非瓣膜性心房颤动口服抗凝药物临床应用研究进展
Progress in the Clinical Application of Oral Anticoagulants in Nonvalvular Atrial Fibrillation
DOI: 10.12677/ACM.2024.141231, PDF, HTML, XML, 下载: 200  浏览: 298 
作者: 朱 虹, 施 蕾:大理大学药学院,云南 大理;赵德斌*, 李 红:昆明医科大学附属红河医院/云南省滇南中心医院(红河州第一人民医院)药学部,云南 红河
关键词: 非瓣膜性心房颤动口服抗凝药物治疗直接口服抗凝药维生素K拮抗剂口服抗凝药物Nonvalvular Atrial Fibrillation Oral Anticoagulant Therapy Direct Oral Anticoagulants Vitamin K Antagonists Oral Anticoagulant
摘要: 心房颤动(atrial fibrillation, AF)是最常见的心律失常之一,与不良事件尤其是缺血性卒中显著相关。非瓣膜性心房颤动(nonvalvular atrial fibrillation, NVAF)是AF中最常见的类型。随着年龄的增加,AF患病率也逐渐增加。口服抗凝药物治疗(oral anticoagulant therapy, OAT)是NVAF高危患者缺血性卒中预防的基石。目前,指南推荐将直接口服抗凝药(direct oral anticoagulants, DOACs)优先于维生素K拮抗剂(vitamin K antagonists, VKAs)用于NVAF治疗。然而,口服抗凝药(oral anticoagulant, OAC)的应用存在消化道出血和致命颅内出血的风险。由于这些潜在的风险影响,进而导致预防策略的实施不足。鉴于NVAF患者OAC选择面临的挑战,本文结合近年来国内外有关NVAF患者应用OAC的文献证据,对OAC在治疗NVAF患者中的研究进行归纳整理和分析,以期为NVAF患者OAC临床应用提供最新证据。
Abstract: Atrial fibrillation (AF) is one of the most common arrhythmias and is significantly associated with adverse events, especially ischemic stroke. Nonvalvular atrial fibrillation (NVAF) is the most com-mon type of AF. The prevalence of AF increases progressively with age. Oral anticoagulant therapy (OAT) is the cornerstone of ischemic stroke prevention in patients at risk for NVAF. Currently, guidelines recommend direct oral anticoagulants (DOACs) over vitamin K antagonists (VKAs) for the treatment of NVAF. However, the use of oral anticoagulant (OAC) carries the risk of gastrointestinal bleeding and fatal intracranial hemorrhage. Due to the impact of these potential risks, this in turn leads to inadequate implementation of preventive strategies. In view of the challenges of OAC selec-tion in patients with NVAF, this article summarizes and analyzes the studies of OAC in the treatment of patients with NVAF, taking into account the evidence in the literature about the application of OAC in patients with NVAF in recent years, both at home and abroad, with a view to providing the latest evidence in the clinical application of OAC in patients with NVAF.
文章引用:朱虹, 赵德斌, 施蕾, 李红. 非瓣膜性心房颤动口服抗凝药物临床应用研究进展[J]. 临床医学进展, 2024, 14(1): 1603-1611. https://doi.org/10.12677/ACM.2024.141231

1. 引言

AF是最常见的持续性心律失常 [1] ,也是导致死亡、卒中、心力衰竭、认知功能障碍和痴呆的高度危险因素 [2] 。治疗AF和预防其并发症的成本相当高,包括可能需要的手术干预和长期药物治疗,不仅对患者健康产生严重影响,也给社会经济带来沉重负担 [3] 。NVAF是指非中重度二尖瓣狭窄或心脏机械瓣膜的情况下发生的AF [4] ,是AF中最常见的类型。AF使卒中的风险增加5倍,并随着年龄的增加其患病率还在继续增加 [5] 。研究报道,AF在49岁以下人群中为0.12%~0.16%,在60~70岁人群中为3.7%~4.2%,在80岁及以上人群中为10%~17% [6] 。OAT是NVAF患者卒中预防的基石,停用或中断OAT可能会使栓塞事件的风险增加 [7] 。GARFIELD-AF研究中,连续停用OAC ≥ 7天与较高的全因死亡率、卒中/全身性栓塞(systemic embolism, SE)和心肌梗死(myocardial infarction, MI)风险相关。停用OAC患者的风险[风险比(hazard ratios, HR),95%置信区间(confidence intervals, CI)]高于未停药患者,其发生全因死亡(HR: 1.62, 95%CI: 1.25~2.09)、卒中/SE (HR: 2.21, 95%CI: 1.42~3.44)和MI (HR: 1.85, 95%CI: 1.09~3.13) [8] 。NVAF患者的抗凝治疗(anticoagulant therapy, AT)在防治卒中和血栓栓塞(thromboembolism, TE)疾病方面具有至关重要的作用。

