多模态超声模型对子宫内膜癌的研究进展
Research Progress of Multimodal Ultrasound Model on Endometrial Cancer
DOI: 10.12677/ACM.2024.141069, PDF, HTML, XML, 下载: 162  浏览: 258  科研立项经费支持
作者: 梁亚蒙, 周慧丽*:新疆医科大学第一附属医院妇产超声科暨新疆医科大学第一临床医学院妇产超声科,新疆超声医学重点实验室,新疆 乌鲁木齐
关键词: 子宫内膜癌超声特征肿瘤标志物临床因素模型Endometrial Cancer Ultrasonic Feature Tumor Marker Clinical Variables Model
摘要: 子宫内膜癌(Endometrial cancer, EC)其发病率在全球范围内呈上升趋势,早期诊断EC可以改善患者的长期预后,寻找确切可靠的早期评价指标指导临床EC的治疗显得尤为重要。临床因素、超声特征(二维超声、多普勒超声等)及血清学肿瘤标志物对EC都具有良好的诊断价值,既有采用单一指标,也有多因素联合诊断,多模态超声模型也被证实可有效提高EC的诊断率,但是目前仍没有统一的共识。多模态超声模型在区别宫腔良恶性、预测淋巴结转移、预测子宫肌层浸润深度方面有较好的应用,可优化EC的生存率,在评估预后情况、治疗方案制定上发挥作用。本文对EC的影响因素及多模态超声模型在EC应用中的研究进展等相关问题进行综述。
Abstract: The incidence rate of endometrial cancer (EC) is on the rise worldwide. Early diagnosis of EC can improve the long-term prognosis of patients. It is particularly important to find accurate and relia-ble early evaluation indicators to guide clinical treatment of EC. Clinical treatment, ultrasound fea-tures (such as two-dimensional ultrasound, Doppler ultrasound, etc.), and serological tumor mark-ers all have good diagnostic value for EC. There are both single indicators and multi factor joint di-agnoses, and multimodal ultrasound models have been proven to effectively improve the diagnostic rate of EC. However, there is currently no unified consensus. The multimodal ultrasound model has good applications in distinguishing between benign and malignant uterine cavities, predicting lymph node metastasis, and predicting the depth of uterine myometrial invasion. It can optimize the survival rate of EC and play a role in evaluating prognosis and formulating treatment plans. This article reviews the influencing factors of EC and the research progress of multimodal ultrasound models in the application of EC.
文章引用:梁亚蒙, 周慧丽. 多模态超声模型对子宫内膜癌的研究进展[J]. 临床医学进展, 2024, 14(1): 488-495. https://doi.org/10.12677/ACM.2024.141069

1. 引言

子宫内膜癌(Endometrial cancer, EC)是发达国家妇女中最常见的妇科癌症和第四种最常见的恶性肿瘤最常见的妇科恶性肿瘤之一 [1] 。随着人们生活方式的改变和肥胖率升高,呈现年轻化趋势。子宫内膜癌早期确诊时5年生存率为95%,为妇科癌症中最高,但晚期确诊时,5年生存率锐减至14% [2] 。所有,早期诊断,早期治疗是提高EC患者生存率的关键 [3] 。有淋巴结转移的EC患者的5年生存率只有35% [4] 。患I期子宫内膜样子宫内膜癌、1级或2级子宫内膜癌以及子宫肌层侵犯少于50%的患者的生存率为97% [5] ,淋巴结转移、组织学亚型、宫颈间质浸润、肿瘤分级和子宫肌层浸润深度等预后因素与治疗结果和总生存率相关 [6] ,经阴道超声检查(Dimensional transvaginal ultrasonography, TVS)已成为临床EC诊断及分期的首选检查方法 [7] 。尤其是超声特征联合EC多种影响因素建立的多模态模型显著提高了治愈率和生存率并对患者的预后具有积极的影响作用,目前EC研究中所建立的模型多采用临床因素、超声特征及血清学肿瘤标志物等,本文拟对EC的影响因素及多模态超声模型的研究进展进行综述。

2. 临床因素对子宫内膜癌的影响

子宫内膜癌症发生的危险因素包括肥胖、糖尿病、高血压、无排卵、无生育能力、多囊卵巢综合征以及使用孕激素无法对抗的外源性雌激素等 [8] 。

肥胖症的日益流行是子宫内膜癌呈上升趋势的主要根本原因 [9] ,体质指数(BMI)正常的女性患子宫内膜癌的终身风险为3%,但BMI每增加5个单位,患癌风险就增加50%以上 [5] 。在全世界肥胖女性患子宫内膜癌的可能性是理想体重女性的2~4倍,在亚洲肥胖的流行率正在增加,增加中国绝经后出血妇女子宫内膜癌的风险 [10] [11] 。

