内脏脂肪在胃癌应用中的研究进展
Research Progress in the Application of Visceral Fat in Gastric Cancer
DOI: 10.12677/ACM.2023.13122895, PDF, HTML, XML, 下载: 214  浏览: 334 
作者: 崔桂芳, 缪 巍*:青海大学附属医院胃肠肿瘤外科,青海 西宁
关键词: 内脏脂肪胃癌内脏型肥胖Visceral Fat Gastric Cancer Visceral Obesity
摘要: 目前肥胖率在全球范围内呈快速增长趋势,已成为一个重要的公共卫生问题。流行病学资料表明内脏型肥胖可增加多种疾病包括胃癌的发生风险。深入了解内脏脂肪与胃癌间的相关性,将为内脏脂肪型胃癌的防治提供新思路。本文就内脏脂肪与胃癌发病、治疗及预后的相关性,以及其相关机制研究进展作一综述。
Abstract: At present, the obesity rate is showing a rapid growth trend globally and has become an important public health issue. Epidemiological data shows that visceral obesity can increase the risk of various diseases, including gastric cancer. A deep understanding of the correlation between visceral fat and gastric cancer will provide new ideas for the prevention and treatment of visceral fat type gastric cancer. This article reviews the correlation between visceral fat and the pathogenesis, treatment, and prognosis of gastric cancer, as well as the research progress on its related mechanisms.
文章引用:崔桂芳, 缪巍. 内脏脂肪在胃癌应用中的研究进展[J]. 临床医学进展, 2023, 13(12): 20585-20594. https://doi.org/10.12677/ACM.2023.13122895

1. 引言

胃癌是全球重要的癌症之一,在全球发病率排名第五,死亡率排名第四 [1] ,我国是胃癌高发国家,发病和死亡例数均约占世界的50%,疾病负担严重是癌症防治的重点 [2] 。目前以外科手术为主导的综合治疗是胃癌治疗的重要措施,但术后早期并发症的出现往往提示着不良预后的结局,同时也为患者的身体和心理带来一定的负担,因此需要引起关注。近年来,随着生活水平的提高,肥胖人群也在逐步增多。《中国居民营养与慢性病状况报告(2020年)》数据显示,我国成人超重肥胖率为50.7%,较30年前增加了2.5倍,超重肥胖人数已达到6亿 [3] [4] 。研究发现 [5] [6] [7] ,肥胖与胃癌、直肠癌等多种癌症的发生、发展具有相关性。肥胖可通过改变肿瘤微环境、导致胰岛素抵抗、引起脂肪细胞因子变化等促进胃癌在体内的存活与生长。同时,肥胖已被证实是增加胃癌手术操作难度的原因之一,对胃癌手术患者术后不良结局及长期生存有关。传统的肥胖评估方式主要是基于身高和体重的体质量指数(BMI),因其方便性及客观性被广泛应用,主要反映人体的总脂量,但由于个体间脂肪分布差异较大,影响胃癌患者手术操作的脂肪主要堆积在腹部,因此BMI并不能真实反映个体脂肪组织的累积情况,也就不能准确反映患者的体质量情况及身体成分对胃癌手术及治疗预后的具体情况。相对于总脂量而言,脂肪分布对人体代谢的影响更大 [8] ,有国外学者根据肥胖患者脂肪分布的不同首先提出内脏型肥胖的概念 [9] ,内脏脂肪可以更好地评估肥胖程度及脂肪分布情况。目前,过多的内脏脂肪促进恶性肿瘤(包括胃癌)的发生及发展已经得到学术界的广泛认可 [10] 。现将内脏脂肪在胃癌的发生、发展、治疗、预后等方面综述国内外的最新研究进展。

