乙肝肝硬化门脉高压进展的危险因素分析及列线图预测模型构建
Analysis of Risk Factors for the Progression of Portal Hypertension in Hepatitis B Cirrhosis and Construction of a Nomogram Prediction Model
DOI: 10.12677/ACM.2024.141242, PDF, HTML, XML, 下载: 164  浏览: 257  科研立项经费支持
作者: 葛安宁*, 卢 燕:青岛大学医学院,山东 青岛;李金金, 李雪芳, 王亮亮, 苟 卫#:青岛市第六人民医院代谢性肝病科,山东 青岛
关键词: 乙肝肝硬化门静脉高压前白蛋白肝硬度Chronic Hepatitis B Cirrhosis Portal Hypertension Prealbumin Liver Hardness
摘要: 目的:探讨乙肝肝硬化门脉高压进展的危险因素并建立预测模型,并验证其预测价值。方法:选取2022年6月至2023年9月在青岛市第六人民医院住院的行HVPG检查的患者共180例,其中符合乙肝肝硬化门脉高压的患者88例,根据HVPG数据将其分为5 mmHg < HVPG < 10 mmHg组和HVPG ≥ 10 mmHg组,分析患者的一般资料、合并症及实验室指标。采用单因素及二元Logistic回归分析法筛选其危险因素并建立Logistic回归模型,并在此基础上构建列线图预测模型。结果:单因素分析结果显示白细胞计数(WBC)、凝血酶原时间(PT)、血清总胆红素(TBIL)、前白蛋白(PA)、白蛋白(ALB)、肝硬度(LSM)与乙肝肝硬化门脉高压进展具有相关性(P < 0.05),多因素分析结果显示,前白蛋白(OR 0.982, 95% CI 0.967~0.997, P = 0.019)、肝硬度(OR 1.308, 95% CI 1.101~1.554, P = 0.002),是门脉高压进展的独立危险因素。基于多因素Logistic回归分析结果,构建乙肝肝硬化门脉高压进展的风险预测列线图模型。Hosmer-Lemeshoe拟合优度检验结果显示,该列线图模型的拟合程度较好(χ2 = 6.88, P = 0.5495)。校准曲线分析结果显示,该列线图模型预测乙肝肝硬化门脉高压进展的发生率与实际发生率基本吻合。ROC曲线分析结果显示,该列线图模型乙肝肝硬化门脉高压进展的AUC为0.900 (P < 0.001, 95% CI: 0.834~0.966),模型净获益。结论:前白蛋白及肝硬度是乙肝肝硬化门脉高压进展的独立危险因素,据此建立的模型为临床早期预测和判断临床显著门脉高压患者提供参考。
Abstract: Objectives: To investigate the risk factors for the progression of portal hypertension in hepatitis B cirrhosis, establish a prediction model, and verify its predictive value. Methods: A total of 180 pa-tients hospitalized in the Sixth People’s Hospital of Qingdao from June 2022 to September 2023 who underwent HVPG examination were selected. Among them, 88 patients with portal hypertension due to hepatitis B cirrhosis were divided into 5 mmHg< HVPG < 10 mmHg group and HVPG ≥ 10 mmHg group according to HVPG data. The general information, complications and laboratory indi-cators of the patients were analyzed. Single factor and binary logistic regression analysis were used to screen the risk factors and establish a logistic regression model. Based on this, a column chart prediction model was constructed. Results: Univariate analysis showed that white blood cell count (WBC), prothrombin time (PT), serum total bilirubin (TBIL), prealbumin (PA), albumin (ALB), liver stiffness (LSM) were correlated with the progression of portal hypertension in hepatitis B cirrhosis (P < 0.05), multivariate analysis showed that prealbumin (OR 0.982, 95% CI 0.967~0.997, P = 0.019) and liver stiffness (OR 1.308, 95% CI 1.101~1.554, P = 0.002) were independent risk factors for the progression of portal hypertension. Based on the results of multivariate logistic regression analysis, a risk prediction nomogram model for the progression of portal hypertension in hepatitis B cirrho-sis was constructed. The results of Hosmer-Lemeshoe’s goodness-of-fit test showed that the nomo-gram model had a good fit (χ2 = 6.88, P = 0.5495). The results of calibration curve analysis showed that the nomogram model predicted the incidence of portal hypertension progression in hepatitis B cirrhosis and the actual incidence rate was basically consistent. The results of ROC curve analysis showed that the AUC of portal hypertension progression in hepatitis B cirrhosis was 0.900 (P < 0.001, 95% CI: 0.834~0.966). Conclusion: Low prealbumin and LSM are independent risk factors for the progression of portal hypertension in patients with chronic hepatitis B cirrhosis, and the pre-diction model established by this method provides a reference for early clinical prediction and judgment of clinically significant portal hypertension patients.
文章引用:葛安宁, 卢燕, 李金金, 李雪芳, 王亮亮, 苟卫. 乙肝肝硬化门脉高压进展的危险因素分析及列线图预测模型构建[J]. 临床医学进展, 2024, 14(1): 1689-1699. https://doi.org/10.12677/ACM.2024.141242