Lundberg [12] 等人调查了被诊断为不孕的女性患妇科癌的风险,发现不孕与EC风险增加有关。据报道,不孕症治疗可能会影响EC的风险 [13] 。然而,未生育与EC之间的这种相关性是由于不孕本身还是与不孕相关的其他因素,目前尚不清楚。

年龄是研究人群中子宫内膜不典型增生/子宫内膜癌(AEH/EC)风险的预测因素 [14] ,但是,一些研究人员认为年龄与EC之间没有相关性 [15] 。针对目前的研究发现,其界值尚未达成共识,仍需进一步确定。

3. 肿瘤标志物对子宫内膜癌的影响

3.1. 癌症抗原125 (CA-125)与子宫内膜癌风险

CA-125水平升高与更高的分期、更高的分级、子宫肌层浸润深度增加、淋巴结转移、淋巴血管间隙受累和子宫外扩散相关 [16] 。CA-125在鉴别子宫异常出血患者的子宫内膜癌症方面具有最佳的诊断价值 [17] 。虽然,CA-125是一种非常敏感的标志物,可用于绝经后妇女的子宫内膜癌诊断检查,但它可能不太适合绝经前妇女。这是因为CA-125升高可见于几个良性疾病和生理过程,如月经期、子宫内膜异位症和妊娠期 [18] 。

3.2. 人类附睾蛋白4 (HE4)与子宫内膜癌风险

HE4水平既可以区分低级别(G1或G2)癌症伴子宫肌层深浸润患者和无浸润患者,也可以预测子宫内膜癌患者深层肌层和淋巴血管侵犯情况 [19] 。血清HE4水平是迄今为止最有前途的EC生物标志物,在诊断、预后、激素治疗反应预测和复发监测中具有潜在意义。

与CA-125相比,HE4更能预测深层肌层浸润 [20] ,HE4在检测EC方面表现出更高的敏感性和特异性,并发现与疾病严重程度、生存率和复发的组织病理学标记物相关,使其成为一种有希望的非侵袭性生物标记物 [21] 。另外,与单独测定CA-125水平相比,CA-125与HE4的结合显示出更好的诊断和类似的预后 [22] 潜力。

在疾病早期通过对血清肿瘤标志物的检测,提高子宫内膜癌的诊断准确率已经逐渐得到临床认可 [23] 。肿瘤标志物所突显的价值为无创检测EC提供更大可能性,但由于月经周期变化所体现出的差异性,但仍需大样本量进一步验证。

4. 多模态超声模型在子宫内膜癌中的应用

4.1. 区别宫腔良恶性

对IETA超声特征的规范化描述进行分类和评分,建立的简单评分方法不仅可以快速评估子宫腔或子宫内膜的良恶性病变,而且具有较高的诊断准确性 [24] ,IETA超声简单评分法结合肿瘤标志物HE4和CA19-9建立的模型,其敏感性可以显著提高,漏诊率可以降低。在此研究中,与良恶性病变显著相关的子宫内膜厚度、子宫内膜–肌层交界处、“亮边”征、腔内积液、颜色评分和多血管模式被赋予更大的权重。另外,结合年龄、BMI和子宫内膜厚度(endometrial thickness, ET)以及其他六种易于明确定义的超声特征建立的模型在区分子宫内膜良恶性上表现良好,可用于围绝经期妇女、绝经后妇女和子宫内膜不可见或无法测量的妇女 [25] 。影像学检查结合肿瘤生物标志物检测可以显著提高肿瘤的临床诊断率 [26] 。

