Cr4Mo4V钢等离子体基碳氮离子升温注渗层微观结构
Microstructure of Carbonitrided Layer of Cr4Mo4V Steel Treated by Plasma-Based Ion Implantation at Elevated Temperature
DOI: 10.12677/MS.2012.23022, PDF, HTML, XML,  被引量 下载: 3,250  浏览: 8,389  国家科技经费支持
作者: 马欣新*:哈尔滨工业大学,先进焊接与连接国家重点实验室;李忠文*:上海工程大学;赵开礼*:中航工业哈尔滨轴承有限公司;唐光泽*:哈尔滨工业大学,空间环境材料行为及评价技术重点实验室
关键词: Cr4Mo4V钢碳氮等离子体基升温注渗显微结构Cr4Mo4V Steel; PBII Carbonitriding; Microstructure
摘要: 本文采用XRDSEMTEMHRTEM等方法表征了Cr4Mo4V钢升温碳氮离子注渗层的微观结构,结果表明升温注渗处理层中生成了铁的碳化物和氮化铬析出相,析出相弥散分布于晶内和晶界。马氏体发生细化,原始板条马氏体边界消失,形成了微晶、微孪晶和细小片层等结构。HRTEM在马氏体中观察到非晶区和层错等亚结构。
Abstract: XRD, SEM, TEM and HRTEM are used to investigate the microstructure of Cr4Mo4V steel after Plasma- base ion implantation (PBII) carbonitriding treatment. The results indicate the carbide and chromium nitride phases precipitate in the carbonitrided layer within the grain or along grain boundary. The grain refining and boundary disap- pearing in initial martensite occur. The micro-crystal, micro-twin and micro-lath martensite structure are observed. The substructure of amorphous zones and stacking faults are found by HRTEM.
文章引用:马欣新, 李忠文, 赵开礼, 唐光泽. Cr4Mo4V钢等离子体基碳氮离子升温注渗层微观结构[J]. 材料科学, 2012, 2(3): 124-127. http://dx.doi.org/10.12677/MS.2012.23022

参考文献

[1] H. K. Trivedi, D. T. Gerardi and L. Rosado. Evaluation of fa- tigue and wear characteristics of M50 steel using synthetic ester turbine engine lubricants-Part 1. Wear, 1995, 185(1): 111-117.
[2] L. Rosado, H. K. Trivedi and D. T. Gerardi. Evaluation of fa- tigue and wear characteristics of M50 steel using high tempera- ture synthetic turbine engine lubricants-Part II. Wear, 1996, 196(1): 133-140.
[3] P. Saravanan, V. S. Raja and S. Mukherjee. Effect of plasma immersion ion implantation of nitrogen on the wear and corro- sion of 316LVM stainless steel. Surface and Coatings Technol- ogy, 2007, 201: 8131-8135.
[4] R. López-Callejas, R. Valencia-Alvarado, S. R. Barocio, et al. Dependence of nitrogen implantation by the PBII process at low energy on pressure and temperature. Vacuum, 2005, 78: 115-118.
[5] C. Chen, X. Shi, P. Zhang, et al. The microstructure and proper- ties of commercial pure iron modified by plasma nitriding. Solid State Ionics, 2008, 179(21-26): 971-974
[6] B. Larish, U. Brusky and H.-J. Spies. Plasma nitriding of stainless steels at low temperatures. Surface and Coatings Technology, 1999, 116-119: 205-211.
[7] F. Mahboubi, M. Samandi and D. Dunne. Plasma immersion ion implantation (PI3) and r.f. plasma nitriding of a microalloyed steel. Surface and Coatings Technology, 1996, 85: 44-50.
[8] C. Blawert, B. L. Mordike, U. Rensch, et al. The effect of HV in the nitriding of ferritic steels by plasma immersion ion implanta- tion. Surface and Coatings Technology, 2001, 142-144: 376-383.
[9] C. Blawert, B. L. Mordike, G. A. Collins, et al. Characterisation of duplex structures produced by simultaneous implantation of nitrogen into austenitic stainless steel X5CrNi189. Surface and Coatings Technology, 2000, 128-129: 219-225.
[10] J. F. Lin, K. W. Chen, J. Q. Xie, et al. Effect of implantation temperature and volume flow rate ratio of nitrogen and hydrogen on nitrogen concentration distribution, mechanical properties, fatigue life, fracture toughness, and tribological behavior of plasma-nitrided P20, 718 and 420 steels. Surface and Coatings Technology, 2007, 201(12): 5912-5924.
[11] D. R. G. Mitchell, D. J. Attard, G. A. Collins, et al. Characterisa- tion of PI3 and RF plasma nitrided austenitic stainless steels us- ing plan and cross-sectional TEM techniques. Surface and Coat- ings Technology, 2003, 165(2): 107-118.
[12] L. Gu, Z. W. Li, et al. The structure and mechanical properties of Cr4Mo4V steel treated by PIII carbonitriding. Rare Metal Mate- rials and Engineering, 2012, 41: 176-179.