非酒精性脂肪肝与射血分数保留心力衰竭相关性研究进展
Research Progress on the Correlation between Nonalcoholic Fatty Liver and Ejection Fraction Preservation Heart Failure
DOI: 10.12677/ACM.2024.141159, PDF, HTML, XML, 下载: 109  浏览: 195  科研立项经费支持
作者: 苏热亚·伊斯马依力, 艾力曼·马合木提*:新疆医科大学第一附属医院心力衰竭科,新疆 乌鲁木齐
关键词: 非酒精性脂肪肝射血分数保留心力衰竭机制相关性Nonalcoholic Fatty Liver Disease Heart Failure with Preserved Ejection Fraction Mechanism Corre-lation
摘要: 心力衰竭(heart failure, HF)是各种心脏疾病发展的终末期阶段,会严重影响患者生活质量,其再住院率和死亡率不断上升,目前已成为全球公共卫生问题。在HF中,射血分数保留的心力衰竭(Heart failure with preserved ejection fraction, HFpEF)是最常见的形式,约占HF的50%。虽然HF是一种无法根治的疾病,但也能通过早期干预措施预防其发生,通过药物治疗方法改善心功能。迄今为止,HFpEF的发病机制复杂,诊断及针对性治疗仍具有挑战性,因此对HFpEF的提前干预和延缓临床进展,也是HF研究的重点。有关非酒精性脂肪肝(Non-alcoholic fatty liver disease, NAFLD)在HFpEF发生发展过程中的相关机制已成为研究热点,为了更加深入地认识两者之间的相关性,本文查阅大量相关文献,将NAFLD与HFpEF相关性研究进展进行综述,进而为临床管理和治疗提供线索依据。
Abstract: Heart Failure (HF) is the final stage of the development of various heart diseases, which can seri-ously affect the quality of life of patients, and its readmission and mortality rates are increasing, and has now become a global public health problem. In HF, Heart failure with preserved ejection frac-tion (HFpEF) is the most common form, accounting for about 50% of HF. Although HF is a disease that cannot be cured, it can also be prevented by early intervention measures and improve cardiac function through drug therapy. So far, the pathogenesis of HFpEF is complex, and the diagnosis and targeted treatment are still challenging. Therefore, the early intervention and delay of clinical pro-gress of HFpEF are also the focus of HF research. The mechanism related to the occurrence and de-velopment of Non-alcoholic fatty liver disease (NAFLD) in HFpEF has become a research hotspot. In order to have a deeper understanding of the correlation between the two, a large number of rele-vant literatures are consulted in this paper. This paper summarizes the research progress of the correlation between NAFLD and HFpEF, so as to provide clues for clinical management and treat-ment.
文章引用:苏热亚·伊斯马依力, 艾力曼·马合木提. 非酒精性脂肪肝与射血分数保留心力衰竭相关性研究进展[J]. 临床医学进展, 2024, 14(1): 1104-1110. https://doi.org/10.12677/ACM.2024.141159

1. 引言

随着临床及流行病学的研究对非酒精性脂肪肝(Non-alcoholic fatty liver disease, NAFLD)与心血管疾病的关联不断深入,发现两者有共同的危险因素,有相关的病理生理机制,从而导致心血管的发病率增加。有研究表明,Framingham Risk Score弗雷明汉风险评分(FRS)估计的心血管风险程度与脂肪肝等级的增加相关 [1] 。虽然NAFLD与冠状动脉粥样硬化性心脏病(atherosclerotic cardiovascular disease, ASCVD)、心脏结构功能障碍之间存在密切联系,尤其NAFLD被认为是ASCVD的危险因素,主要血管事件是NAFLD患者死亡和发病的主要原因 [2] ,但NAFLD与心力衰竭以及射血分数保留心力衰竭(heart failure with preserved ejection fraction, HFpEF)之间的关系尚未完全阐明,需要进一步研究。在过去十年中,HFpEF和NAFLD是患病率不断增长的两种疾病。HFpEF患者比射血分数降低心力衰竭(heart failure with reduced ejection fraction, HFrEF)更普遍,但缺乏实际有效的治疗策略,目前仍是经验性治疗。因此,积极进行有效的早期干预措施、良好的生活方式以及靶点治疗方法对预防NAFLD与HFpEF至关重要。本文将NAFLD与HFpEF相关性研究进展进行综述,进而为临床管理和治疗提供线索依据。