1. 引言

门静脉高压是慢性肝病最重要的非肿瘤性并发症,其导致了高发病率和高死亡率 [1] 。而在中国,肝硬化门静脉高压最常见的病因是乙型肝炎病毒(HBV)感染 [2] 。肝静脉压力梯度(hepatic venous pressure gradient, HVPG)测量是诊断门静脉高压的金标准,是肝硬化并发症的重要预测指标,HVPG > 5 mmHg提示门静脉高压,在病毒性和酒精相关肝硬化患者中,HVPG ≥ 10 mmHg是确定CSPH存在的金标准 [3] 。临床显著门脉高压(clinically significant portal hypertension, CSPH)与静脉曲张进展、明显的临床失代偿(腹水、静脉曲张出血和肝性脑病)、术后失代偿和肝细胞癌的风险增加有关。HVPG ≥ 12 mmHg是发生静脉曲张出血的高危因素,HVPG ≥ 16 mmHg提示了死亡风险增加。更高的HVPG ≥ 20 mmHg与出血控制失败、再出血和死亡率有关,因其不同阶段及亚阶段维持门静脉高压的机制是不同的,它们的治疗方法也会不同 [4] [5] 。然而,经颈静脉HVPG测量的有创性、价格高昂且对操作者的技术水平要求高等不足,限制了其在评估治疗效果或长期随访方面的广泛应用 [6] [7] 。所以各项研究继续集中在HVPG的非侵入性评价上,包括解剖结构(如脾脏体积 [8] )、实验室结果(如血小板水平 [9] 、LSPS评分 [10] )、影像学指标(如肝脾硬度 [11] [12] [13] [14] [15] 、CT [16] 、磁共振弹性成像 [17] ),甚至计算仿真建模 [9] [18] 。然而,这些方法都没有显示出令人满意的准确性和再现性 [19] 。因此,诊断临床显著门脉高压的无创、准确和可靠的方法尚未得到满足。本研究通过收集慢乙肝肝硬化门静脉高压患者的临床资料,分析了门脉高压进展的危险因素,为临床显著门脉高压早期诊断提供临床指导。

2. 资料与方法

2.1. 研究对象

收集2022年6月至2023年9月青岛市第六人民医院住院的180例经HVPG检查的患者,其中共88例符合纳入标准。纳入标准:1) 诊断为慢乙肝肝硬化门脉高压的患者;2) 前白蛋白、肝硬度重要临床数据完整。慢乙肝诊断标准依据慢性乙型肝炎防治指南(2022年版) [20] 。肝硬化诊断标准依据中华医学会肝病学分会肝硬化诊治指南(2019年版) [21] 门脉高压诊断根据中国肝静脉压力梯度临床应用专家共识(2018年版) [22] 排除标准:1) 除乙型肝炎以外,受试者存在其他肝脏疾病因素。如:药物性肝损伤、酒精性肝病、脂肪性肝病、自身免疫性肝病;同时伴有HCV、HDV或HIV感染;2) 临床资料不完整;3) 行HVPG检测前应用β受体阻滞剂药物、出现肝癌、有经颈静脉肝内门体分流手术史、门静脉血栓或门静脉癌栓形成因素等影响门脉高压;4) 非肝硬化门脉高压。