2. 内脏脂肪的定义及其与肿瘤的关系

脂肪组织按照解剖学定义进行划分,包括皮下脂肪组织、腹膜内脂肪组织和腹膜后脂肪组织,后两者统称为内脏脂肪组织。内脏脂肪组织主要围绕人体脏器分布,存在于腹腔内,对人的内脏起着支撑、稳定和保护的作用。过多的内脏脂肪会导致一系列的健康问题,内脏脂肪过多被定义为内脏型肥胖,它可以发生于BMI正常的人群。流行病学研究表明,肥胖显著增加了多种肿瘤的发病风险 [1] 。其中大部分为消化系统肿瘤,主要包括食管腺癌、胃癌、结直肠癌、肝癌、胰腺癌。主要原因是肥胖可通过改变肿瘤微环境、导致胰岛素抵抗、引起脂肪细胞因子变化等促进胃癌移植瘤的体内存活与生长 [8] 。

3. 内脏脂肪评估指标及方法

3.1. 内脏脂肪面积(Visceral Fat Area, VFA)

3.1.1. 基于计算机断层扫描(Computed Tomography, CT)的内脏脂肪面积

内脏脂肪面积是临床上比较常用的指标用来评估内脏脂肪水平,目前应用最为广泛的是腹部CT检查,采用CT单次扫描脐水平面或第3腰椎层面(CT值为−190~−30 Hu亨斯菲尔德单位)一定范围内脂肪所占面积,即内脏脂肪面积。测量一般采用美国公共卫生学院开发的图像分析软件Image J标出并测定脂肪区域轮廓(横断面全部组织CT值为−190~−30 Hu 范围像素面积的总和),计算VFA (VFA = 区域脂肪总面积 − 皮下脂肪面积SFA)。也有应用Sliceomatic 5.0科研图像处理软件,以此计算内脏脂肪面积。目前对于内脏脂肪面积的分界标准有很多,应用比较广泛的是依据日本肥胖协会标准 [11] [12] ,VFA ≥ 100 cm2定义为内脏型肥胖,然而由于性别及种族差异对腹部内脏脂肪分布情况有着显著影响 [13] 。因此有韩国学者提出腹部内脏脂肪分界值应为男性 ≥ 130 cm2,女性 ≥ 90 cm2,这一标准更加符合我国国情 [14] 。

3.1.2. 基于生物电阻抗(Bio-Electrical Impedance Analysis, BIA)的内脏脂肪面积

BIA测定VFA简便易行且无辐射,众多研究 [15] [16] 证实,生物电阻抗分析法与CT测定的内脏脂肪组织具有高度相关性,相关系数为0.92。分析主要基于微弱的电流通过人体,利用人体不同组织电阻不同(脂肪的电阻大、肌肉的电阻小等)的原理 [17] ,测量人体的组分成分。采用双扫描BIA测量非脂肪组织及皮下脂肪组织的电阻,用腹部横截面总面积减去皮下脂肪组织与非脂肪成分组织间接计算出内脏脂肪 [18] 。但BIA结果可能受到种族、性别、药物和水肿情况的影响。恶性肿瘤患者的身体成分和水合状态可能发生改变,会影响BIA评估VFA的性能 [19] 。因此有研究者 [20] 以CT和BIA这两种方法来测定中国胃癌患者的VFA,以此研究两者间的差别,结果显示两者测得的VFA都具有较好的可信度,但两种方法的绝对值不可互换,BIA方法诊断中国人群胃癌患者内脏肥胖的VFA临界值为81 cm2

3.2. 肾周脂肪厚度

有研究者 [21] 提出基于CT的肾周脂肪厚度可作为评估内脏脂肪的又一方法,研究以左肾背侧脂肪组织的厚度作为内脏脂肪的指标,即肾静脉水平,腰方肌前缘至左肾极背缘的距离。发现内脏脂肪面积与肾周脂肪厚度之间存在0.62的中度相关系数,且肾周脂肪厚度可作为胃癌术后并发症的独立预测因子,预测术后并发症的最佳临界值为10.7 mm。脂肪组织厚度 ≥ 10.7 mm定义为肾周脂肪厚度阳性标志(PTS)。pts阳性患者的内脏脂肪面积明显大于pts阴性患者。测量肾周脂肪厚度的方法简单、重现性好,在某种程度上可作为内脏脂肪面积的良好替代指标。

3.3. 内脏脂肪指数(Visceral Adiposity Index, VAI)