2. 心力衰竭相关概述及流行病学

HF是多种原因导致心脏结构和/或功能的异常改变,使心室收缩和/或舒张功能发生障碍,从而引起的一组复杂临床综合征,并由利钠肽水平升高和/或客观证据证实肺部或全身充血。以往HF分为三类,2021新版《心力衰竭的通用定义和分类》根据左心室射血分数(left ventricular ejection fraction, LVEF)提出了一种新的和修订的心衰分类。分类包括射血分数降低心力衰竭(heart failure with reduced ejection fraction, HFrEF):LVEF为40%的HF;射血分数中间值心力衰竭(heart failure with mid-range ejection fraction, HFmrEF):LVEF为41%至49%的HF;射血分数保留心力衰竭(heart failure with preserved ejection fraction, HFpEF):LVEF为≥50%的HF;射血分数改善的心衰(HFimpEF):基线LVEF ≤ 40%,LVEF比基线增加≥10%,第二次测量时LVEF > 40% [3] 。HFpEF的定义为通常由危险因素和合并症共同发展而来,是一种复杂的心血管疾病,心血管病理生理过程包括全身血管阻力增加、导管动脉僵硬度增加,心室动脉耦合异常,左室长轴收缩功能降低,舒张早期舒张减慢,左室顺应性降低,舒张末期僵硬度增加,左心房储存和收缩功能降低,右室功能受损,变时性不全。患者的卒中容量储备、心率和心排血量(CO)往往降低,而相对于耗氧量增加的CO也变得迟钝 [4] 。HFpEF患者通常有高左室充盈压,无论在休息和/或运动时,他们可能出现液体潴留和血浆容量扩大。由于人口的增长和老龄化日趋严重,在全球范围内,心力衰竭患者总数仍在持续上升。据估计,全世界有6430万人患有HF,在发达国家,已知HF的患病率通常估计为一般成年人口的1%~2% [5] 。在美国和欧洲,住院性心力衰竭(HHF)是住院的主要原因,导致超过100万名患者入院,占所有住院患者的1%~2% [6] 。AroraS [7] 等分析了192394例在研究期间被初步诊断为舒张性心力衰竭(Diastolic Heart Failure,DHF)的患者,结果表明在指数出院后的30天内,共有47,056例患者再次入院。前25%、50%和75%的再入院分别发生在7、14和22天,仅因DHF再次入院的患者也出现了类似的结果。随着慢性病的发病率升高,在多种慢性病同时存在的情况下,发生HF的风险很高,而且HFpEF的患病率随时间正在增加 [8] [9] 。老年HF患者HFpEF发病率较高,再住院可归因于慢性病基础病加重恶化。

3. 非酒精性脂肪肝相关概述及流行病学

NAFLD目前已成为发病率不断上升且危害人类身心健康的慢性肝脏疾病。NAFLD在组织学上的特征为≥5%的脂肪变性,包括炎症和肝细胞损伤或纤维化,为主要病变特征的临床病理综合征,且无酒精和其他明确肝细胞损伤及纤维化的证据,是一种与胰岛素抵抗和遗传调控密切相关的代谢应激性肝损伤。NAFLD亚型在组织学上归类为非酒精性脂肪性肝炎(NASH),是一个潜在进展性肝病,导致肝纤维化、肝硬化、肝细胞癌(HCC)和肝移植 [10] [11] 。目前,非酒精性脂肪肝已成为世界范围内终末期肝病的主要病因。Ge [12] 等设计了一项以人群为基础的全球性的观察研究,利用全球疾病负担(GBD)研究的数据,包括21个地区和195个国家或地区,结果显示,在全球范围内,NAFLD病例从1990年的3.912亿例增加到2017年的8.821亿例,患病率从同期的8.2%增加到10.9%。这种增长趋势在男女之间是一致的。NAFLD在年轻人中的流行病学在过去三十年中发生了很大的变化。不论性别、年龄和区域,病例的流行率和数量都有所增加 [13] 。非酒精性脂肪性肝病(NAFLD)是最常见的肝脏疾病,全球患病率为25%。在美国,NAFLD及其亚型非酒精性脂肪性肝炎分别影响30%和5%的人口 [14] 。这表明,全球有四分之一的人口被NAFLD影响着,不同国家和地区患病率有差异,可能与饮食习惯和生活方式有关。

