮功能障碍又会促进心肌代谢受损、细胞内Ca2+处理不当、内质网应激、线粒体缺陷、高级糖化终产物积累和细胞外基质(ECM)沉积,最终导致心力衰竭 [17] 。

4.2. TyG指数与HF的关系

TyG指数与HF高发生率密切相关。近年已有多项研究报道了TyG指数与HF之间的关系。Li等 [18] 基于中国北方的开滦队列和香港的全国性队列的两项研究,结果示较高的TyG指数与发生HF的高风险之间存在正相关关系,且关联在女性受试者中更显著。Zheng等 [19] 利用开滦研究中的大型社区前瞻性队列来评估累积TyG指数与HF的关系,以基线TyG指数四分位数为界,随TyG指数升高,HF的发生率逐渐增加,且四组的发病率均呈上升趋势提示高累积TyG指数是新发HF的危险因素。高累积TyG指数独立于传统危险因素增加HF发生的风险,并呈现剂量反应关系。Huang等 [20] 收集了4年间在院内诊断为急性心力衰竭(AHF)的932例患者,TyG指数升高与不良预后独立相关,且无论其糖尿病状态如何,TyG指数升高的患者发生死亡、再住院不良终点事件的风险更大。

5. TyG指数和AF

心房颤动(AF)是最常见的持续性心律紊乱,与大量的发病率和死亡率相关 [21] 。心房颤动的特点是心房高频率兴奋,导致心房收缩不同步和心室兴奋不规则 [22] 。房颤可导致相关并发症,与高发病率和高死亡率相关。5年其他并发症包括心力衰竭(HF) 13.7%,脑卒中7.1%,消化道出血5.7% [21] 。越来越多的证据表明,新陈代谢紊乱包括糖尿病和胰岛素抵抗(IR),与心房电活动和结构重塑密切相关,从而奠定了房颤发生的电生理和结构基础 [23] [24] [25] 。Chen等 [26] 研究发现,IR可能与房颤有关。逻辑回归分析表明,在非糖尿病受试者中,TyG指数升高组房颤发生了高于TyG指数正常组(OR = 3.065, 95% CI, 1.819~5.166)。然而,该研究也得出TyG指数与糖尿病患者的房颤无关。即TyG指数是非糖尿病受试者房颤的一个独立危险因素,有望成为预测房颤发生的一个简单实用的生物学指标。Liu等 [27] 基于ARIC研究进行了一个子分析,TyG指数第一组(HR: 1.15, 95% CI 1.02~1.29)和TyG指数第三组(HR: 1.18; 95% CI 1.03~1.37)的发病率均较高。表明在没有已知心血管疾病的美国人中,TyG指数与心房颤动发病率呈U型关系。女性可能是TyG指数与心房颤动发病率之间关系的调节因素。在某些已确诊心血管疾病的患者中,已观察到TyG指数与房颤风险之间存在正相关。在接受房间隔切除术和经皮冠状动脉介入治疗的肥厚型梗阻性心肌病患者中,TyG指数对术后房颤发生率的预测能力为中等 [28] [29] 。

6. TyG指数与HF及AF的共同危险因素

AF与HF都是日益严重的问题,AF与HF的共患人群也在不断扩大。高龄,冠心病,高血压,糖尿病等是AF与HF常见危险因素,并且每种疾病都有导致另一种疾病的倾向 [30] 。目前多项研究已证实了TyG指数与冠心病,高血压及糖尿病等疾病的相关性。在一项回顾性观察研究中 [31] ,Park等人纳入了1250名没有传统CVRFs的无症状韩国人,通过冠状动脉血管造影评估冠状动脉狭窄情况。他们发现,TyG指数与CAD风险增加有关(OR: 1.473, 95% CI 1.026~2.166),尤其是在非钙化斑块和混合斑块患者中。Zhang等 [32] 对1655名无糖尿病且低密度脂蛋白胆固醇(LDL-C)水平低于1.8毫摩尔/升的急性冠脉综合征(Acute coronary syndrome, ACS)患者进行了分析,发现与LDL-C水平低于1.8毫摩尔/升的ACS患者相比,TyG指数水平高的患者急性心肌梗死发生率更高(21.2%对15.2%),梗死面积更大,血管再通发生率更高(8.9%对5.0%)。Zhu等 [33] 以2011年一项旨在证明糖代谢异常与中国人群罹患癌症风险的纵向研究(REACTION)为基础行嵌套研究,得出在年龄最大(≥65岁)的亚组中,TyG指数升高与高血压显著相关(OR: 1.67, 95% CI 1.30~2.14)。一项中国全国性队列研究 [34] 提出TyG指数水平高与新发高血压的风险较高有关,并呈现出线性关系。保持相对较低的TyG指数水平有助于高血压的一级预防。Sun等 [35] 基于一个大型代表性数据库纳入9254名年龄 ≥ 45岁的参与者,发现TyG指数呈U型与中老年人群较低的死亡率相关。Li等 [36] 研究表明TyG指数与糖尿病之间呈线性正相关(HR: 1.75; 95% CI 1.56~1.97)。