OAC主要包括VKAs和非维生素K拮抗剂口服抗凝药物(non-vitamin K antagonist oral anticoagulants, NOACs),也称新型口服抗凝药(novel oral anticoagulants, NOACs)或DOACs两大类。VKAs主要是华法林(warfarin),DOACs包括直接凝血酶抑制剂(direct thrombin inhibitor, DTI)达比加群酯(dabigatran),以及直接凝血因子Xa抑制剂利伐沙班(rivaroxaban)、阿哌沙班(apixaban)、艾多沙班(edoxaban) [9] 。

本文以OAC在NVAF治疗中的作用机制、比较有效性和安全性、特殊人群(即老年人、肾功能不全、肝功能不全患者)的用药研究以及抗凝逆转等方面进行综述,旨在为NVAF患者临床合理使用OAC提供参考。

2. VKAs与DOACs的作用机制

凝血途径是一系列凝血因子参与最终级联反应。其通过内源性和外源性两条路径分别起源,再通过共同路径汇合,导致凝血酶原被激活,最终形成稳定的纤维蛋白网。止血的凝血机制是一个复杂的过程,需要众多凝血因子的参与。其中,II、VII、IX、X为维生素K依赖凝血因子 [10] 。抗凝药物的主要原理是通过直接或间接地抑制凝血过程中的一种或多种凝血因子,从而阻断级联反应,进而阻止血栓的发展。VKAs代表药是华法林,华法林是双香豆素衍生物的一种,依赖维生素K的多靶点、非选择性口服抗凝药,通过抑制因子II、VII、IX和X的γ-谷氨酰羧化发挥抗凝作用 [11] [12] 。DOACs具有极高的特异性,通过选择性、可逆性和直接与凝血因子Xa、IIa活性位点结合而发挥作用。IIa因子抑制剂,如达比加群酯,可以抑制游离和纤维蛋白结合的凝血酶IIa因子发挥抗凝作用。Xa因子抑制剂,如利伐沙班、阿哌沙班和艾多沙班,通过阻断游离和凝血酶原酶复合物结合因子Xa而发挥抗凝作用 [11] [12] 。

3. VKAs抗凝治疗临床应用中存在的潜在问题

华法林是最经典且应用最广泛的OAC之一。华法林在OAC中具有无可替代的地位,尤其对于瓣膜性疾病所致的AF患者 [13] 。使用VKAs抗凝治疗,国际标准化比值(international normalized ratio, INR)目标值为2.0~3.0,且治疗目标范围内的时间百分比(time within therapeutic range, TTR) ≥ 70% [14] 。尽管华法林作为抗凝治疗的金标准有着悠久的历史和明确的疗效,但其治疗窗口较窄,安全用药范围有限,与部分药物之间存在相互作用,个体药效存在很大的差异,抗凝作用很难控制,这增加了血栓和出血并发症的风险 [15] [16] 。研究证据表明,接受VKAs治疗的AF患者的INR控制质量欠佳,从而增加了卒中(INR < 2时)或出血(INR > 3时)的风险 [17] 。一项横断面研究显示,仅38%的患者在治疗INR 2.0~3.0范围内,35% INR值高于该范围,66%的患者没有定期监测INR,大部分患者不清楚华法林治疗的风险和获益 [18] 。此外,华法林所需的剂量主要受到基因变异的影响,尤其是药物代谢酶细胞色素P450 (CYP) 2C9 (CYP2C9)和药物靶标维生素K环氧化物还原酶复合物亚基1 (VKORC1)的基因 [19] 。通常需要基因检测提高华法林个体化用药改善华法林抗凝控制,但进行INR检测时需要频繁抽血,这可能会降低患者的治疗依从性。患者的依从性降低,是导致使用华法林治疗的个体出现不良事件的主要原因。鉴于上述危险因素,华法林并不被视为预防NVAF卒中的最佳抗凝疗法,需要进一步优化其长期的抗凝治疗手段。

4. DOACs与VKAs的比较

一项回顾性队列研究通过比较艾多沙班(n = 4577)、阿哌沙班(n = 9952)、利伐沙班(n = 33,022)、达比加群酯(n = 22,371)四种DOACs和华法林(n = 19,761)对亚洲NVAF患者抗凝治疗的真实世界研究,结果显示,与华法林相比,四种DOACs的TE风险相当或更低,出血风险也更低 [20] 。荟萃分析显示,纳入了92项研究,并进行了107项比较NVAF患者DOACs和VKAs相关的缺血性卒中、TE和颅内出血(intracranial haemorrhage, ICH)的风险。与VKAs相比,达比加群酯(HR: 0.85, 95%CI: 0.80~0.91)、利伐沙班(HR: 0.83, 95%CI: 0.77~0.89)和阿哌沙班(HR: 0.75, 95%CI: 0.65~0.86)与较低的TE/卒中风险相关。与VKAs相比,达比加群酯(HR: 0.48, 95%CI: 0.44~0.52)、阿哌沙班(HR: 0.60, 95%CI: 0.49~0.73)和利伐沙班(HR: 0.73, 95%CI: 0.65~0.81)的ICH风险较低 [21] 。真实世界研究中,比较128,273例使用DOACs包括(40,503例达比加群酯,49,498例利伐沙班和38,272例阿哌沙班)与128,273例使用华法林在NVAF中预防卒中的安全性和有效性,结果显示,与华法林相比,DOACs与缺血性卒中或SE的风险相似,出血风险和总死亡率较低 [22] 。DOACs与VKAs相比,除了安全性和有效性外,还有许多优点。其中包括:抗凝血反应更可预测、药物间和药物与食物间的相互作用更少以及对实验室监测的需求更少 [23] 。此外,经济性也是临床用药选择需要考虑的重要方面。从中国医疗保健系统的角度评估NOACs (阿哌沙班、利伐沙班、低剂量和高剂量达比加群酯)与华法林预防NVAF患者卒中的成本效益,结果显示,与华法林相比,阿哌沙班的终生总成本降低了389美元,利伐沙班降低了1482美元,而低剂量达比加群酯的终生总成本增加了925美元,高剂量达比加群酯则增加了6641美元,质量调整生命年(quality-adjusted life-years, QALY)分别增加了0.53、1.32、0.92和1.83。与华法林相比,这四种NOACs治疗策略具有成本效益,建议在中国医疗系统中替代华法林治疗以预防NVAF患者卒中 [24] 。