4. NAFLD与HFpEF可能的发病机制

NAFLD和HFpEF具有共同的危险因素、合并症和心脏结局,有利于病理生理学的连续性。NAFLD视为HFpEF并发症的新型危险因素。NAFLD和HFpEF之间的病理机制可包括一下几方面。

4.1. 炎症小体的激活

NAFLD是全身性炎症性脂肪生成状态和胰岛素抵抗状态的肝脏表现,不仅导致肝脏炎症和纤维化,还导致心脏炎症和纤维化。全身性炎症与心房和心室肌病的发展之间存在牢固的联系,其临床上分别表现为心房颤动或HFpEF [15] 。炎症小体激活被证明在脂肪组织炎症和肥胖相关代谢疾病发病机制中起到独特及核心作用 [16] 。脂肪组织不仅是多余能量储存器官,还具有强烈的内分泌和旁分泌效应,分泌生物活性肽和蛋白质,称为脂肪因子,根据在炎症反应中所起的作用不同,脂肪因子可分为抗炎脂肪因子和促炎脂肪因子两大类 [17] 。心外膜脂肪组织(Epicardial adipose tissue, EAT),在NAFLD血脂及代谢异常的疾病中,心外膜脂肪会改变其脂肪因子合成的特征,合成一系列促炎性脂肪因子(瘦素、肿瘤坏死因子-a、白细胞介素1-b和白细胞介素6以及抵抗素),促进巨噬细胞的浸润,破坏微血管系统,在这些条件下,源自心外膜的间充质干细胞可以迁移到心室肌并转化为成纤维细胞,并激活促纤维化途径,从而导致心房、心室纤维化和微循环稀疏,导致HFpEF [18] 。心外膜脂肪组织可以作为一种传感器来调节全身炎症对心肌的影响,因此,心外膜组织可作为重要的干预治疗靶点,以降低心力衰竭的风险。

在促炎因子中,内脂素通过核因子κB和MAKB激酶3/6-p38信号通路增加巨噬细胞中趋化因子配体20的表达,进而促进肝星状细胞纤维化标志物的表达,发挥促纤维化作用,从而引起心脏纤维化 [19] 。

Gogiraju [20] 等的研究表明,瘦素在心脏肥大重塑过程中调节内皮细胞自噬中具有重要且以前未知的作用,内皮瘦素信号传导通过抑制内皮自噬和促进慢性压力超负荷模型中的内皮功能障碍,导致心脏纤维化和心脏功能障碍。NAFLD和HFpEF之间存在相似的促炎细胞因子谱。例如,促炎性巨噬细胞释放细胞因子,如TNF-A和IL-6,导致肝细胞损伤和NAFLD,而受损肝细胞释放IL-33,通过IL-33受体(ST2)和半乳糖凝集素在心脏中,引起拉伸肌细胞、炎症和心肌纤维化,导致心肌细胞肥大和心脏纤维化 [21] 。因此,可以通过减少炎症来改善舒张功能,以降低心力衰竭的风险。

4.2. 氧化应激的激活

在NAFLD及代谢综合征中,内脏脂肪组织功能失调,循环游离脂肪酸(FFA)水平升高,然而,血清FFA是心肌脂质积累的关键调节因子,血浆FFA浓度升高导致心肌FFA摄取量显著增加,随后导致心肌脂质沉积。心脏中的脂质积累与随后的心脏形态变化和舒张功能障碍有关。已知心肌脂肪变性可增强活性氧(reactive oxygen species, ROS)的产生:多种心肌脂堆积模型(如ATGL缺乏、棕榈酸盐治疗、神经酰胺合酶过表达以及肥胖和糖尿病的遗传模型)均导致ROS生成增加。低ROS水平可通过触发生理氧化还原信号产生保护作用,但当ROS水平超过细胞抗氧化能力时,细胞损伤、内皮功能障碍和动脉粥样硬化就会发生 [22] 。ROS可以通过与超氧化物反应将NO转移到过氧亚硝酸盐来消耗NO生物利用度。HFpEF心肌显示硝基酪氨酸染色增加,提示NO转移至过氧亚硝酸盐。这可以通过减少NO依赖性cGMP-PKG信号传导来促进HFpEF的发病机制 [23] 。在HFpEF患者中观察到促炎和氧化应激信号,最终导致心肌细胞中cGMP-PKG通路减弱,从而导致心肌僵硬,这些信号级联反应是HFpEF发展的标志 [24] 。