2.2. 研究方法

2.2.1. 一般资料

收集整理所有患者一般资料及临床资料,包括年龄、性别、是否合并糖尿病、白细胞计数、血小板计数、凝血酶原时间、活化部分凝血活酶时间、血清总胆红素、谷丙转氨酶、谷草转氨酶、碱性磷酸酶、谷酰转肽酶、前白蛋白、白蛋白、甘油三酯、胆固醇、总胆汁酸、尿素氮、肌酐、空腹血糖、抗病毒后是否免疫应答、是否合并糖尿病、肝硬度、CAP、HVPG。实验室检查及肝硬度检查均为行HVPG当次入院检查。所有HVPG均由青岛市第六人民医院介入科同一名经验丰富的医师主导操作。所有肝硬度均由青岛市第六人民医院超声科经验丰富的医师操作瞬间弹性成像机器完成。

2.2.2. 分组

将收集的所有符合纳入标准患者按照指南 [22] 分为5 mmHg < HVPG < 10 mmHg组和HVPG ≥ 10 mmHg组,其中5 mmHg < HVPG < 10 mmHg组40例,HVPG ≥ 10 mmHg组48例。

2.3. 统计学方法

采用SPSS29.0统计软件进行统计学分析。正态分布的计量资料以 x ¯ ± s 表示,2组间比较采用两独立样本t检验;非正态分布数据以中位数及四分位间距M(P25, P75)表示,2组间比较采用秩和检验;计数资料以例数和百分比(%)表示,2组间比较采用c2检验;通过单因素Logistic回归分析,筛选出对慢乙肝肝硬化门脉高压有影响(P < 0.05)的指标,再纳入多因素Logistic回归分析,建立受试者工作特征曲线(ROC曲线),构建乙肝肝硬化门脉高压进展的风险预测列线图模型。使用校正曲线对列线图模型进行内部验证,应用决策曲线评估列线图模型的预测效能。

3. 结果

3.1. 一般资料比较

本研究共收集88例经HVPG检查的慢乙肝肝硬化患者,其中5 mmHg < HVPG < 10 mmHg组40例(45.4%%),男性29例,女性11例,平均年龄(53.55 ± 11.571)岁;HVPG ≥ 10 mmHg组48例,男性30例,女性18例,平均年龄(56.85 ± 8.39)岁。这与男性乙型肝炎及肝硬化的发病率高于女性结论相同,见表1

Table 1. Clinical data of two groups of patients

表1. 两组患者临床资料

3.2. 单因素分析

5 mmHg < HVPG < 10 mmHg组和HVPG ≥ 10 mmHg组相比,使用二元Logistic回归分析结果显示,白细胞计数、凝血酶原时间、血清总胆红素、前白蛋白、白蛋白、肝硬度具有相关性,差异有统计学意义(P < 0.05),见表2;其中白细胞计数、前白蛋白、白蛋白呈负相关,为危险性因素,凝血酶原时间、血清总胆红素、肝硬度呈正相关,为保护性因素。两组间其余指标比较差异无统计学意义(P > 0.05)。

Table 2. Single factor analysis of portal hypertension due to hepatitis B cirrhosis

表2. 乙肝肝硬化门静脉高压单因素分析

3.3. 多因素分析

将单因素分析中具有统计学差异的指标进行Logistic多因素回归分析,前白蛋白(OR 0.982, 95% CI 0.967~0.997, P = 0.019)、肝硬度(OR 1.308, 95% CI 1.101~1.554, P = 0.002)是进展为临床显著门脉高压的独立危险因素,差异有统计学意义(P < 0.05) (见图1)。

Figure 1. Multifactor analysis of risk factors for portal hypertension in patients with hepatitis B cirrhosis