7. 总结

综上,TyG指数是一项评估IR的新型标志物,是HF及AF发生发展的重要影响因素。TyG指数与心血管疾病(CVD)之间有明确的相关性。HF及AF作为老年常见心血管疾病也与TyG指数明显相关,胰岛素抵抗可从多方面影响HF及AF的发生发展,并对其共同的危险因素也有一定的影响,TyG指数对心力衰竭合并房颤患者的诊治有重要的意义。

基金项目

感谢重庆医科大学未来医学青年创新团队支持计划。

NOTES

*通讯作者。

参考文献

[1] Authors/Task Force Members, McDonagh, T.A., Metra, M., Adamo, M., Gardner, R.S., Baumbach, A., et al. (2022) 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: Developed by the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC). With the Special Contribution of the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure, 24, 4-131.
https://doi.org/10.1002/ejhf.2333
[2] Frederiksen, T.C., Dahm, C.C., Preis, S.R., Lin, H., Trinquart, L., Benjamin, E.J., et al. (2023) The Bidirectional Association between Atrial Fibrillation and Myocardial Infarction. Nature Reviews Cardiology, 20, 631-644.
https://doi.org/10.1038/s41569-023-00857-3
[3] Verma, A., Kalman, J.M. and Callans, D.J. (2017) Treatment of Patients with Atrial Fibrillation and Heart Failure with Reduced Ejection Fraction. Circulation, 135, 1547-1563.
https://doi.org/10.1161/CIRCULATIONAHA.116.026054
[4] Tao, L.C., Xu, J.N., Wang, T.T., Hua, F. and Li, J.J. (2022) Triglyceride-Glucose Index as a Marker in Cardiovascular Diseases: Landscape and Limitations. Cardiovas-cular Diabetology, 21, Article No. 68.
https://doi.org/10.1186/s12933-022-01511-x
[5] Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerre-ro-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304.
https://doi.org/10.1089/met.2008.0034
[6] Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., Martínez-Abundis, E., Ramos-Zavala, M.G., Hernández-González, S.O., et al. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Jour-nal of Clinical Endocrinology and Metabolism, 95, 3347-3351.
https://doi.org/10.1210/jc.2010-0288
[7] Lee, S.H., Kwon, H.S., Park, Y.M., Ha, H.S., Jeong, S.H., Yang, H.K., et al. (2014) Predicting the Development of Diabetes Using the Product of Triglycerides and Glucose: The Chungju Metabolic Disease Cohort (CMC) Study. PLOS ONE, 9, e90430.
https://doi.org/10.1371/journal.pone.0090430
[8] Navarro-González, D., Sánchez-Íñigo, L., Pastrana-Delgado, J., Fernández-Montero, A. and Martinez, J.A. (2016) Triglyceride-Glucose Index (TyG Index) in Comparison with Fasting Plasma Glucose Improved Diabetes Prediction in Patients with Normal Fasting Glucose: The Vascular-Metabolic CUN Cohort. Preventive Medicine, 86, 99-105.
https://doi.org/10.1016/j.ypmed.2016.01.022
[9] Kivimäki, M. and Steptoe, A. (2018) Effects of Stress on the Development and Progression of Cardiovascular Disease. Nature Reviews Cardiology, 15, 215-229.
https://doi.org/10.1038/nrcardio.2017.189
[10] da Silva, A., Caldas, A.P.S., Hermsdorff, H.H.M., Bersch-Ferreira, Â.C., Torreglosa, C.R., Weber, B., et al. (2019) Triglyceride-Glucose Index Is Associated with Symptomatic Coronary Artery Disease in Patients in Secondary Care. Cardiovascular Diabetology, 18, Article No. 89.
https://doi.org/10.1186/s12933-019-0893-2
[11] Wu, Z., Liu, L., Wang, W., Cui, H., Zhang, Y., Xu, J., et al. (2022) Triglyceride-Glucose Index in the Prediction of Adverse Cardiovascular Events in Patients with Premature Coronary Ar-tery Disease: A Retrospective Cohort Study. Cardiovascular Diabetology, 21, Article No. 142.
https://doi.org/10.1186/s12933-022-01576-8