4.3. 线粒体功能障碍

心脏是高能量消耗器官,其95%的a-TP由氧化代谢提供。由于线粒体损伤的增加,线粒体能量代谢的损害导致能量缺乏,这导致ATP生产和需求之间的不匹配,同时也激活下游信号通路,可导致心脏重构、炎症和舒张功能障碍。由于心脏从线粒体氧化磷酸化中获得其对ATP的大部分高需求,线粒体功能障碍和能量受损可能导致心脏功能障碍。压力超负荷诱导的心力衰竭与心脏氧化能力显著受损有关,这主要是由于线粒体缺陷。值得注意的是,与外周肌一样,体内氧化能力的测量可能受到线粒体呼吸链上游控制氧运输的因素的影响,包括心肌微血管稀疏,这是HFpEF的一个特征 [25] 。

钙(Ca2+)是所有细胞类型中的基本第二信使,从肌质网(SR)释放在心肌激发–收缩(E-C)耦合过程中起到核心作用,该过程是将表面膜的电激发(动作电位)与收缩联系起来 [26] 。Ca2+有两种形式在心脏 SR 上的释放通道:Ryanodine受体亚型2 (ryanodine receptor type 2, RyR2)和2型肌醇1,4,5-三磷酸受体(IP3R2s)。能量不足总是伴随着Ca2+运输的失调,加剧了舒张期钙负荷的增加,从而增加静息期舒张张力,导致心脏充盈受损,这是舒张功能障碍的特征。在慢性压力超负荷的HFpEF大鼠模型中,通过RyR2的舒张期 SR Ca2+释放显着增加,这种SR Ca2+泄漏与PLN/SERCA比值的增加有关,PLN/SERCA比值导致延迟的Ca2+短暂衰退和舒张功能障碍 [27] 。一项实验证明细胞内Ca2+泄漏导致缺血后心力衰竭(HF)线粒体Ca2+超载和功能障碍。特别是,SR Ca2+通过RyR2,而不是IP3R2通道泄漏,在HF线粒体Ca2+超载和功能障碍的病理生理学中起着重要作用。RyR2中半胱氨酸残基的氧化在calstabin2从RyR2分离和舒张期SR Ca2+泄漏中起作用,并有助于HF进展,且证实了HF线粒体Ca2+超载与RyR2 Ca2+泄漏相一致 [28] 。心肌细胞Ca2+稳态的改变在病理发展中起关键作用,导致心脏重塑、心脏泵衰竭和心律失常。综上所述,心肌细胞Ca2+稳态的改变及SR Ca2+释放通道的机制RyR2,可作为心衰的一个潜在的治疗靶点。

4.4. 肠道微生态失调

肠道微生物群的丰度和多样性的变化与NAFLD的发病机制及进展有关。在健康条件下,肠腔是广泛的共生细菌生态位网络的位置。肠道微生物群对肠外器官的潜在贡献作用是通过各种细菌代谢物如胆汁酸,短链脂肪酸,氨基酸,胆碱和乙醇来实现的 [29] 。Hoyles [30] 等证明,从NAFLD患者移植到无菌小鼠的微生物组导致肝脂肪变性和NAFLD肠道微生物群特征将NAFLD患者肠道微生物群移植到无菌小鼠以及通过苯乙酸(一种芳香族氨基酸代谢的微生物产物)的慢性治疗,成功地触发了脂肪变性、支链氨基酸代谢和NAFLD肠道微生物群特征。在NAFLD中,这些代谢物被改变并参与NAFLD的发病机制。肠道微生物群衍生代谢物的表达变化也成为HF的危险因素。肠道微生态失调,损伤肠上皮,增加肠黏膜通透性,一旦肠道屏障被破坏,内毒素血症通过肠–肝轴循环,有害细菌代谢产物进入肝脏,释放炎性细胞因子,炎症级联反应启动,肝细胞中的脂质积累和细胞死亡可能受到刺激,从而导致NAFLD,NASH和肝硬化。共病导致全身炎症状态,导致冠状动脉微血管炎症,一氧化氮有效性降低,下游心肌肥厚,纤维化和随后的舒张功能障碍。有益产品包括短链脂肪酸(SCFAs)的产生,它可以改善血压、炎症和心肌修复,并与膳食纤维组成密切相关 [31] 。SCFAs可能被证明是所有HFpEF患者预防和治疗的潜在靶点。