5. DOACs与DOACs的比较

一项顾性队列研究通过比较四种DOACs (达比加群酯、利伐沙班、阿哌沙班和艾多沙班)在3823名NVAF患者中的安全性和有效性,结果显示,达比加群酯组的大出血风险明显低于阿哌沙班组(HR, 0.55; 95%CI, 0.31~0.93; P = 0.03)。相比之下,其他DOACs的大出血风险没有明显差异。在缺血性卒中复合风险方面,四种DOACs之间没有显著差异 [25] 。一项荟萃分析通过比较DOACs (包括73,414名达比加群酯、92,881名利伐沙班和61,284名阿哌沙班) NVAF患者的安全性和有效性,结果显示,与利伐沙班相比,使用阿哌沙班与卒中和出血的风险较低有关,与达比加群酯相比风险相似 [26] 。一项观察性研究通过比较四种DOACs治疗NVAF患者人群的临床特征和长期疗效,招募681例患者:174例(23%)接受达比加群酯治疗,175例(23%)接受阿哌沙班治疗,190例(25%)接受利伐沙班治疗,214例(29%)接受艾多沙班治疗。结果显示,在3年的随访中,20名患者(2.7%)发生了全身血栓栓塞事件,四种DOACs之间没有显著差异。同期,26名患者(3.6%)发生了大出血事件,与艾多沙班(6.1%)的统计学相关性更高(p = 0.038)。艾多沙班组TE事件或大出血发生率(10%)高于其他组(p = 0.014) [27] 。真实世界研究中,直接比较阿哌沙班、利伐沙班和达比加群酯在25,843名NVAF患者中的有效性和安全性是否存在差异。结果显示,接受标准剂量阿哌沙班或达比加群酯治疗的患者发生大出血的风险低于接受利伐沙班治疗的患者,分别为HR 0.69 (95%CI 0.54~0.88)和HR 0.64 (95%CI 0.48~0.87)。在减少剂量方面,接受阿哌沙班治疗的患者发生大出血的风险低于接受达比加群酯或利伐沙班治疗的患者,分别为HR 0.62 (95%CI 0.44~0.88)和HR 0.45 (95%CI 0.33~0.61)。在减少剂量的情况下,接受达比加群酯治疗的患者全因死亡率最低,在有效性方面没有发现差异。在这项真实世界NVAF队列中,直接比较显示达比加群酯和阿哌沙班的标准剂量以及阿哌沙班的减量剂量具有有利的出血风险特征,在有效性方面没有发现差异,这项研究证实了之前的DOACs间接比较结果 [28] 。

6. DOACs与VKAs在NVAF特殊人群的应用

6.1. 老年人

随着人口老龄化,AF的患病率正在增加。老年人与AF治疗相关的并发症也明显增加。老年AF人群卒中、出血和死亡的风险很高 [29] 。Rubino C等人研究显示,评估高龄NVAF患者(≥85岁)与非高龄患者(<85岁)之间大出血和TE事件的不同发生率,该研究表明在高龄NVAF患者中使用DOACs是安全的,是预防卒中的一种治疗选择,尤其是对于那些缺血性事件的高危人群 [30] 。观察性研究显示,在年龄≥85岁的NVAF患者中,使用DOACs和使用华法林治疗的患者TE和大出血的发生率相似 [31] 。一项观察性研究通过比较年龄≥75岁的NVAF的患者在真实世界中使用DOACs与华法林抗凝治疗的有效性和安全性,包括32,275名患者,21,585人(66.9%)服用DOACs,8233人(25.5%)服用华法林。结果显示,与服用华法林的患者相比,≥75岁服用DOACs的NVAF患者缺血性卒中、ICH和硬膜下/硬膜外出血的风险较低 [32] 。真实世界研究中,纳入75岁以上7818名开始接受DOACs的患者与7818名未接受DOACs或华法林的患者匹配比较,结果显示,DOACs组的复合有效性结果的风险比较低,为0.37 (CI, 0.24~0.57; P < 0.01),而复合安全性结果没有差异(HR, 0.91; CI, 0.65~1.25; P = 0.55),证实DOACs可以有效预防75岁以上不适合使用华法林的NVAF患者的TE事件 [33] 。