在绝经后妇女宫腔良恶性的鉴别上,对绝经后出血(postmenopausal bleeding, PMB)子宫内膜恶性肿瘤风险的数学模型 [27] Sladkevicius等人进行了前瞻性验证 [28] ,表示该模型具有较高的诊断效力。在PMB和ET ≥ 4.5 mm的高危妇女中,使用包括子宫内膜厚度、不均匀子宫内膜回声和多普勒特征的多模态模型计算子宫内膜恶性肿瘤的个体风险可用于定制管理 [27] 。进一步研究 [29] 显示,如果将ET和多普勒超声添加到临床变量中,为预测PMB和ET ≥ 4.5 mm妇女的子宫内膜恶性肿瘤而构建的最佳模型包括变量年龄、激素替代疗法的使用、子宫内膜厚度和血管指数,诊断性能将显著提高,该模型在排除恶性肿瘤方面相当出色。但是,两种模型研究对象都针对的是ET ≥ 4.5 mm并伴有PMB的绝经后妇女,他们的研究范围相对有限,无法得到广泛推广。Dueholm等人 [30] [31] 开发了一种基于最佳性能多普勒参数的多普勒参数REC评分系统,患者的年龄、BMI、ET、子宫内膜–肌层交界处和颜色评分为预测PMB子宫内膜恶性肿瘤的良好指导。

对绝经前妇女的宫腔良恶性鉴别,在PAD30风险评分模型 [14] 中,无排卵出血模式、年龄 ≥ 45岁,BMI ≥ 30 kg/m2和糖尿病可预测绝经前子宫异常出血(Abnormal uterine bleeding, AUB)妇女子宫内膜癌前病变和恶性病变。进一步研究的模型 [32] 表明,在患有AUB的低风险绝经前妇女中,ET > 13 mm并存在年龄 > 40岁、BMI > 25 kg/m2、甲状腺功能减退、经间出血等临床变量增加了子宫内膜增生和EC的风险。对于绝经前患者的诊断难度更具挑战性,今后有待深入探索更多此类人群,甚至为更多绝经前未生育女性提供保留子宫的更大可能性。

4.2. 判断子宫内膜病变组织学亚型

基于年龄、BMI和超声预测因子开发的模型,以区分:1) 子宫内膜萎缩,2) 子宫内膜息肉或腔内肌瘤,3) 子宫内膜恶性肿瘤或非典型增生,4) 增殖/分泌改变、子宫内膜炎或无异型性的增生,该模型对于恶性和良性组织学以及所有良性组织学结果的判断有较好的表现,是唯一适用于绝经状态不确定的模型 [25] 。

4.3. 预测子宫肌层侵犯(Myometrial Infiltration, MI)

长久以来,大多选择磁共振成像(Magnetic resonance imaging, MRI)进行子宫肌层侵犯的图像评估,但是,TVS可能提供与MRI类似的诊断性能。TVS具有更高的合并灵敏度 [33] 。ESGO的子宫内膜癌症管理国际指南或西班牙妇产科学学会指南考虑使用TVS作为评估子宫侵犯的替代方法。

肿瘤到肌层浆膜的距离(tumor-free distance to serosa, TDS)是子宫肌层深部浸润的预测因子 [34] ,目前MRI中较多使用TDS来评估子宫肌层浸润,在未来构建多模态超声模型预测肌层浸润深度中可纳入TDS进一步研究,验证并提高MI的预测。Van Holsbeke等人 [35] 结合术前分级和基于超声的“客观”模型及“主观”模型两步策略可以很好地预测高风险子宫内膜癌。“客观”模型选择的变量是术前分级(1级或2级)和TDS,这与检查者的主观评估没有直接关系。“主观”模型使用子宫肌层侵犯的主观评估、术前分级和年龄作为变量。评估ET、肿瘤/子宫3D体积比、TDS和Van Holsbeke的主观模型似乎是经阴道或经直肠超声评估G1或G2子宫内膜癌MI的最佳方法。De Smet [36] 等人开发的逻辑回归模型用于预测深层MI,所选变量包括分化程度、肌瘤数量、子宫内膜厚度和肿瘤体积。但是,此研究包含组织病理学变量,在术前患者仍需经历有创操作才可预测肌层浸润深度,未来研究中需要更多无创性的超声参数为EC提供参考价值。

4.4. 预测肿瘤分级

可以确认预测高危疾病的最佳方法是简单地将活检分级与MI和CSI的主观超声评估相结合。令人放心的是,1级或2级EC患者的超声在检测深部MI和CSI方面比3级或其他非子宫内膜样肿瘤患者更准确,通过模型对1级或2级肿瘤进行准确评估,对防止不必要的外科手术具有最大的临床影响 [37] 。根据研究表明 [28] ,用于预测PMB子宫内膜恶性肿瘤的最佳模型包括ET、子宫内膜不均匀回声和多普勒超声上血流信号丰富,具有特别好的诊断性能,可以将高危患者重新分类为子宫内膜癌的低风险或相对低风险、中等风险或非常高风险,因此可以用于个体化患者管理。