3.3.1. 基于传统公式计算的内脏脂肪指数

是综合BMI、WC、TG和HDL-C结果的复合指数,不受BMI的影响,且可以反映脂肪分布。计算公式为男性VAI = [WC/39.68 + (1.88 × BMI)] × (TG/1.03) × (1.31/HDL);女性VAI = [WC/36.58 + (1.89 × BMI)] × (TG/0.81) × (1.52/HDL)。研究表明,VAI是结直肠癌发生的预测因子 [22] 。但VAI只适合评估欧洲人群的内脏脂肪。因种族差异,VAI可能并不适宜于中国人群,因此有学者 [23] 在VAI的基础上构建了与中国人内脏脂肪量密切相关的中国内脏脂肪指数(Chinese visceral adiposity index, CVAI)。其计算公式为:CVAI 男 = −267.93 + 0.68 × 年龄 + 0.03 × BMI + 4.00 × WC + 22.00 × lgTG −16.32 × HDL⁃C (mmol/L);CVAI 女 = −187.32 + 1.71 × 年龄 + 4.23 × BMI + 1.12 × WC + 39.76 × lgTG −11.66 × HDL⁃C (mmol/L)。该指数与内脏脂肪面积显著相关,和VAI相比,能够更好地揭示中国人群的内脏脂肪分布状态。徐怿琳等研究 [24] [25] [26] [27] [28] 也证实,CVAI是比VAI更好的内脏脂肪相关性疾病的预测指标。

3.3.2. 基于内脏脂肪面积计算的内脏脂肪指数

Machann等 [29] [30] 认为VFA经过身高进行归一化的指数才是指示胰岛素抵抗、糖尿病前期或糖尿病的最佳指标。因此有学者采用VFA除以身高的平方所计算出的VAI来进行研究。发现更高的VAI 是影响胃癌术后并发症的独立危险因素,同时可作为胃术后患者预后的评估指标 [31] [32] 。

4. 内脏脂肪与胃癌发生发展的关系

肥胖与恶性肿瘤之间的关系已被众多研究证实 [33] [34] [35] [36] 。肥胖显著增加了多种肿瘤的发病风险,其中大部分为消化系统肿瘤,主要包括胃癌、结直肠癌、肝癌、胰腺癌等。一项胃癌风险相关性的流行病学研究表明,内脏脂肪是贲门癌发病的高危因素 [10] 另外,肥胖在促进胃癌疾病发展过程中也起到一定作用,在一项饮食性肥胖模型和体内胃癌模型研究中发现,肥胖而非高脂肪饮食本身促进了小鼠胃癌的生长。饮食诱导的在肥胖小鼠表现出代谢变化,包括胰岛素抵抗、葡萄糖耐受不良、高血糖和高胰岛素血症,以及脂肪因子水平的改变,这表明肥胖可能通过内分泌机制促进小鼠胃癌的生长。肥胖可能通过促生存Sirt1/YAP信号通路促进胃癌生长。这一结果在先前的研究中也被表明 [37] 此外,有研究发现,VFA与胃癌腹膜转移也具相关性,Chen等 [38] 研究表明,内脏型肥胖是腹膜转移的一个独立且显著的预测因子。Huang等 [39] 有研究结论与其一致,但VFA可能仅对BMI正常的胃癌患者腹膜转移有预测作用,对高BMI低BMI的胃癌患者无预测作用。