6.2. 肾功能不全

肾功能不全与房颤之间存在危险因素的关联,而房颤患者中肾功能不全的发生风险也会增加。据报道,轻度肾功能损害的患者发生TE疾病的风险增加了2.5倍,而重度肾功能损害的患者增加了近6倍 [34] 。COMBINE研究显示,与华法林相比,标准剂量DOACs在CrCl至少为25 mL/min的情况下更安全、更有效。与标准剂量DOACs相比,低剂量DOACs并不能显著降低出血或ICH的发生率,但卒中/SE和死亡的发生率较高。这些研究结果支持在肾功能不全患者中使用标准剂量DOACs而非华法林 [35] 。荟萃分析显示,DOACs与VKAs相比,在大出血[相对风险(relative risk, RR) = 0.81, 95%CI 0.46~1.43)]、缺血性卒中(RR = 0.5, 95%CI 0.19~1.35)和心血管死亡(RR = 1.34, 95%CI 0.69~2.60)方面没有显著差异。与VKAs相比,DOACs在透析的慢性肾病(chronic kidney disease, CKD)患者和NVAF患者中具有相似的疗效和安全性 [36] 。Gorbatenko VS等人研究显示,比较DOACs预防NVAF和肌酐清除率降低患者中风的有效性和安全性,DOACs在预防卒中和SE的疗效方面具有可比性,但在安全性方面存在差异。与利伐沙班相比,阿哌沙班将大出血的相对风险显著降低了27%。在肌酐清除率 < 50 mL/min的患者中,阿哌沙班的优势更大:与利伐沙班相比,RR降低了48%,与达比加群酯300 mg/d相比,RR降低了50%,与达比加群酯220 mg/d相比,RR降低48%。在安全性方面,阿哌沙班是AF和肌酐清除率低于50 mL/min的患者更佳的DOACs [37] 。

6.3. 肝功能不全

肝功能受损的患者发生出血并发症和血栓事件的风险增加。所有DOACs均为严重肝脏功能异常患者禁忌证,其中华法林是该患者人群中唯一推荐的抗凝药 [38] 。对于肝功能异常的房颤患者,建议采用Child-Pugh分级指导OAC治疗。对于Child-Pugh C级的房颤患者,使用OAC没有证据。对于Child-Pugh B级的房颤患者,避免使用利伐沙班,而应谨慎选择阿哌沙班、达比加群酯和艾多沙班。Child-Pugh A级的患者可使用标准剂量OAC治疗 [39] 。一项队列研究通过比较阿哌沙班(n = 171)、达比加群酯(n = 535)、利伐沙班(n = 732)或华法林(n = 990)共2428名患有NVAF的肝硬化患者的有效性和安全性,结果显示,NOACs的TE风险与华法林相当,而大出血风险较低。因此,此类患者可考虑使用低剂量NOACs进行血栓预防 [40] 。一项队列研究评估了3167名使用DOACs (n = 2247, 71%)或VKAs (n = 920, 29%)的患有肝病的NVAF患者5年治疗持续率,以及停药前是否发生缺血性卒中或出血。结果显示,5年后,31%的DOACs使用者和9%的VKAs使用者仍在继续使用,只有少数患者在停止治疗前被诊断出缺血性卒中或出血,DOACs的长期持续率高于VKAs,但仍然相对较低 [41] 。

7. DOACs与VKAs的逆转

对于VKAs引起的出血患者,凝血酶原复合物(prothrombin complex concentrates, PCC)和活化的凝血酶原复合物(activated PCC, aPCC)可在数分钟内恢复止血并使INR正常化。如果没有PCC,可考虑使用新鲜冰冻血浆(fresh frozen plasma, FFP)。维生素K可逆转VKAs的抗凝效果,可静脉注射(以确保更快和更可预期的效果)或口服,根据INR指导用药,如INR持续升高可每12 h重复给药。由于维生素K需要数小时才能发挥其逆转作用,一般与PCC或FFP联合给药,以抵消华法林的长半衰期 [42] 。严重出血患者和需要紧急手术或干预的患者可能需要逆转DOACs的抗凝作用。逆转可以用特异性逆转剂进行,如用于达比加群酯的依达赛珠单抗和用于阿哌沙班、艾多沙班及利伐沙班的Andexanet alfa,或非特异性逆转剂,如PCC、aPCC和重组活化因子VII (VIIa) [43] 。通过荟萃分析评估了4735名严重DOACs相关出血患者的60项研究,这些患者接受了四因子PCC (n = 2688)、依达赛珠单抗(n = 1111)或Andexanet alfa (n = 936)。有效止血率为78.5% (95%CI: 75.1%~81.8%),尽管逆转剂的有效止血率很高,但严重DOACs相关出血后的死亡风险仍然很大 [44] 。目前依达赛珠单抗是达比加群酯逆转的一线药物 [45] 。Andexanet alfa是FDA于2018年5月批准的重组修饰因子Xa蛋白,用于逆转阿哌沙班和利伐沙班危及生命或无法控制的出血患者 [46] 。艾多沙班急性出血的患者使用Andexanet alfa的经验有限。研究显示,接受艾多沙班治疗的急性大出血患者中,Andexanet alfa显著降低抗因子Xa活性,止血疗效与在利伐沙班或阿哌沙班出血患者中观察到的相似 [47] 。如果没有特定的逆转剂依达赛珠单抗或Andexanet alfa,则考虑使用PCC或aPCC [48] 。尽管动物研究支持aPCC在达比加群酯相关出血中的逆转作用,但在人类上的数据有限。重组因子VIIa (rFVIIa)不直接靶向DOACs的活性。因此,这并不是DOACs相关性出血的首选药物。目前尚无临床试验证明rFVIIa对DOACs相关性出血的影响 [49] 。Ciraparantag是一种人工合成的水溶性小分子阳离子,可与肝素和DOACs (直接凝血因子Xa抑制剂和DTI)非共价结合,正在进行的临床开发计划仍在研究中 [43] [50] 。