5. NAFLD与HFpEF的关联证据

一项基于2356名人群研究,在调整了年龄、性别、队列和心血管危险因素的横断面多变量回归模型中,结果提示:非酒精性脂肪肝与左室充盈压相关,这是舒张期心功能障碍的敏感标志,也是临床心衰的潜在前兆 [32] 。一项约1100万参与者的大样本荟萃分析结果提示 [33] ,在调整了其他心脏代谢危险因素后,与没有肝病的人相比,NAFLD与未来心衰发生率增加36%相关。NAFLD发生HF的绝对风险差为11.0/10,000人年。NAFLD可能与发生HF的风险增加相关,尤其是HFpEF。而且随着NAFLD严重程度的进展,这种风险更为显著。Mantovani A [34] 等对1100万人的最新荟萃分析,结果表明,在中位随访10年内,NAFLD与新发HF的高风险中度相关,且新发HF风险增加可能与NAFLD的严重程度平行,这种风险的增加独立于与年龄、性别、种族、肥胖程度、糖尿病、血压、以及其他常见的心血管危险因素。Kim [35] 等人将1886名韩国成年人纳入队列中,通过组织多普勒成像(TDI)超声心动图,EA比值评估左室舒张功能,发现NAFLD与左室舒张功能障碍相关,多元线性回归表明,NAFLD是EA比值的独立预测因子,且与相关的心血管(CVD)风险因素无关。

6. 总结与展望

综上所述,NAFLD与HFpEF有较强的关联性,到目前为止,尚无针对HFpEF的特异性治疗方法,一旦NAFLD被证实并确定其严重程度,就应建议对患者进行侧重于症状和共病的治疗,对NAFLD提高重视,加强干预治疗管理,降低心血管风险,改善不良预后,改善HFpEF患者的生活将是至关重要的。总之,为了更好地了解可能的病理生理机制,从而更好地了解由其衍生的治疗管理,需要进一步进行关于NAFLD与HFpEF之间关联的前瞻性研究。