4.5. 预测宫颈间质浸润(Cervical Stromal Invasion, CSI)

使用超声图像和超声测量的主观评估是可重复的,肿瘤/子宫前后径(AP)比已用于预测深部MI,以及从肿瘤下缘到宫颈外口的距离(Dist-OCO)在预测CSI方面表现最好 [38] 。“主观预测模型”包括活检分级(1级与2级)和深部MI或CSI (存在或不存在)的主观评估作为变量,主观评估在预测子宫内膜癌深部MI和CSI方面优于超声测量,特别是在1级或2级肿瘤患者中 [37] 。

4.6. 预测淋巴结转移

一些理想情况下应该进行手术的患者不进行淋巴结切除术 [39] 。MRI被认为是迄今为止对子宫内膜癌淋巴结转移术前评估最准确的成像技术,多数建立MRI的术前模型来预测EC患者的淋巴结转移。随着高频经阴道探头的发展,TVS的诊断准确性得到了提高,这使得TVS的性能与MRI相当。研究表明 [40] ,术前TVS的深部MI、高CA-125水平和术前2或3级肿瘤是预测淋巴结转移的重要术前因素,可以成功判断EC的淋巴结转移情况。术前准确识别具有转移性淋巴结的EC患者是一项挑战,使用无创的术前技术准确分期子宫内膜癌症,从而将淋巴结切除仅限于适当的高危患者。

4.7. 预测子宫并存附件恶性肿瘤(Coexisting Adnexa Malignancy, CAM)

年龄、组织学、病理结果中的肌层浸润深度、宫颈浸润、淋巴转移、腹部细胞学可能是CAM的预测因素 [41] 。Taek Sang-Lee表示约4.0%的年轻EC患者在保留卵巢后复发,所有复发都有上述风险因素 [42] 。由于大多数非子宫内膜样或G3子宫内膜样子宫内膜癌患者不会接受保留卵巢,且卵巢转移或复发的风险很高 [43] ,故在一项研究中,重点关注高分化(G1/G2)子宫内膜样癌症患者,筛选了术前和术中因素后,发现高CA-125水平、MRI中肌层浸润深度、手术探查中附件受累阳性是预测G1/G2子宫内膜样癌症患者CAM的独立因素 [44] 。通过多因素联合建立多模态超声模型预测子宫并存附件恶性肿瘤具有重要意义,对于未生育女性给予保留卵巢、子宫的希望。

5. 多模态超声预测子宫内膜癌的小结与展望

综上所述,临床因素、超声特征及血清学肿瘤标志物对于EC的诊断存在不可忽视的影响,可以相互弥补不足,提高EC的超声诊断准确率。就目前针对子宫内膜癌的研究进展分析,多模态超声模型在EC中的应用越来越广,但是,各研究建立的模型所针对的人群(绝经前、绝经后等)有所不同,对超声特征的描述也多种多样,采用的临床因素、超声特征、血清学肿瘤标志物均有所不同,既有单一指标,也有联合的指标,采用的联合指标在各研究结果之间也存在不同,目前仍没有统一的诊断共识。这不仅使临床医生在针对性对患者进行个体化管理时的难度加大,对患者的治疗方案无法提供最佳的选择,而且也损害了这些领域的发展。总而言之,多因素联合建立的多模态超声模型是EC淋巴结转移、组织学亚型、宫颈间质浸润、肿瘤分级和子宫肌层浸润深度预测的有效途径,从而更好地指导临床进行诊断与个性化治疗方案的制定,希望能通过早期诊断来改善患者的预后。