8. 总结与展望

综上所述,NVAF患者从OAT中获益,以降低卒中和体循环栓塞的风险。随着DOACs使用的增加,其对NVAF患者的疗效及安全性有了更多的数据。许多证据表明,DOACs与VKAs的疗效几乎相当,且在不同亚组患者中,前者的安全性总体较好。DOACs也比VKAs给药更方便,因为他们可以在没有凝血监测的情况下以固定剂量给药,以提高患者长期抗凝治疗的依从性,从而提高AF的治疗有效率。因此,目前指南在许多适应症上优先选择DOACs而不是VKAs [4] [14] [39] 。然而,DOACs在NVAF和CKD患者以及肝病患者的有效性和安全性研究相对有限,有待多中心、双盲的随机临床试验(randomized clinical trials, RCTs)的高质量研究数据进一步验证。因此,在此背景下进行稳健的研究之前,医师在为该人群开具DOACs前,应权衡出血事件风险,尤其是在更晚期的疾病阶段。此外,目前的证据表明,DOACs不适用于中重度二尖瓣狭窄和心脏机械瓣膜患者。随着未来抗凝治疗的不断发展,DOACs仍将是预防血栓事件的关键疗法,新一代的口服抗凝药XI因子抑制剂在预防血栓形成的同时,降低了出血的风险,这极有可能为AF抗凝治疗领域带来一场新的革命 [51] [52] [53] 。