[12] Barzegar, N., Tohidi, M., Hasheminia, M., Azizi, F. and Ha-daegh, F. (2020) The Impact of Triglyceride-Glucose Index on Incident Cardiovascular Events during 16 Years of Fol-low-Up: Tehran Lipid and Glucose Study. Cardiovascular Diabetology, 19, Article No. 155.
https://doi.org/10.1186/s12933-020-01121-5
[13] Sánchez-Íñigo, L., Navarro-González, D., Fernández-Montero, A., Pastrana-Delgado, J. and Martínez, J.A. (2016) The TyG Index May Predict the Development of Cardiovascular Events. European Journal of Clinical Investigation, 46, 189-197.
https://doi.org/10.1111/eci.12583
[14] Hill, M.A., Yang, Y., Zhang, L., Sun, Z., Jia, G., Parrish, A.R., et al. (2021) Insulin Resistance, Cardiovascular Stiffening and Car-diovascular Disease. Metabolism, 119, Article ID: 154766.
https://doi.org/10.1016/j.metabol.2021.154766
[15] Jia, G., Whaley-Connell, A. and Sowers, J.R. (2018) Diabetic Cardiomyopathy: A Hyperglycaemia- and Insulin-Resistance-Induced Heart Disease. Diabetologia, 61, 21-28.
https://doi.org/10.1007/s00125-017-4390-4
[16] Hattori, Y. (2020) Insulin Resistance and Heart Failure during Treatment with Sodium Glucose Cotransporter 2 Inhibitors: Proposed Role of Ketone Utilization. Heart Failure Reviews, 25, 403-408.
https://doi.org/10.1007/s10741-020-09921-3
[17] Wang, M., Li, Y., Li, S. and Lv, J. (2022) Endothelial Dysfunc-tion and Diabetic Cardiomyopathy. Frontiers in Endocrinology, 13, Article 851941.
https://doi.org/10.3389/fendo.2022.851941
[18] Li, X., Chan, J.S.K., Guan, B., Peng, S., Wu, X., Lu, X., et al. (2022) Triglyceride-Glucose Index and the Risk of Heart Failure: Evidence from Two Large Cohorts and a Mendelian Randomization Analysis. Cardiovascular Diabetology, 21, Article No. 229.
https://doi.org/10.1186/s12933-022-01658-7
[19] Zheng, H., Chen, G., Wu, K., Wu, W., Huang, Z., Wang, X., et al. (2023) Relationship between Cumulative Exposure to Triglyceride-Glucose Index and Heart Failure: A Prospective Cohort Study. Cardiovascular Diabetology, 22, Article No. 239.
https://doi.org/10.1186/s12933-023-01967-5
[20] Huang, R., Wang, Z., Chen, J., Bao, X., Xu, N., Guo, S., et al. (2022) Prognostic Value of Triglyceride Glucose (TyG) Index in Patients with Acute Decompensated Heart Failure. Cardiovascular Diabetology, 21, Article No. 88.
https://doi.org/10.1186/s12933-022-01507-7
[21] Heijman, J., Guichard, J.B., Dobrev, D. and Nattel, S. (2018) Translational Challenges in Atrial Fibrillation. Circulation Research, 122, 752-773.
https://doi.org/10.1161/CIRCRESAHA.117.311081
[22] Staerk, L., Sherer, J.A., Ko, D., Benjamin, E.J. and Helm, R.H. (2017) Atrial Fibrillation: Epidemiology, Pathophysiology, and Clinical Outcomes. Circulation Research, 120, 1501-1517.
https://doi.org/10.1161/CIRCRESAHA.117.309732
[23] Gawałko, M., Saljic, A., Li, N., Abu-Taha, I., Jespersen, T., Linz, D., et al. (2023) Adiposity-Associated Atrial Fibrillation: Molecular Determinants, Mechanisms, and Clinical Significance. Cardiovascular Research, 119, 614-630.
https://doi.org/10.1093/cvr/cvac093
[24] Yang, S., Pudasaini, R., Zhi, H. and Wang, L. (2021) The Relationship between Blood Lipids and Risk of Atrial Fibrillation: Univariable and Multivariable Mendelian Randomization Analysis. Nutrients, 14, Article 181.
https://doi.org/10.3390/nu14010181
[25] Trieb, M., Kornej, J., Knuplez, E., Hindricks, G., Thiele, H., Sommer, P., et al. (2019) Atrial Fibrillation Is Associated with Alterations in HDL Function, Metabolism, and Particle Number. Basic Research in Cardiology, 114, Article No. 27.