基金项目

新疆医科大学创新创业项目(项目编号:CXCY2023003)。

参考文献

NOTES

*通讯作者。

参考文献

[1] Siegel, R.L., Miller, K.D., Fuchs, H.E., et al. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21708
[2] 曹瑾瑾, 李佳, 李奇灵, 等. 子宫内膜癌筛查策略[J]. 中国实用妇科与产科杂志, 2023, 39(11): 1062-1065.
[3] Li, C., Yu, J. and Fu, Z. (2021) Application of CT and MRI Com-bined with VEGF-C and EGFR in the Identification of Endometrial Cancer Stages. American Journal of Translational Research, 13, 7164-7171.
[4] 李玲玲, 李赫, 李舰, 等. 结合分子分型的子宫内膜癌患者淋巴结转移的危险因素分析[J]. 中华妇产科杂志, 2023, 58(10): 733-741.
[5] Lu, K.H. and Broaddus, R.R. (2020) Endometrial Cancer. New England Journal of Medicine, 383, 2053-2064.
https://doi.org/10.1056/NEJMra1514010
[6] Benedet, J.L., Bender, H., Jones, H., et al. (2000) FIGO Staging Classifications and Clinical Practice Guidelines in the Management of Gynecologic Cancers. FIGO Committee on Gyne-cologic Oncology. International Journal of Gynecology & Obstetrics, 70, 209-262.
https://doi.org/10.1016/S0020-7292(00)90001-8
[7] 李淑祎, 王青. 子宫内膜癌术前影像学检查及分期研究进展[J]. 中国中西医结合影像学杂志, 2021, 19(4): 402-404.
[8] Knific, T., Osredkar, J., Smrkolj, P., et al. (2017) Novel Algorithm Including CA-125, HE4 and Body Mass Index in the Diagnosis of Endometrial Cancer. Gynecologic Oncology, 147, 126-132.
https://doi.org/10.1016/j.ygyno.2017.07.130
[9] Crosbie, E.J., Kitson, S.J., McAlpine, J.N., et al. (2022) Endo-metrial Cancer. The Lancet, 399, 1412-1428.
https://doi.org/10.1016/S0140-6736(22)00323-3
[10] Liu, F., Cheung, E.C.W. and Lao, T.T. (2021) Obesity In-creases Endometrial Cancer Risk in Chinese Women with Postmenopausal Bleeding. Menopause (New York, NY), 28, 1093-1098.
https://doi.org/10.1097/GME.0000000000001822
[11] Goodman, A. (2021) Is Obesity Predictive of Endometrial Cancer for Women with Postmenopausal Bleeding? Menopause, 28, 1081-1082.
https://doi.org/10.1097/GME.0000000000001861
[12] Lundberg, F.E., Iliadou, A.N., Rodriguez-Wallberg, K., et al. (2019) The Risk of Breast and Gynecological Cancer in Women with a Diagnosis of Infertility: A Nationwide Popula-tion-Based Study. European Journal of Epidemiology, 34, 499-507.
https://doi.org/10.1007/s10654-018-0474-9
[13] Skalkidou, A., et al. (2017) Risk of Endometrial Cancer in Wom-en Treated with Ovary-Stimulating Drugs for Subfertility. Cochrane Database of Systematic Reviews, 3, CD010931.
https://doi.org/10.1002/14651858.CD010931.pub2
[14] Bagepalli, S.S., Kubakaddi, S.S., Polisetti, S., et al. (2020) A Novel Risk-Scoring Model for Prediction of Premalignant and Malignant Lesions of Uterine Endometrium among Symptomatic Premenopausal Women. International Journal of Women’s Health, 12, 883-891.
https://doi.org/10.2147/IJWH.S268169
[15] Giannella, L., Cerami, L.B., Setti, T., et al. (2019) Prediction of En-dometrial Hyperplasia and Cancer among Premenopausal Women with Abnormal Uterine Bleeding. BioMed Research International, 2019, Article ID: 8598152.
https://doi.org/10.2147/IJWH.S268169
[16] Nicklin, J., Janda, M., Gebski, V., et al. (2012) The Utility of Serum CA-125 in Predicting Extra-Uterine Disease in Apparent Early-Stage Endometrial Cancer. International Journal of Can-cer, 131, 885-890.
https://doi.org/10.1002/ijc.26433
[17] Nithin, K.U., Sridhar, M.G., Srilatha, K., et al. (2018) CA125 Is a Better Marker to Differentiate Endometrial Cancer and Abnormal Uterine Bleeding. African Health Sciences, 18, 972-978.
https://doi.org/10.4314/ahs.v18i4.17
[18] D’Ambrosio, V., Brunelli, R., Musacchio, L., et al. (2021) Adnexal Masses in Pregnancy: An Updated Review on Diagnosis and Treatment. Tumori Journal, 107, 12-16.
https://doi.org/10.1177/0300891620909144