NOTES

*通讯作者。

参考文献

[1] Chiang, C.E., Chao, T.F., Choi, E.K., et al. (2022) Stroke Prevention in Atrial Fibrillation: A Scientific Statement of JACC: Asia (Part 1). JACC Asia, 2, 395-411.
https://doi.org/10.1016/j.jacasi.2022.05.005
[2] Kühne, M., Krisai, P., Coslovsky, M., et al. (2022) Silent Brain Infarcts Impact on Cognitive Function in Atrial Fibrillation. European Heart Journal, 43, 2127-2135.
https://doi.org/10.1093/eurheartj/ehac020
[3] Burdett, P. and Lip, G.Y.H. (2022) Atrial Fibrillation in the UK: Predicting Costs of an Emerging Epidemic Recognizing and Forecasting the Cost Drivers of Atrial Fibrillation-Related Costs. European Heart Journal—Quality of Care and Clinical Outcomes, 8, 187-194.
https://doi.org/10.1093/ehjqcco/qcaa093
[4] January, C.T., Wann, L.S., Calkins, H., et al. (2019) 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/ HRS Guideline for the Management of Patients with Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Prac-tice Guidelines and the Heart Rhythm Society in Collaboration with the Society of Thoracic Surgeons. Circulation, 140, e125-e151.
https://doi.org/10.1161/CIR.0000000000000665
[5] Choi, S.E., Sagris, D., Hill, A., et al. (2023) Atrial Fibrilla-tion and Stroke. Expert Review of Cardiovascular Therapy, 21, 35-56.
https://doi.org/10.1080/14779072.2023.2160319
[6] Catalani, F., Campello, E., Occhipinti, G., et al. (2023) Effi-cacy and Safety of direct Oral Anticoagulants in Older Adults with Atrial Fibrillation: A Prospective Single-Centre Co-hort Study. Internal and Emergency Medicine, 18, 1941-1949.
https://doi.org/10.1007/s11739-023-03375-9
[7] Piero Perna, G., Vora, P., Gandini, E., et al. (2023) Persistence to Rivaroxaban Therapy for Stroke Prevention in Clinical Practice in Italy: Rationale and Design of the RITMUS-AF Prospective Observational Cohort Study. International Journal of Cardiology: Heart & Vasculature, 47, Article ID: 101229.
https://doi.org/10.1016/j.ijcha.2023.101229
[8] Cools, F., Johnson, D., Camm, A.J., et al. (2021) Risks Associated with Discontinuation of Oral Anticoagulation in Newly Diagnosed Patients with Atrial Fibrillation: Results from the GARFIELD-AF Registry. Journal of Thrombosis and Haemostasis, 19, 2322-2334.
https://doi.org/10.1111/jth.15415
[9] Barnes, G.D., Ageno, W., Castellucci, L.A., et al. (2023) Recommendation on the Nomenclature for Anticoagulants: Updated Communication from the International Society on Thrombosis and Haemostasis Scientific and Standardization Committee on the Control of Anticoagulation. Journal of Thrombosis and Haemostasis, 21, 1381-1384.
https://doi.org/10.1016/j.jtha.2023.02.008
[10] Chaudhry, R., Usama, S.M. and Babiker, H.M. (2023) Physiology, Coagulation Pathways. StatPearls Publishing, Treasure Island.
[11] Bortman, L.V., Mitchell, F., Naveiro, S., et al. (2023) Direct Oral Anticoagulants: An Updated Systematic Review of Their Clinical Pharmacology and Clinical Effectiveness and Safety in Patients with Nonvalvular Atrial Fibrillation. The Journal of Clinical Pharmacology, 63, 383-396.
https://doi.org/10.1002/jcph.2184
[12] Bhatia, K., Ladd, L.M., Carr, K.H., et al. (2023) Contemporary Antiplatelet and Anticoagulant Therapies for Secondary Stroke Prevention: A Narrative Review of Current Literature and Guidelines. Current Neurology and Neuroscience Reports, 23, 235-262.
https://doi.org/10.1007/s11910-023-01266-2
[13] 中华医学会心电生理和起搏分会, 中国医师协会心律学专业委员会, 中国房颤中心联盟心房颤动防治专家工作委员会. 心房颤动: 目前的认识和治疗建议(2021) [J]. 中华心律失常学杂志, 2022, 26(1): 15-88.
[14] Hindricks, G., Potpara, T., Dagres, N., et al. (2021) 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation De-veloped in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the Diagnosis and Management of Atrial Fibrillation of the European Society of Cardiology (ESC) Developed with the Spe-cial Contribution of the European Heart Rhythm Association (EHRA) of the ESC. European Heart Journal, 42, 373-498.
https://doi.org/10.1093/eurheartj/ehaa798
[15] Wang, M., Zeraatkar, D., Obeda, M., et al. (2021) Drug-Drug Inter-actions with Warfarin: A Systematic Review and Meta-Analysis. British Journal of Clinical Pharmacology, 87, 4051-4100.
https://doi.org/10.1111/bcp.14833
[16] Dawwas, G.K., Cuker, A., Barnes, G.D., et al. (2022) Apixa-ban versus Rivaroxaban in Patients with Atrial Fibrillation and Valvular Heart Disease: A Population-Based Study. An-nals of Internal Medicine, 175, 1506-1514.
https://doi.org/10.7326/M22-0318
[17] García-Sempere, A., Hurtado, I., Bejarano-Quisoboni, D., et al. (2019) Quality of INR Control and Switching to Non-Vitamin K Oral Anticoagulants between Women and Men with Atrial Fi-brillation Treated with Vitamin K Antagonists in Spain. A Population-Based, Real-World Study. PLOS ONE, 14, e0211681.