5. 内脏脂肪对胃癌手术效果的影响

内脏脂肪与胃癌手术效果密切相关,在一项对腹腔镜胃癌根治术的前瞻性队列研究 [40] 中,研究者发现与低VFA组相比,高VFA组手术时间明显更长、术中出血明显更多、手术并发症发生率明显更高;Taniguchi等多个学者 [41] [42] [43] 在相关研究上得出的结论与其一致。徐艳群等 [44] 及付广华等 [45] 研究表明,高VFA其中转开腹率也较低VFA更高。主要原因可能是过多内脏脂肪影响手术视野的暴露,限制了手术的可操作空间,手术难度加大进而导致手术时间长、术中出血多、手术并发症发生率高、中转开腹率高。另外,淋巴结转移也是评估胃癌手术治疗效果的一个重要指标,后者与胃癌术后治疗方法的选择及预后密切相关。Go等 [46] 对597例胃癌患者进行研究,按性别及肥胖参数分组,分析VFA对胃癌手术结果的影响,研究发现无论性别VFA升高都会导致淋巴结清扫数目及淋巴结阳性率下降,而BMI并不是影响术中淋巴结清扫的原因,预测手术结果方面VFA比BMI更有用;王纪全等 [47] 得出了同样的结论,过多的内脏脂肪增加了手术难度,以致术中清扫淋巴结数目减少。但牛磊等 [48] 研究发现VFA对淋巴结清扫数目无影响。王亚权等 [49] 在相关Mate分析中,纳入12篇文献2956例患者,结果显示,高VFA组与低VFA组在淋巴结清扫数目方面差异无统计学意义(MD = −1.38, 95%CI: −3.32~0.55, P = 0.16)。手术总体效果不受VFA的影响。VFA是否影响胃癌术中淋巴结的清扫,各研究之间异质性较大。可能原因可能是纳入病例数较少影响结果分析或医师技能水平提高,降低了肥胖对手术效果的影响。

6. 内脏脂肪与胃癌术后并发症的关系

内脏脂肪已被证实与胃癌术后多项并发症的发生相关。Okada等 [50] 研究表明,VFA与术后并发症的发生率成正比,VFA越大,术后并发症的发生率越高,其中腹部脓肿和胰瘘的发生率随着VFA的增加而增加(P = 0.0005和P = 0.0089)。Takeuchi等 [12] 在一项回顾性队列研究中表明,VFA是吻合口瘘和切口感染的危险因素,在预测胃癌术后吻合口瘘和切口感染方面,高VFA值比BMI值更有效,这与先前的一些研究结论一致。Taniguchi等 [41] 研究发现内脏脂肪是患者总体并发症的危险因素,在VFA与胃癌患者术后手术部位感染发生率的关系上,Kim等 [51] 对1038例胃癌患者进行临床研究发现,VFA与皮下脂肪面积(SFA)的比率是胃切除术后手术部位感染的独立危险因素,VFA/SFA比值越大,患者发生手术部位感染的风险越大。王雅权 [49] 最新的Meta分析结果提示,发现高VFA胃癌患者术后发生胰瘘、吻合口瘘、切口感染、腹腔感染的风险高,尤其在胰瘘(P < 0.00001)、吻合口瘘(P < 0.0001)等方面。基于内脏脂肪对胃癌术后并发症的影响,目前研究 [52] [53] [54] 表明,术前VFA的减少,即使没有达到非肥胖状态,也可能有助于减少术后并发症。因此,术前依据患者VFA对胃癌患者实施干预,如:术前不加运动治疗的低热量饮食或术前运动,减少内脏脂肪水平,降低术后并发症的发生率。然而,低BMI (<18.5 kg/m2)和内脏脂肪(<53.6 cm2)与上消化道肿瘤患者预后不良相关 [32] [55] 因此,在为肥胖胃癌患者制定有效的术前干预措施时,术后并发症和远期预后都需要考虑。