[19] Li, J., Wang, X., Qu, W., et al. (2019) Comparison of Serum Human Epididymis Protein 4 and CA125 on Endometrial Cancer Detection: A Meta-Analysis. Clinica Chimica Acta, 488, 215-220.
https://doi.org/10.1016/j.cca.2018.11.011
[20] Brennan, D.J., Hackethal, A., Metcalf, A.M., et al. (2014) Serum HE4 as a Prognostic Marker in Endometrial Cancer—A Population Based Study. Gynecologic Oncology, 132, 159-165.
https://doi.org/10.1016/j.ygyno.2013.10.036
[21] Degez, M., Chauvire-Drouard, H., Leroy, A., Lair, M., Winer, D., et al. (2021) Endometrial Cancer: A Systematic Review of HE4, REM and REM-B. Clinica Chimica Acta: International Journal of Clinical Chemistry and Applied Molecular Biology, 515, 27-36.
https://doi.org/10.1016/j.cca.2020.12.029
[22] Prueksaritanond, N., Cheanpracha, P. and Yanaranop, M. (2016) Association of Serum HE4 with Primary Tumor Diameter and Depth of Myometrial Invasion in Endometrial Cancer Pa-tients at Rajavithi Hospital. Asian Pacific Journal of Cancer Prevention, 17, 1489-1492.
https://doi.org/10.7314/APJCP.2016.17.3.1489
[23] Quan, Q., Liao, Q., Yin, W., et al. (2021) Serum HE4 and CA125 Combined to Predict and Monitor Recurrence of Type II Endometrial Carcinoma. Scientific Reports, 11, Article No. 21694.
https://doi.org/10.1038/s41598-021-01263-w
[24] Lin, D., Zhao, L., Zhu, Y., et al. (2021) Combination IETA Ul-trasonographic Characteristics Simple Scoring Method with Tumor Biomarkers Effectively Improves the Differentiation Ability of Benign and Malignant Lesions in Endometrium and Uterine Cavity. Frontiers in Oncology, 11, Article ID: 605847.
https://doi.org/10.3389/fonc.2021.605847
[25] Wynants, L., Verbakel, J.Y.J., Valentin, L., et al. (2022) The Risk of Endometrial Malignancy and Other Endometrial Pathology in Women with Abnormal Uterine Bleeding: An Ultrasound-Based Model Development Study by the IETA Group. Gynecologic and Obstetric Investigation, 87, 54-61.
https://doi.org/10.1159/000522524
[26] Hao, Y., Ren, G., Yang, W., et al. (2020) Combination Diagnosis with Elastography Strain Ratio and Molecular Markers Effectively Improves the Diagnosis Rate of Small Breast Cancer and Lymph Node Metastasis. Quantitative Imaging in Medicine and Surgery, 10, 678-691.
https://doi.org/10.21037/qims.2020.02.14
[27] Opolskiene, G., Sladkevicius, P. and Valentin, L. (2007) Ultrasound Assessment of Endometrial Morphology and Vascularity to Predict Endometrial Malignancy in Women with Postmeno-pausal Bleeding and Sonographic Endometrial Thickness > or = 4.5 mm. Ultrasound in Obstetrics & Gynecology, 30, 332-340.
https://doi.org/10.1002/uog.4104
[28] Sladkevicius, P., et al. (2017) Prospective Temporal Validation of Mathematical Models to Calculate Risk of Endometrial Malignancy in Patients with Postmenopausal Bleeding. Ultra-sound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology, 49, 649-656.
https://doi.org/10.1002/uog.15941
[29] Opolskiene, G., Sladkevicius, P. and Valentin, L. (2011) Prediction of En-dometrial Malignancy in Women with Postmenopausal Bleeding and Sonographic Endometrial Thickness ≥ 4.5 mm. Ul-trasound in Obstetrics & Gynecology, 37, 232-240.
https://doi.org/10.1002/uog.8871
[30] Dueholm, M., Møller, C., Rydbjerg, S., et al. (2014) An Ultrasound Algorithm for Identification of Endometrial Cancer. Ultrasound in Obstet-rics & Gynecology, 43, 557-568.
https://doi.org/10.1002/uog.13205
[31] Dueholm, M., Hjorth, I.M.D., Dahl, K., et al. (2019) Ultrasound Scoring of Endometrial Pattern for Fast-Track Identification or Exclusion of Endometrial Cancer in Women with Postmenopausal Bleeding. Journal of Minimally Invasive Gynecology, 26, 516-525.
https://doi.org/10.1016/j.jmig.2018.06.010