https://doi.org/10.1371/journal.pone.0211681
[18] Mansour, H., Lubbad, R., Aboobaid, H., et al. (2022) Compli-ance amongst Recipients of Warfarin to Treat Non-Valvular Atrial Fibrillation: A Cross-Sectional Study. The Lancet, 399, S5.
https://doi.org/10.1016/S0140-6736(22)01140-0
[19] Sun, B., Ma, S., Xiao, F., et al. (2023) Integrated Analy-sis of Clinical and Genetic Factors on the Interindividual Variation of Warfarin Anticoagulation Efficacy in Clinical Prac-tice. BMC Cardiovascular Disorders, 23, Article No. 279.
https://doi.org/10.1186/s12872-023-03321-9
[20] Chan, Y.H., Lee, H.F., See, L.C., et al. (2019) Effectiveness and Safety of Four Direct Oral Anticoagulants in Asian Patients with Nonvalvular Atrial Fibrillation. Chest, 156, 529-543.
https://doi.org/10.1016/j.chest.2019.04.108
[21] Archontakis-Barakakis, P., Li, W., Kalaitzoglou, D., et al. (2022) Effectiveness and Safety of Intracranial Events Associated with the Use of Direct Oral Anticoagulants for Atrial Fibrilla-tion: A Systematic Review and Meta-Analysis of 92 Studies. British Journal of Clinical Pharmacology, 88, 4663-4675.
https://doi.org/10.1111/bcp.15464
[22] Durand, M., Schnitzer, M.E., Pang, M., et al. (2020) Comparative Effec-tiveness and Safety of Direct Oral Anticoagulants versus Vitamin K Antagonists in Nonvalvular Atrial Fibrillation: A Canadian Multicentre Observational Cohort Study. CMAJ Open, 8, E877-E886.
https://doi.org/10.9778/cmajo.20200055
[23] Davis, M.K., Lim, H. and Lee, A.Y.Y. (2021) Direct Oral Anticoag-ulants in Patients with Cancer and Nonvalvular Atrial Fibrillation. JACC: CardioOncology, 3, 425-427.
https://doi.org/10.1016/j.jaccao.2021.07.003
[24] Zhou, H., Nie, X., Jiang, M., et al. (2022) Cost-Effectiveness of Anticoagulants for Preventing Stroke in Patients with Non-Valvular Atrial Fibrillation in Mainland China. Journal of Clinical Pharmacy and Therapeutics, 47, 523-530.
https://doi.org/10.1111/jcpt.13575
[25] Enomoto, A., Mano, Y., Kawano, Y., et al. (2021) Comparison of the Safety and Effectiveness of Four Direct Oral Anticoagulants in Japanese Patients with Nonvalvular Atrial Fibrillation Using Real-World Data. Biological and Pharmaceutical Bulletin, 44, 1294-1302.
https://doi.org/10.1248/bpb.b21-00230
[26] Durand, M., Schnitzer, M.E., Pang, M., et al. (2021) Effectiveness and Safety among Direct Oral Anticoagulants in Nonvalvular Atrial Fibrillation: A Multi-Database Cohort Study with Me-ta-Analysis. British Journal of Clinical Pharmacology, 87, 2589-2601.
https://doi.org/10.1111/bcp.14669
[27] Nemola, G., Russi, A., Cozzani, G., et al. (2023) Baseline Characteristics and 3-Year Outcome of Nonvalvular Atrial Fibrillation Patients Treated with the Four Direct Oral Anticoagulants (DO-ACs). American Journal of Cardiology, 206, 125-131.
https://doi.org/10.1016/j.amjcard.2023.07.181
[28] Jansson, M., Själander, S., Sjögren, V., et al. (2020) Direct Comparisons of Effectiveness and Safety of Treatment with Apixaban, Dabigatran and Rivaroxaban in Atrial Fibrillation. Thrombosis Research, 185, 135-141.
https://doi.org/10.1016/j.thromres.2019.11.010
[29] Volgman, A.S., Nair, G., Lyubarova, R., et al. (2022) Man-agement of Atrial Fibrillation in Patients 75 Years and Older: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 79, 166-179.
https://doi.org/10.1016/j.jacc.2021.10.037
[30] Rubino, C., Blunda, F., Bodega, F., et al. (2023) Safety and Effica-cy of Direct Oral Anticoagulants (DOACs) in Very Elderly Patients (≥85 Years Old) with Non-Valvular Atrial Fibrilla-tion. Minerva Medica, 114, 137-147.
https://doi.org/10.23736/S0026-4806.21.07432-2
[31] Naganuma, M., Shiga, T. and Hagiwara, N. (2020) Clinical Outcomes of Direct Oral Anticoagulants and Warfarin in Japanese Patients with Atrial Fibrillation Aged  ≥  85 Years: A Single-Center Observational Study. Drugs: Real World Outcomes, 7, 325-335.
https://doi.org/10.1007/s40801-020-00209-4
[32] Shiozawa, M., Koga, M., Inoue, H., et al. (2023) Risk of both Intracranial Hemorrhage and Ischemic Stroke in Elderly Individuals with Nonvalvular Atrial Fibrillation Taking Direct Oral Anticoagulants Compared with Warfarin: Analysis of the ANAFIE Registry. International Journal of Stroke, 18, 986-995.
https://doi.org/10.1177/17474930231175807
[33] Lo, C.T., Niu, F., Fredriks, D.A., et al. (2022) Evalua-tion of the Effectiveness and Safety of Direct Oral Anticoagulants in Elderly Patients with Nonvalvular Atrial Fibrillation Who Are Not Candidates for Warfarin in Real-World Setting. Journal of Cardiovascular Pharmacology, 79, e138-e143.
https://doi.org/10.1097/FJC.0000000000001168
[34] Ferrari, F., da Silveira, A.D., Martins, V.M., et al. (2021) Direct-Acting Oral Anticoagulants in Atrial Fibrillation: What’s New in the Literature. Cardiology in Review, 29, 120-130.