图1. 乙肝肝硬患者门脉高压危险因素的多因素分析

3.4. 乙肝肝硬化门脉高压进展风险列线图模型建立

根据上述logistic回归分析结果,构建Logistic回归诊断模型:Logit(P) = 肝硬度*0.269 − 前白蛋白*0.019。应用R语言绘制了乙肝肝硬化门脉高压进展风险的列线图。在列线图中,共分为5行,其中第1行为分数,第2、3行为预测变量,第4行为总分,第5行为预测CSPH发生的风险值;根据分数标尺,可以得到每个预测变量相对应的单项分数,所有预测变量的单项分数相加计算总分,最终得到总分对应的发生CSPH的风险值,总分越高,意味着发生CSPH的风险越大;其中每个预测变量的单项分数范围分别为:PA (0~39分)、肝硬度值(F) (0~100分) (见图2)。

Figure 2. Nomogram for risk of progression of portal hypertension due to hepatitis B cirrhosis

图2. 乙肝肝硬化门脉高压进展风险列线图

3.5. 列线图模型验证

为了验证列线图模型对乙肝肝硬化门脉高压进展预测的准确性,本研究绘制了该模型的ROC曲线。ROC曲线(见图3)结果显示,该模型的AUC为0.900 (P < 0.001, 95% CI: 0.834~0.966),表明该模型能较大程度预测门脉高压的进展。进一步对该模型进行校准并绘制校准曲线(见图4),校准曲线斜率近1,说明模型预测乙肝肝硬化门脉高压进展风险与实际发生风险一致性较好。Hosmer-Lemeshoe拟合优度检验结果显示,该列线图模型的拟合程度较好(χ2 = 6.88, P = 0.5495)。决策曲线(见图5)示列线图模型提供临床净收益。

Figure 3. ROC curve of the prediction model

图3. 预测模型的ROC曲线

Figure 4. Calibration curve of risk model for progression of portal hypertension due to hepatitis B cirrhosis

图4. 乙肝肝硬化门脉高压进展风险模型校准曲线

Figure 5. Decision curve of risk model for progression of portal hypertension due to hepatitis B cirrhosis

图5. 乙肝肝硬化门脉高压进展风险模型决策曲线

4. 讨论

据报道,中国超过五分之一的人口患有某种形式的肝病,尤其是乙型肝炎病毒和丙型肝炎病毒感染、肝硬化、癌症、非酒精性脂肪性肝病(NAFLD)、酒精相关肝病和药物性肝损伤,使肝病明确地成为我国发病率和死亡率的主要因素之一 [23] 。其中乙型肝炎及肝硬化仍然是我国最重要的肝病。门静脉高压是肝硬化的主要严重后果之一,是最初失代偿事件的主要病理生理驱动因素,并伴有严重并发症,包括腹水、肝性脑病和胃食管静脉曲张出血 [24] 。目前,越来越多的门脉高压无创检测受到了广泛关注。尽管有许多非侵入性诊断的研究在识别门静脉高压和胃食管静脉曲张患者方面做出了不错的结果,但目前仍存在许多技术及准确度上的挑战 [6] 。

理想的门静脉高压无创诊断方式应该是简单、廉价、易获得和可靠。瞬态弹性成像是一种新的、非侵入性的、基于超声的技术,可以测量肝脏、脾脏硬度,已有证据表明,TE测量肝硬度对诊断肝纤维化和肝硬化具有良好的敏感性和特异性,在过去几年中一直很受欢迎 [25] ,其通过分析剪切波的速度以反映组织的弹性 [26] 。越来越多的证据表明,瞬态弹性成像测量的肝硬度充分反映了HVPG进展,表明它是评估PH和肝硬化并发症的有效方法 [3] [27] [28] 。