https://doi.org/10.1007/s00395-019-0735-0
[26] Chen, S., Mei, Q., Guo, L., Yang, X., Luo, W., Qu, X., et al. (2022) Association between Triglyceride-Glucose Index and Atrial Fibrillation: A Retrospective Observational Study. Frontiers in Endocrinology, 13, Article 1047927.
https://doi.org/10.3389/fendo.2022.1047927
[27] Liu, X., Abudukeremu, A., Jiang, Y., Cao, Z., Wu, M., Ma, J., et al. (2023) U-shaped Association between the Triglyceride-Glucose Index and Atrial Fibrillation Incidence in a General Population without Known Cardiovascular Disease. Cardiovascular Diabetology, 22, Article No. 118.
https://doi.org/10.1186/s12933-023-01777-9
[28] Ling, Y., Fu, C., Fan, Q., Liu, J., Jiang, L. and Tang, S. (2022) Triglyceride-Glucose Index and New-Onset Atrial Fibrillation in ST-Segment Elevation Myocardial Infarction Patients after Percutaneous Coronary Intervention. Frontiers in Cardiovascular Medicine, 9, Article 838761.
https://doi.org/10.3389/fcvm.2022.838761
[29] Wei, Z., Zhu, E., Ren, C., Dai, J., Li, J. and Lai, Y. (2021) Triglyc-eride-Glucose Index Independently Predicts New-Onset Atrial Fibrillation after Septal Myectomy for Hypertrophic Ob-structive Cardiomyopathy beyond the Traditional Risk Factors. Frontiers in Cardiovascular Medicine, 8, Article 692511.
https://doi.org/10.3389/fcvm.2021.692511
[30] Ling, L.H., Kistler, P.M., Kalman, J.M., Schilling, R.J. and Hunter, R.J. (2016) Comorbidity of Atrial Fibrillation and Heart Failure. Nature Reviews Cardiology, 13, 131-147.
https://doi.org/10.1038/nrcardio.2015.191
[31] Park, G.M., Cho, Y.R., Won, K.B., Yang, Y.J., Park, S., Ann, S.H., et al. (2020) Triglyceride Glucose Index Is a Useful Marker for Predicting Subclinical Coronary Artery Disease in the Absence of Traditional Risk Factors. Lipids in Health and Disease, 19, Article No. 7.
https://doi.org/10.1186/s12944-020-1187-0
[32] Zhang, Y., Ding, X., Hua, B., Liu, Q., Gao, H., Chen, H., et al. (2022) High Triglyceride-Glucose Index Is Associated with Poor Cardiovascular Outcomes in Nondiabetic Patients with ACS with LDL-C below 1.8 mmol/L. Journal of Atherosclerosis and Thrombosis, 29, 268-281.
https://doi.org/10.5551/jat.61119
[33] Zhu, B., Wang, J., Chen, K., Yan, W., Wang, A., Wang, W., et al. (2020) A High Triglyceride Glucose Index Is More Closely Associated with Hypertension than Lipid or Glycemic Parameters in Elderly Individuals: A Cross-Sectional Survey from the Reaction Study. Cardiovascular Diabetology, 19, Article No. 112.
https://doi.org/10.1186/s12933-020-01077-6
[34] Gao, Q., Lin, Y., Xu, R., Luo, F., Chen, R., Li, P., et al. (2023) Positive Association of Triglyceride-Glucose Index with New-Onset Hypertension among Adults: A National Cohort Study in China. Cardiovascular Diabetology, 22, Article No. 58.
https://doi.org/10.1186/s12933-023-01795-7
[35] Sun, M., Guo, H., Wang, Y. and Ma, D. (2022) Association of Triglyceride Glucose Index with All-Cause and Cause-Specific Mortality among Middle Age and Elderly US Population. BMC Geriatrics, 22, Article No. 461.
https://doi.org/10.1186/s12877-022-03155-8
[36] Li, X., Sun, M., Yang, Y., Yao, N., Yan, S., Wang, L., et al. (2022) Predictive Effect of Triglyceride Glucose-Related Parameters, Obesity Indices, and Lipid Ratios for Diabetes in a Chinese Population: A Prospective Cohort Study. Frontiers in Endocrinology, 13, Article 862919.
https://doi.org/10.3389/fendo.2022.862919