[32] Jha, S., Singh, A., Sinha, H.H., et al. (2021) Rate of Premalignant and Malignant Endometrial Lesion in “Low-Risk” Premenopausal Women with Abnormal Uterine Bleeding Undergoing Endometrial Biopsy. Obstetrics & Gynecology Science, 64, 517-523.
https://doi.org/10.5468/ogs.21150
[33] Tameish, S., Florez, N., Vidal, J.R.P., et al. (2023) Transvaginal Ultra-sound versus Magnetic Resonance Imaging for Preoperative Assessment of Myometrial Infiltration in Patients with Low-Grade Endometrioid Endometrial Cancer: A Systematic Review and Head-to-Head Meta-Analysis. Journal of Clin-ical Ultrasound, 51, 1188-1197.
https://doi.org/10.1002/jcu.23508
[34] Juan Luis Alcázar, M., Rosendo Galván, M., Albela, S., et al. (2009) As-sessing Myometrial Infiltration by Endometrial Cancer: Uterine Virtual Navigation with Three-Dimensional US. Radiol-ogy, 250, 776-783.
https://doi.org/10.1148/radiol.2503080877
[35] Van Holsbeke, C., Ameye, L., Testa, A.C., et al. (2014) Develop-ment and External Validation of New Ultrasound-Based Mathematical Models for Preoperative Prediction of High-Risk Endometrial Cancer. Ultrasound in Obstetrics & Gynecology, 43, 586-595.
https://doi.org/10.1002/uog.13216
[36] Smet, F.D., Brabanter, J.D., Bosch, T.V.D., et al. (2006) New Models to Predict Depth of Infiltration in Endometrial Carcinoma Based on Transvaginal Sonography. Ultrasound in Obstetrics and Gynecology, 27, 664-671.
https://doi.org/10.1002/uog.2806
[37] Verbakel, J.Y., Mascilini, F., Wynants, L., et al. (2020) Validation of Ultra-sound Strategies to Assess Tumor Extension and to Predict High-Risk Endometrial Cancer in Women from the Prospec-tive IETA (International Endometrial Tumor Analysis)-4 Cohort. Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology, 55, 115-124.
https://doi.org/10.1002/uog.20374
[38] Epstein, E. and Blomqvist, L. (2014) Imaging in Endometrial Cancer. Best Practice & Research Clinical Obstetrics & Gynaecology, 28, 721-739.
https://doi.org/10.1016/j.bpobgyn.2014.04.007
[39] Berg, H.F., Ju, Z., Myrvold, M., et al. (2020) Development of Prediction Models for Lymph Node Metastasis in Endometrioid Endometrial Carcinoma. British Journal of Cancer, 122, 1014-1022.
https://doi.org/10.1038/s41416-020-0745-6
[40] Lee, J., Kong, T.W., Paek, J., et al. (2016) Predicting Model of Lymph Node Metastasis Using Preoperative Tumor Grade, Transvaginal Ultrasound, and Serum CA-125 Level in Pa-tients with Endometrial Cancer. International Journal of Gynecological Cancer, 26, 1630-1635.
https://doi.org/10.1097/IGC.0000000000000820
[41] Ignatov, T., Eggemann, H., Burger, E., et al. (2018) Ovarian Metastasis in Patients with Endometrial Cancer: Risk Factors and Impact on Survival. Journal of Cancer Research & Clinical Oncology, 144, 1103-1107.
https://doi.org/10.1007/s00432-018-2628-2
[42] Pan, Z., Wang, X., Zhang, X., et al. (2011) Retrospective Analy-sis on Coexisting Ovarian Cancer in 976 Patients with Clinical Stage I Endometrial Carcinoma. Journal of Obstetrics & Gynaecology Research, 37, 352-358.
https://doi.org/10.1111/j.1447-0756.2010.01354.x
[43] Hou, T., Li, Y.D., Liu, J.Y., et al. (2017) The Safety of Ovarian Preservation in Stage I Endometrial Endometrioid Adenocarcinoma Based on Propensity Score Matching. Com-binatorial Chemistry & High Throughput Screening, 20, 647-655.
https://doi.org/10.2174/1386207320666170417145856
[44] Shen, L., Xie, L., Li, R., et al. (2020) A Preoperative Prediction Model for Predicting Coexisting Adnexa Malignancy of Patients with G1/G2 Endometrioid Endometrial Can-cer. Gynecologic Oncology, 159, 402-408.
https://doi.org/10.1016/j.ygyno.2020.08.017