在本研究中,前白蛋白已被确定为门脉高压进展的独立危险因素。对于乙肝肝硬化患者门脉高压进展的危险因素研究中,实验室指标报道较多的是血小板、白细胞、白蛋白、转氨酶等,但尚未达成统一共识,前白蛋白报道较少。血清前白蛋白主要由肝脏合成,与其他血清蛋白相比,前白蛋白水平受肝病的影响较小,因此波动可能更具体地取决于营养状况 [29] ,且其比白蛋白半衰期更短 [30] ,可反映肝脏合成和分解代谢的轻微改变,且前白蛋白的血清水平降低与肝实质损害程度相关,既往研究表明血清前白蛋白水平在肝癌、慢性活动性肝炎、肝硬化患者体内含量均较低 [31] 。研究表明,检测血清前白蛋白水平对各种肝脏疾病包括失代偿期肝硬化的诊断、治疗和预后判断有重要临床价值 [32] 。营养不良在住院肝硬化患者中非常普遍,影响了超过45%的患者 [33] 。前白蛋白是预测蛋白质营养不良的一种以获取的标志物。它与肝硬化患者更高的并发症发生率和更低的生存率有关 [34] 。在一项研究中发现,前白蛋白与慢乙肝患者的淋巴细胞亚群相关,而营养缺乏与免疫功能之间存在关联 [35] 。

目前也有其他相关无创检查,如瞬间弹性成像测量脾硬度,但其受脾脏厚度及技术影响导致数值变化较大 [36] ,且目前开展受到了硬件条件限制。除了弹性成像技术外还有几种血清生物标志物。如天冬氨酸转氨酶(AST)与血小板比值指数(APRI)和纤维化(FIB-4)评分 [37] ,血管性血友病因子 [38] 或吲哚青绿清除率 [39] ,都表现出了不错的结果。然而,上述血清生物标志物与HVGP的相关性不大,总体表现不佳 [40] 。MRI提供了门静脉压力替代测量的定量方法。目前已经提出了2D相位对比和肝脏T1测量相结合的多参数MRI方法或动态对比增强MRI和MR弹性图相结合的方法,两者均与HVPG呈显著相关。尽管这些MRI技术很有前景,但由于需要大量广泛的分析、额外的硬件和/或显著延长采集时间,它们在临床实施中受到了限制 [24] 。

构建预测模型是目前预测疾病发生发展的重要方法之一。初步建立Logistic回归模型,并开发列线图模型预测乙肝肝硬化患者门脉高压进展的风险,以期早期识别并预防临床显著门脉高压。本研究构建的列线图模型有以下两项明显的临床优势:1) 本研究使用HVPG作为金标准参考,选取单一病因患者进行比较,排除了其他因素导致的误差;2) 肝硬度和前白蛋白在临床中较易获取,结合这两项指标,本文探讨了慢乙肝肝硬化患者门脉高压进展的危险因素,建立的预测模型对于慢乙肝肝硬化门脉高压进展的预测能力体现出高灵敏度和特异度。然而,本研究存在一定局限性。首先,由于慢乙肝肝硬化失代偿期患者进行HVPG测量不是常规的临床检查,且受到患者本身因素影响,尤其是失代偿期中的大量腹腔积液、门静脉栓塞、腹腔感染患者被排除在外,所以患者数量少,未进行外部验证。其次,尽管本研究按照严格的纳排标准对研究对象进行筛选,但本研究为单中心回顾性研究,因此,在临床应用前仍需要更大样本量、前瞻性研究结果来证实。

5. 结论

综上,前白蛋白降低和肝硬度升高与慢乙肝肝硬化门脉高压的进展相关,以此为基础建立的预测模型有助于判断慢乙肝肝硬化门脉高压患者的疾病进程,有利于早期治疗、改善预后,有助于使不易获得HVPG测量的中心轻松快速地检测CSPH。