7. 内脏脂肪对胃癌患者化疗及预后的影响

恶性肿瘤患者往往伴有恶病质的发生,恶病质是一种危及生命的疾病,在85%的胃癌患者中观察到恶病质占癌症死亡的20%以上 [56] 。内脏脂肪作为营养和能量储备物质,与癌症化疗及预后不良有关。Matsui等 [57] 研究表明,低VFA是胃癌术后辅助化疗依从性差的独立预后因素。Zhang等 [58] 以新辅助化疗后手术患者作为研究对象,发现新辅助化疗前后较低的VFA均预示着更差的无进展生存期(PFS)和总生存期(OS)。有学者在排除了手术对内脏脂肪影响的基础上,对转移性胃癌患者进行研究发现,在接受EOF (表柔比星、奥沙利铂和氟尿嘧啶)方案治疗的转移性胃癌患者中,较低基线的内脏脂肪面积与较短PFS和OS显著相关。多因素风险因素模型证实VFA是PFS和OS的独立预测因素,表明低内脏脂肪和内脏脂肪的减少预示着明显的不良预后 [59] 。同样,Park等 [60] 对胃癌患者术后VFA进行监测,发现内脏脂肪可预测患者术后长期(5年)无疾病进展生存时间和OS,低内脏脂肪与胃癌预后不良相关。国内学者李啸文等 [61] 在相关研究上得出一致结论,高VFA组胃癌术后总体生存期明显优于低VFA组,提示过多的内脏脂肪对术后总体生存有益,原因可能是由于恶性肿瘤往往伴随着机体的高代谢水平以及肌肉、脂肪组织的分解,患者易出现营养缺乏,从而产生恶病质导致不良预后,而过多的内脏脂肪在一定程度上反映出更好的营养水平,能够抵御一定的不良风险,有利于长期生存。

8. 内脏脂肪影响胃癌疾病进展及预后的机制研究

肥胖本质是一种全身性慢性低度炎症,可促使机体发生多种代谢途径异常。目前肥胖导致胃癌的相关机制仍未被确切定论,多数研究考虑主要可能与内源性激素代谢异常(如性激素增加、胰岛素抵抗(insulin resistance, IR))以及体内脂联素水平下降和各类炎症介质释放增多等相关 [62] 。与皮下脂肪相比,肥胖诱导的慢性炎症在内脏脂肪中表现地更为明显。内脏脂肪组织的增加会导致脂肪组织功能障碍,并导致慢性局部炎症反应,这可能是内脏脂肪增多后促进恶性肿瘤发生最重要的机制之一。肥胖患者细胞因子环境的改变可直接影响肿瘤微环境和细胞免疫。NF-κB在炎症与肿瘤之间起媒介作用,其可上调促炎细胞因子如白细胞介素IL-6 (IL-6)、IL-17、IL-22、TNF-α、单核细胞趋化蛋白1等,进而影响肿瘤微环境 [63] 。IL-6可通过激活信号转导及信号转导激活因子-3 (STAT3)刺激肿瘤血管生成,促进肿瘤细胞增殖、侵袭和转移,并抑制肿瘤细胞凋亡 [64] 。IL-17通过激活磷脂酰肌醇3-激酶、信号转导与转录激活因子3和蛋白激酶C信号通路促进肿瘤生长和转移 [65] 。TNF-α通过核因子κB/Snail信号通路刺激促肿瘤细胞增殖、侵袭和迁移及肿瘤细胞血管生成,抑制细胞毒性T淋巴细胞和活化的巨噬细胞对肿瘤细胞的杀伤,同时通过刺激一氧化氮和活性氧等毒性分子的产生,促进肿瘤的发生 [66] 。