基金项目

新疆自治区自然科学基金重点项目,项目编号:2021D01D17。

NOTES

*通讯作者。

参考文献

[1] Cuenza, L.R., Razon, T.L.J. and Dayrit, J.C. (2017) Correlation between Severity of Ultrasonographic Nonalcoholic Fat-ty Liver Disease and Cardiometabolic Risk among Filipino Wellness Patients. Journal of Cardiovascular and Thoracic Research, 9, 85-89.
https://doi.org/10.15171/jcvtr.2017.14
[2] Mantovani, A., Ballestri, S., Lonardo, A., et al. (2016) Cardiovascular Disease and Myocardial Abnormalities in Nonalcoholic Fatty Liver Disease. Digestive Diseases and Sciences, 61, 1246-1267.
https://doi.org/10.1007/s10620-016-4040-6
[3] Bozkurt, B., Coats, A.J., Tsutsui, H., et al. (2021) Universal Def-inition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. Journal of Cardiac Failure, 23, 352-380.
https://doi.org/10.1002/ejhf.2115
[4] Pieske, B., Tschöpe, C., De Boer, R.A., et al. (2019) How to Diagnose Heart Failure with Preserved Ejection Fraction: The HFA-PEFF Diagnostic Algorithm: A Consensus Recommendation from the Heart Failure Association (HFA) of the Eu-ropean Society of Cardiology (ESC). European Heart Journal, 40, 3297-3317.
https://doi.org/10.1093/eurheartj/ehz641
[5] Groenewegen, A., Rutten, F.H., Mosterd, A., et al. (2020) Epidemi-ology of Heart Failure. European Journal of Heart Failure, 22, 1342-1356.
https://doi.org/10.1002/ejhf.1858
[6] Ambrosy, A.P., Fonarow, G.C., Butler, J., et al. (2014) The Global Health and Economic Burden of Hospitalizations for Heart Failure: Lessons Learned from Hospitalized Heart Failure Registries. Journal of the American College of Cardiology, 63, 1123-1133.
https://doi.org/10.1016/j.jacc.2013.11.053
[7] Arora, S., Lahewala, S., Hassan Virk, H.U., et al. (2017) Etiolo-gies, Trends, and Predictors of 30-Day Readmissions in Patients with Diastolic Heart Failure. American Journal of Car-diology, 120, 616-624.
https://doi.org/10.1016/j.amjcard.2017.05.028
[8] Chamberlain, A.M., Boyd, C.M., Manemann, S.M., et al. (2020) Risk Factors for Heart Failure in the Community: Differences by Age and Ejection Fraction. The American Jour-nal of Medicine, 133, e237-e248.
https://doi.org/10.1016/j.amjmed.2019.10.030
[9] Tsao, C.W., Lyass, A., Enserro, D., et al. (2018) Temporal Trends in the Incidence of and Mortality Associated with Heart Failure with Preserved and Reduced Ejection Fraction. JACC Heart Fail, 6, 678-685.
https://doi.org/10.1016/j.jchf.2018.03.006
[10] Cariou, B., Byrne, C.D., Loomba, R., et al. (2021) Nonalcoholic Fatty Liver Disease as a Metabolic Disease in Humans: A Literature Review. Diabetes, Obesity and Metabolism, 23, 1069-1083.
https://doi.org/10.1111/dom.14322
[11] Younossi, Z.M. (2019) Non-Alcoholic Fatty Liver Dis-ease—A Global Public Health Perspective. Journal of Hepatology, 70, 531-544.
https://doi.org/10.1016/j.jhep.2018.10.033
[12] Ge, X., Zheng, L., Wang, M., et al. (2020) Prevalence Trends in Non-Alcoholic Fatty Liver Disease at the Global, Regional and National Levels, 1990-2017: A Population-Based Obser-vational Study. BMJ Open, 10, e036663.
https://doi.org/10.1136/bmjopen-2019-036663
[13] Zhang, X., Wu, M., Liu, Z., et al. (2021) Increasing Prevalence of NAFLD/NASH among Children, Adolescents and Young Adults from 1990 to 2017: A Population-Based Observa-tional Study. BMJ Open, 11, e042843.
https://doi.org/10.1136/bmjopen-2020-042843
[14] Cotter, T.G. and Rinella, M. (2020) Nonalcoholic Fatty Liver Disease 2020: The State of the Disease. Gastroenterology, 158, 1851-1864.
https://doi.org/10.1053/j.gastro.2020.01.052
[15] Packer, M. (2020) Atrial Fibrillation and Heart Failure with Pre-served Ejection Fraction in Patients with Nonalcoholic Fatty Liver Disease. The American Journal of Medicine, 133, 170-177.
https://doi.org/10.1016/j.amjmed.2019.09.002
[16] Dakroub, A., Nasser, S.A., Younis, N., et al. (2020) Visfatin: A Possible Role in Cardiovasculo-Metabolic Disorders. Cells, 9, Article 2444.
https://doi.org/10.3390/cells9112444
[17] Lee, M.W., Lee, M. and Oh, K.J. (2019) Adipose Tissue-Derived Sig-natures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. Journal of Clinical Medicine, 8, Arti-cle 854.
https://doi.org/10.3390/jcm8060854