伦理学声明

本研究为回顾性研究,数据中关于病人的个人信息进行了隐私保护处理。

利益冲突声明

本研究不存在研究者、伦理委员会成员、受试者监护人以及与公开研究成果有关的利益冲突。

基金项目

青岛市医疗卫生重点学科建设项目资助;青岛市医疗卫生优秀人才培养项目资助(青卫政字[2022] 6号)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Gracia-Sancho, J., Marrone, G. and Fernández-Iglesias, A. (2019) Hepatic Microcirculation and Mechanisms of Portal Hypertension. Nature Reviews Gastroenterology & Hepatology, 16, 221-234.
https://doi.org/10.1038/s41575-018-0097-3
[2] Li, S., Huang, N., Dang, X., et al. (2020) A Comparison of Splenic Pathologic Change and Immune Function in HBV-Related Portal Hypertension and Chinese Budd-Chiari Syn-drome Patients with Hypersplenism. Viral Immunology, 2020, 33, 112-121.
https://doi.org/10.1089/vim.2019.0146
[3] De Franchis, R., Bosch, J., Garcia-Tsao, G., et al. (2022) Baveno VII—Renewing Consensus in Portal Hypertension. Journal of Hepatology, 76, 959-974.
https://doi.org/10.1016/j.jhep.2021.12.022
[4] Garcia-Tsao, G., Abraldes, J.G., Berzigotti, A. and Bosch, J. (2017) Portal Hypertensive Bleeding in Cirrhosis: Risk Stratification, Diagnosis, and Management: 2016 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 65, 310-335.
https://doi.org/10.1002/hep.28906
[5] Yu, Q., Huang, Y., Li, X., et al. (2022) An Imaging-Based Artificial Intel-ligence Model for Non-Invasive Grading of Hepatic Venous Pressure Gradient in Cirrhotic Portal Hypertension. Cell Reports Medicine, 3, Article ID: 100563.
https://doi.org/10.1016/j.xcrm.2022.100563
[6] Qi, X., Berzigotti, A., Cardenas, A. and Sarin, S.K. (2018) Emerging Non-Invasive Approaches for Diagnosis and Monitoring of Portal Hypertension. The Lancet Gastroenterolo-gy and Hepatology, 3, 708-719.
https://doi.org/10.1016/S2468-1253(18)30232-2
[7] Kennedy, P., Bane, O., Hectors, S.J., et al. (2020) Noninva-sive Imaging Assessment of Portal Hypertension. Abdominal Radiology, 45, 3473-3495.
https://doi.org/10.1007/s00261-020-02729-7
[8] Yu, Q., Xu, C., Li, Q., et al. (2022) Spleen Volume-Based Non-Invasive Tool for Predicting Hepatic Decompensation in People with Compensated Cirrhosis (CHESS1701). JHEP Reports, 4, Article ID: 100575.
https://doi.org/10.1016/j.jhepr.2022.100575
[9] Reiniš, J., Petrenko, O., Simbrunner, B., et al. (2023) Assessment of Portal Hypertension Severity Using Machine Learning Models in Patients with Compensated Cirrhosis. Journal of Hepatology, 78, 390-400.
https://doi.org/10.1016/j.jhep.2022.09.012
[10] Berzigotti, A., Seijo, S., Arena, U., et al. (2013) Elastography, Spleen Size, and Platelet Count Identify Portal Hypertension in Patients with Compensated Cirrhosis. Gastroenterology, 144, 102-111.E1.
https://doi.org/10.1053/j.gastro.2012.10.001
[11] Dajti, E., Ravaioli, F., Zykus, R., et al. (2023) Accuracy of Spleen Stiffness Measurement for the Diagnosis of Clinically Significant Portal Hypertension in Patients with Compen-sated Advanced Chronic Liver Disease: A Systematic Review and Individual Patient Data Meta-Analysis. The Lancet Gastroenterology and Hepatology, 8, 816-828.
https://doi.org/10.1016/S0168-8278(23)00867-X
[12] Jindal, A., Sharma, S., Agarwal, S., et al. (2022) Liver Stiffness Can Predict Decompensation and Need for β-Blockers in Compensated Cirrhosis: A Step beyond Baveno-VI Criteria. Hepatology International, 16, 89-98.