目前脂肪组织也被认为是人体内一种重要的内分泌器官,可以分泌瘦素、脂联素、内脂素等多种脂肪因子。通过调控代谢、炎症、免疫等,刺激肿瘤细胞的生长、黏附、迁移和侵袭,从而促进肿瘤的发生发展 [67] 。瘦素是由肥胖基因合成、脂肪细胞分泌的一种多功能多肽,参与肥胖的调控。不仅能激活表皮生长因子(epidermal growth factor receptor, EGFR)还可以与血管内皮细胞上的leptin受体结合而发挥促进癌细胞增殖及血管生成的作用从而调节癌细胞的侵袭、转移 [68] 。脂联素是脂肪组织产生的主要细胞因子,可通过多条信号通路或与其受体结合直接作用于肿瘤细胞诱导肿瘤细胞凋亡;还可诱导单核细胞凋亡,抑制成熟巨噬细胞的活化及多种炎性因子的释放,间接发挥抗肿瘤作用 [69] 。研究证实 [70] [71] ,脂联素表达水平降低与胃癌发生相关。低脂联素水平可导致G0/G1期HeLa细胞数量显著增加,S期和G2/M期数量减少,可能的机制是脂联素通过抑制正调控因子cyclin D1和c-myc的表达,并通过诱导负调控因子p21、p53和Bax的表达,调控凋亡基因bcx和抗凋亡基因bcl-2,以此诱导肿瘤细胞凋亡 [72] 。内脂素是另一种脂肪细胞因子,它与肿瘤的发生发展也具相关性。研究表明,胃癌患者血浆内脂素水平与肿瘤浸润深度、淋巴结转移、远处转移和肿瘤临床病理分期呈正相关 [73] 。目前研究发现 [74] ,内脂素主要是通过参与调节细胞信号传导、细胞增殖凋亡、氧化应激反应和细胞自噬而实现促肿瘤发展。通过激活炎症相关信号通路PI3K、细胞外信号调节激酶1/2 (ERK1/2)、p38MAPK、JNK、AKT、STAT3、NF-κB等,促使炎细胞因子表达 [75] [76] ;激活ERK1/2通路和MAPK/PI3K/Akt信号通路诱导血管内皮生长因子(VEGF)和基质金属蛋白酶(MMP)2/9的表达从而促进肿瘤细胞的增殖及迁移;也直接调节Sirt的活性,使细胞处于不断增殖状态 [77] 。此外,胃促生长素是新发现的内源性多肽,属于肥胖相关因子的一种,由胃底X/A样细胞分泌能调节食欲及能量代谢,可以抑制某些致癌性炎性因子的表达,如IL-6和TNF-α [78] ,但肥胖患者胃促生长素表达降低,导致致癌性炎性因子增多。

IR及肥胖导致的相关代谢效应是癌症发生发展的重要危险因素 [79] ,内脏肥胖使IR和高血糖发生风险增加,原因可能与内脏肥胖导致脂肪因子分泌增多有关,多种高水平脂肪因子及低水平脂联素干扰了正常的糖脂代谢,从而导致IR和高血糖的发生 [80] ,其中,IR所致的高胰岛素血症起着重要作用,高胰岛素血症可促进胰岛素样生长因子(insulin-like growth factors-1, IGF-1)的分泌,IGF-1可通过自分泌、旁分泌或内分泌途径刺激细胞有丝分裂、促进血管生成,抑制细胞凋亡,从而增加了肿瘤发生风险 [81] 。

内脏脂肪对胃癌术后并发症的影响机制,目前尚不明确,还需进一步研究,有学者认为可能是过多的内脏脂肪使手术操作难度加大,手术时间延长以致促炎细胞因子释放增加,影响胃肠功能的恢复 [82] ;同样有最新研究 [83] 表明,胃癌患者术前VFA水平与其后第3天C反应蛋白呈正相关。术后第3天血清C反应蛋白可作为非极端VFA前提下胃癌术后感染性并发症的预测,间接表明内脏脂肪与炎症的相关机制。然而,在张萍等 [42] 研究中发现,术后24 h、72 h低VFA与高VFA组TNF-α、IL-6、CRP均较术前显著提高,说明两组患者术后体内炎症反应均升高,提示VAT对于炎症反应程度影响不大。