https://doi.org/10.1097/CRD.0000000000000312
[35] Harrington, J., Carnicelli, A.P., Hua, K., et al. (2023) Direct Oral Anticoagulants versus Warfarin across the Spectrum of Kidney Function: Patient-Level Network Meta-Analyses from COMBINE AF. Circulation, 147, 1748-1757.
https://doi.org/10.1161/CIRCULATIONAHA.122.062752
[36] Mapili, J.A.L., Lim, L.C.S., Velando, B.M., et al. (2023) The Safety and Efficacy of Direct Oral Anticoagulants among Chronic Kidney Disease Patients on Dialysis with Non-Valvular Atrial Fibrillation: A Meta-Analysis. Frontiers in Cardiovascular Medicine, 10, Article ID: 1261183.
https://doi.org/10.3389/fcvm.2023.1261183
[37] Gorbatenko, V.S., Gerasimenko, A.S. and Shatalova, O.V. (2020) Comparative Efficacy and Safety of Direct Oral Anticoagulants in Patients with Atrial Fibrillation and Chronic Kidney Disease. Kardiologiia, 60, 102-109.
https://doi.org/10.18087/cardio.2020.9.n1178
[38] Costache, R.S., Dragomirică, A.S., Gheorghe, B.E., et al. (2023) Oral Anticoagulation in Patients with Chronic Liver Disease. Medicina (Kaunas), 59, Article No. 346.
https://doi.org/10.3390/medicina59020346
[39] 中华医学会心血管病学分会, 中国生物医学工程学会心律分会. 心房颤动诊断和治疗中国指南[J]. 中华心血管病杂志, 2023, 51(6): 572-618.
[40] Lee, H.F., Chan, Y.H., Chang, S.H., et al. (2019) Effectiveness and Safety of Non-Vitamin K Antagonist Oral Anticoagulant and Warfarin in Cirrhotic Patients with Nonvalvular Atrial Fibrillation. Journal of the American Heart Association, 8, e011112.
https://doi.org/10.1161/JAHA.118.011112
[41] Douros, A., Cui, Y., Platt, R.W., et al. (2022) Utilization and Long-Term Persistence of Direct Oral Anticoagulants among Patients with Nonvalvular Atrial Fibrillation and Liver Dis-ease. British Journal of Clinical Pharmacology, 88, 994-1009.
https://doi.org/10.1111/bcp.15046
[42] Cao, D., Amabile, N., Chiarito, M., et al. (2023) Reversal and Removal of Oral Antithrombotic Drugs in Patients with Active or Perceived Imminent Bleeding. European Heart Journal, 44, 1780-1794.
https://doi.org/10.1093/eurheartj/ehad119
[43] van Es, N., De Caterina, R. and Weitz, J.I. (2023) Reversal Agents for Current and Forthcoming Direct Oral Anticoagulants. European Heart Journal, 44, 1795-1806.
https://doi.org/10.1093/eurheartj/ehad123
[44] Gómez-Outes, A., Alcubilla, P., Calvo-Rojas, G., et al. (2021) Me-ta-Analysis of Reversal Agents for Severe Bleeding Associated with Direct Oral Anticoagulants. Journal of the American College of Cardiology, 77, 2987-3001.
https://doi.org/10.1016/j.jacc.2021.04.061
[45] Steffel, J., Collins, R., Antz, M., et al. (2021) 2021 European Heart Rhythm Association Practical Guide on the Use of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial Fibrillation. Europace, 23, 1612-1676.
https://doi.org/10.1093/europace/euab157
[46] Reed, M., Tadi, P. and Nicolas, D. (2023) Andexanet Alfa. StatPearls Publishing, Treasure Island.
https://doi.org/10.1055/s-0041-1740180
[47] Benz, A.P., Xu, L., Eikelboom, J.W., et al. (2022) Andexanet Alfa for Specific Anticoagulation Reversal in Patients with Acute Bleeding during Treatment with Edoxaban. Thrombosis and Haemostasis, 122, 998-1005.
https://doi.org/10.1016/j.jacc.2020.04.053
[48] Tomaselli, G.F., Mahaffey, K.W., Cuker, A., et al. (2020) 2020 ACC Expert Consensus Decision Pathway on Management of Bleeding in Patients on Oral Anticoagulants: A Report of the American College of Cardiology Solution Set Oversight Committee. Journal of the American College of Cardiology, 76, 594-622.
https://doi.org/10.1016/j.cpcardiol.2022.101483
[49] Biswas, S., Bahar, Y., Bahar, A.R., et al. (2023) Present Knowledge on Direct Oral Anticoagulant and Novel Oral Anti Coagulants and Their Specific Antidotes: A Comprehen-sive Review Article. Current Problems in Cardiology, 48, Article ID: 101483.
https://doi.org/10.1182/blood.2020007116
[50] Ansell, J., Laulicht, B.E., Bakhru, S.H., et al. (2021) Ciraparantag, an Anticoagulant Reversal Drug: Mechanism of Action, Pharmacokinetics, and Reversal of Anticoagulants. Blood, 137, 115-125.
[51] Piccini, J.P., Caso, V., Connolly, S.J., et al. (2022) Safety of the Oral Factor XIa Inhibitor Asundexian Compared with Apixaban in Patients with Atrial Fibrillation (PACIFIC-AF): A Multicentre, Randomised, Double-Blind, Double-Dummy, Dose-Finding Phase 2 Study. The Lancet, 399, 1383-1390.
[52] De Caterina, R., Prisco, D. and Eikelboom, J.W. (2023) Factor XI Inhibitors: Cardiovascular Perspectives. European Heart Journal, 44, 280-292.
https://doi.org/10.1093/eurheartj/ehac464
[53] Greco, A., Laudani, C., Spagnolo, M., et al. (2023) Pharmacology and Clinical Development of Factor XI Inhibitors. Circulation, 147, 897-913.
https://doi.org/10.1161/CIRCULATIONAHA.122.062353