https://doi.org/10.1007/s12072-021-10280-w
[13] Semmler, G., Lens, S., Meyer, E.L., et al. (2022) Non-Invasive Tests for Clinically Significant Portal Hypertension after HCV Cure. Journal of Hepatology, 77, 1573-1585.
https://doi.org/10.1016/j.jhep.2022.08.025
[14] Marasco, G., Colecchia, A., Colli, A., et al. (2019) Role of Liver and Spleen Stiffness in Predicting the Recurrence of Hepatocellular Carcinoma after Resection. Journal of Hepatology, 70, 440-448.
https://doi.org/10.1016/j.jhep.2018.10.022
[15] Ripoll, C. and Zipprich, A. (2023) Spleen Stiffness to Identify Clinically Significant Portal Hypertension. The Lancet Gastroenterology and Hepatology, 8, 775-776.
https://doi.org/10.1016/S2468-1253(23)00189-9
[16] Sartoris, R., Rautou, P.E., Elkrief, L., et al. (2018) Quantifi-cation of Liver Surface Nodularity at CT: Utility for Detection of Portal Hypertension. Radiology, 289, 698-707.
https://doi.org/10.1148/radiol.2018181131
[17] Shi, Y., Qi, Y.F., Lan, G.Y., et al. (2021) Three-Dimensional MR Elastography Depicts Liver Inflammation, Fibrosis, and Portal Hypertension in Chronic Hepatitis B or C. Radiology, 301, 154-162.
https://doi.org/10.1148/radiol.2021202804
[18] Liu, C., Cao, Z., Yan, H., et al. (2022) A Novel SAVE Score to Stratify Decompensation Risk in Compensated Advanced Chronic Liver Disease (CHESS2102): An International Multi-center Cohort Study. The American Journal of Gastroenterology, 117, 1605-1613.
https://doi.org/10.14309/ajg.0000000000001873
[19] Wang, L., Zhang, Y., Wu, Y.F., et al. (2022) Computed Tomography Perfusion in Liver and Spleen for Hepatitis B Virus-Related Portal Hypertension: A Correlation Study with Hepatic Venous Pressure Gradient. World Journal of Gastroenterology, 28, 6068-6077.
https://doi.org/10.3748/wjg.v28.i42.6068
[20] 尤红, 王福生, 李太生, 等. 慢性乙型肝炎防治指南(2022年版) [J]. 实用肝脏病杂志, 2023, 26(3): 457-478.
[21] 徐小元, 丁惠国, 李文刚, 等. 肝硬化诊治指南[J]. 临床肝胆病杂志, 2019, 35(11): 2408-2425.
[22] 中国门静脉高压诊断与监测研究组(CHESS), 中华医学会消化病学分会微创介入协作组, 中国医师协会介入医师分会急诊介入专业委员会, 等. 中国肝静脉压力梯度临床应用专家共识(2018版) [J]. 临床肝胆病杂志, 2018, 34(12): 2526-2536.
[23] Xiao, J., Wang, F., Wong, N.K., et al. (2019) Global Liver Disease Burdens and Research Trends: Analysis from a Chinese Perspective. Journal of Hepatology, 71, 212-221.
https://doi.org/10.1016/j.jhep.2019.03.004
[24] Hectors, S.J., Bane, O., Stocker, D., et al. (2020) Splenic T(1ρ) as a Noninvasive Biomarker for Portal Hypertension. Journal of Magnetic Resonance Imaging, 52, 787-794.
https://doi.org/10.1002/jmri.27087
[25] Kumar, A., Khan, N.M., Anikhindi, S.A., et al. (2017) Correlation of Transient Elastography with Hepatic Venous Pressure Gradient in Patients with Cirrhotic Portal Hypertension: A Study of 326 Patients from India. World Journal of Gastroenterology, 23, 687-696.
https://doi.org/10.3748/wjg.v23.i4.687
[26] Dietrich, C.F., Bamber, J., Berzigotti, A., et al. (2017) EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Short Version). Ultraschall in der Medizin, 38, 377-394.
https://doi.org/10.1055/s-0043-103955
[27] Kim, G., Kim, M.Y. and Baik, S.K. (2017) Transient Elastography versus Hepatic Venous Pressure Gradient for Diagnosing Portal Hypertension: A Systematic Review and Meta-Analysis. Clinical and Molecular Hepatology, 23, 34-41.