[18] Packer, M. (2018) Epicardial Adipose Tissue May Mediate Del-eterious Effects of Obesity and Inflammation on the Myocardium. Journal of the American College of Cardiology, 71, 2360-2372.
https://doi.org/10.1016/j.jacc.2018.03.509
[19] Heo, Y.J., Choi, S.E., Jeon, J.Y., et al. (2019) Visfatin Induces In-flammation and Insulin Resistance via the NF-κB and STAT3 Signaling Pathways in Hepatocytes. Journal of Diabetes Research, 2019, Article ID: 4021623.
https://doi.org/10.1155/2019/4021623
[20] Gogiraju, R., Hubert, A., Fahrer, J., et al. (2019) Endothelial Leptin Receptor Deletion Promotes Cardiac Autophagy and Angiogenesis following Pressure Overload by Suppressing Akt/mTOR Signaling. Circulation: Heart Failure, 12, e005622.
https://doi.org/10.1161/CIRCHEARTFAILURE.118.005622
[21] Itier, R., Guillaume, M., Ricci, J.E., et al. (2021) Non-Alcoholic Fatty Liver Disease and Heart Failure with Preserved Ejection Fraction: From Pathophysiology to Practi-cal Issues. ESC Heart Fail, 8, 789-798.
https://doi.org/10.1002/ehf2.13222
[22] D’oria, R., Schipani, R., Leonardini, A., et al. (2020) The Role of Oxida-tive Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxidative Medicine and Cellular Longevi-ty, 2020, Article ID: 5732956.
https://doi.org/10.1155/2020/5732956
[23] Leggat, J., Bidault, G. and Vidal-Puig, A. (2021) Lipotoxicity: A Driver of Heart Failure with Preserved Ejection Fraction? Clinical Science, 135, 2265-2283.
https://doi.org/10.1042/CS20210127
[24] Budde, H., Hassoun, R., Mügge, A., et al. (2022) Current Understand-ing of Molecular Pathophysiology of Heart Failure with Preserved Ejection Fraction. Frontiers in Physiology, 13, Article 928232.
https://doi.org/10.3389/fphys.2022.928232
[25] Kumar, A.A., Kelly, D.P. and Chirinos, J.A. (2019) Mitochondrial Dysfunction in Heart Failure with Preserved Ejection Fraction. Circulation, 139, 1435-1450.
https://doi.org/10.1161/CIRCULATIONAHA.118.036259
[26] Eisner, D.A., Caldwell, J.L., Kistamas, K., et al. (2017) Calcium and Excitation-Contraction Coupling in the Heart. Circulation Research, 121, 181-195.
https://doi.org/10.1161/CIRCRESAHA.117.310230
[27] Benitah, J.P., Perrier, R., Mercadier, J.J., et al. (2021) RyR2 and Calcium Release in Heart Failure. Frontiers in Physiology, 12, Article 734210.
https://doi.org/10.3389/fphys.2021.734210
[28] Santulli, G., Xie, W., Reiken, S.R., et al. (2015) Mitochondrial Calcium Overload Is a Key Determinant in Heart Failure. Proceedings of the National Academy of Sciences of the United States of America, 112, 11389-11394.
https://doi.org/10.1073/pnas.1513047112
[29] Chen, J. and Vitetta, L. (2020) Gut Microbiota Metabolites in NAFLD Pathogenesis and Therapeutic Implications. International Journal of Molecular Sciences, 21, Article 5214.
https://doi.org/10.3390/ijms21020521
[30] Hoyles, L., Fernández-Real, J.M., Federici, M., et al. (2018) Publisher Correction: Molecular Phenomics and Metagenomics of Hepatic Steatosis in Non-Diabetic Obese Women. Nature Medi-cine, 24, Article No. 1628.
https://doi.org/10.1038/s41591-018-0169-5
[31] Beale, A.L., O’donnell, J.A., Nakai, M.E., et al. (2021) The Gut Microbiome of Heart Failure with Preserved Ejection Fraction. Journal of the American Heart Association, 10, e020654.
https://doi.org/10.1161/JAHA.120.020654
[32] Chiu, L.S., Pedley, A., Massaro, J.M., et al. (2020) The Associa-tion of Non-Alcoholic Fatty Liver Disease and Cardiac Structure and Function-Framingham Heart Study. Liver Interna-tional, 40, 2445-2454.
https://doi.org/10.1111/liv.14600
[33] Li, W., Wen, W., Xie, D., et al. (2022) Association between Non-Alcoholic Fatty Liver Disease and Risk of Incident Heart Failure: A Meta-Analysis of Observational Studies. Therapeutic Advances in Chronic Disease, 13, 1-11.
https://doi.org/10.1177/20406223221119626
[34] Mantovani, A., Petracca, G., Csermely, A., et al. (2022) Non-Alcoholic Fatty Liver Disease and Risk of New-Onset Heart Failure: An Updated Meta-Analysis of about 11 Mil-lion Individuals. Gut, 72, 372-380.
https://doi.org/10.1136/gutjnl-2022-327672
[35] Kim, N.H., Park, J., Kim, S.H., et al. (2014) Non-Alcoholic Fatty Liver Disease, Metabolic Syndrome and Subclinical Cardiovascular Changes in the General Population. Heart, 100, 938-943.
https://doi.org/10.1136/heartjnl-2013-305099