https://doi.org/10.3350/cmh.2016.0059
[28] Kumar, A., Maruyama, H., Arora, A., et al. (2022) Diagnostic Accuracy of Transient Elastography in Diagnosing Clinically Significant Portal Hypertension in Patients with Chronic Liver Disease: A Systematic Review and Meta-Analysis. Journal of Medical Ul-trasonics, 49, 333-346.
https://doi.org/10.1007/s10396-022-01239-x
[29] Kuszajewski, M.L. and Clontz, A.S. (2005) Prealbumin Is Best for Nutritional Monitoring. Nursing, 35, 70-71.
https://doi.org/10.1097/00152193-200505000-00056
[30] Tapper, E.B. and Parikh, N.D. (2023) Diagnosis and Management of Cirrhosis and Its Complications: A Review. JAMA, 329, 1589-1602.
https://doi.org/10.1001/jama.2023.5997
[31] 郁沙莎, 潘波, 郭玉玉, 等. 血清前白蛋白(PA)含量在肝脏TACE术患者预后中的临床价值[J]. 现代肿瘤医学, 2019, 27(2): 278-280.
[32] Zhai, Y.Z., Yue, Y.Y., Ding, D.P., et al. (2017) [The Value of Serum Prealbumin Combined with MELD Score in Predicting the Prognosis of Patients with De-compensated Cirrhosis]. Chinese Journal of Hepatology, 25, 533-535.
[33] Dumont, C., Wuestenberghs, F., Lanthier, N., et al. (2022) Malnutrition Is Highly Prevalent in Hospitalized Cirrhotic Patients and Associates with a Poor Outcome. Acta Gastro-Enterologica Belgica, 85, 311-319.
https://doi.org/10.51821/85.2.9016
[34] Dağ, Z., Köseoğlu, H. and Kekilli, M. (2020) The Use of Prealbumin as a Predictor of Malnutrition in Cirrhotic Patients and the Effect of Nutritional Support in Patients with Low Prealbumin Levels. Turkish Journal of Medical Sciences, 50, 398-404.
https://doi.org/10.3906/sag-1910-27
[35] Gao, W., Kong, M., Yao, J., et al. (2018) Changes in Prealbumin and Body Mass Index Associated with T Lymphocyte Subsets and Nutritional Status in Chronic Hepatitis B and HBV-Cirrhosis Patients. Clinical Laboratory, 64.
https://doi.org/10.7754/Clin.Lab.2018.180501
[36] Stefanescu, H., Marasco, G., Calès, P., et al. (2020) A Novel Spleen-Dedicated Stiffness Measurement by FibroScan® Improves the Screening of High-Risk Oesophageal Varices. Liver International, 40, 175-185.
https://doi.org/10.1111/liv.14228
[37] Deng, H., Qi, X. and Guo, X. (2015) Diagnostic Accuracy of APRI, AAR, FIB-4, FI, King, Lok, Forns, and FibroIndex Scores in Predicting the Presence of Esophageal Varices in Liver Cirrhosis: A Systematic Review and Meta-Analysis. Medicine, 94, e1795.
https://doi.org/10.1097/MD.0000000000001795
[38] Kalambokis, G.N., Oikonomou, A., Christou, L., et al. (2016) von Willebrand Factor and Procoagulant Imbalance Predict Outcome in Patients with Cirrhosis and Thrombocytopenia. Journal of Hepatology, 65, 921-928.
https://doi.org/10.1016/j.jhep.2016.06.002
[39] Lisotti, A., Azzaroli, F., Cucchetti, A., et al. (2016) Relationship between Indocyanine Green Retention Test, Decompensation and Survival in Patients with Child-Pugh A Cirrhosis and Portal Hypertension. Liver International, 36, 1313-1321.
https://doi.org/10.1111/liv.13070
[40] Dajti, E., Alemanni, L.V., Marasco, G., Montagnani, M. and Azzaroli, F. (2021) Approaches to the Diagnosis of Portal Hypertension: Non-Invasive or Invasive Tests? Hepatic Medicine: Evidence and Research, 13, 25-36.
https://doi.org/10.2147/HMER.S278077