9. 小结

综上所述,肥胖与胃癌之间的流行病学关系已经得到证实,传统的以BMI作为评估肥胖的指标,由于个体间脂肪分布差异较大的因素,不能准确反映患者的体质量情况及身体成分对胃癌手术及治疗预后的具体情况而被内脏脂肪所替代,VFA被认为是评估肥胖一个更具可靠性的指标,并被广泛应用。过多的内脏脂肪可促进胃癌的发生发展,其影响机制与炎症反应、脂肪细胞因子、胰岛素抵抗等因素相关。高VFA在胃癌手术中往往导致手术时间长、术中出血多、手术并发症发生率高、中转开腹率高。可能是过多内脏脂肪影响手术视野的暴露,限制了手术的可操作空间,增大了手术难度。术前依据患者VFA对胃癌患者实施干预措施,减少内脏脂肪水平已被证实可降低患者术后并发症的发生率。同时,VFA是PFS和OS的独立预测因素,VFA可作为术后预后的评估指标,低内脏脂肪往往与胃癌的不良预后相关,可能是由于恶性肿瘤营养缺乏,从而产生恶病质导致不良预后。然而,VFA对胃癌在淋巴结检出率方面,结果异质性较大,多数研究认为VFA升高会导致淋巴结清扫数目及淋巴结阳性率下降。但部分研究发现VFA对淋巴结清扫数目无影响。考虑可能是样本量导致一定偏倚或医师技能水平因素。因此,内脏脂肪仍值得进一步探讨。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2021) Global Cancer Sta-tistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] WHO (2020) Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2019.
[3] 中国居民营养与慢性病状况报告(2020年) [J]. 营养学报, 2020, 42(6): 521.
[4] Pan, X.F., Wang, L. and Pan, A. (2021) Epidemiology and De-terminants of Obesity in China. The Lancet Diabetes & Endocrinology, 9, 373-392.
https://doi.org/10.1016/S2213-8587(21)00045-0
[5] 郭美云. 肥胖与消化系统肿瘤发病风险的研究进展[J]. 医疗装备, 2022, 35(16): 191-194.
[6] 郭雄文, 李树峰. 肥胖与胃癌关系的研究现状及展望[J]. 中国普外基础与临床杂志, 2017, 24(6): 779-783.
[7] Cho, D.H., Kim, M.N., Joo, H.J., et al. (2019) Visceral Obesity, but Not Central Obesity, Is Associated with Cardiac Remodeling in Subjects with Suspected Metabolic Syndrome. Nutrition, Metabolism and Cardiovascular Diseases, 29, 360-366.
https://doi.org/10.1016/j.numecd.2019.01.007
[8] Tabuso, M., Homer-Vanniasinkam, S., Adya, R. and Arasaradnam, R.P. (2017) Role of Tissue Microenvironment Resident Adipo-cytes in Colon Cancer. World Journal of Gastroenterology, 23, 5829-5835.
https://doi.org/10.3748/wjg.v23.i32.5829
[9] Singh, D. (1993) Adaptive Significance of Female Physical Attrac-tiveness: Role of Waist-to-Hip Ratio. Journal of Personality and Social Psychology, 65, 293-307.
https://doi.org/10.1037/0022-3514.65.2.293
[10] Avgerinos, K.I., Spyrou, N., Mantzoros, C.S., et al. (2019) Obe-sity and Cancer Risk: Emerging Biological Mechanisms and Perspectives. Metabolism, 92, 121-135.
https://doi.org/10.1016/j.metabol.2018.11.001
[11] Ozoya, O.O., Siegel, E.M., Srikumar, T., et al. (2017) Quantita-tive Assessment of Visceral Obesity and Postoperative Colon Cancer Outcomes. Journal of Gastrointestinal Surgery, 21, 534-542.
https://doi.org/10.1007/s11605-017-3362-9
[12] Takeuchi, M., Ishii, K., Seki, H., et al. (2016) Excessive Visceral Fat Area as a Risk Factor for Early Postoperative Complications of Total Gastrectomy for Gastric Cancer: A Retrospective Cohort Study. BMC Surgery, 16, Article No. 54.
https://doi.org/10.1186/s12893-016-0168-8
[13] Liesenfeld, D.B., Grapov, D., Fahrmann, J.F., Salou, M., Scherer, D., Toth, R., Habermann, N., Böhm, J., et al. (2015) Metabolomics and Transcriptomics Identify Pathway Differences between Visceral and Subcutaneous Adipose Tissue in Colorectal Cancer Patients: The ColoCare Study. The American Journal of Clinical Nutrition, 102, 433-443.
https://doi.org/10.3945/ajcn.114.103804
[14] Yu, H., Joh, Y.G., Son, G.M., et al. (2016) Distribution and Impact of the Visceral Fat Area in Patients with Colorectal Cancer. Annals of Coloproctology, 32, 20-26.
https://doi.org/10.3393/ac.2016.32.1.20
[15] Sakamaki, K., Maejima, Y., Tokita, Y., et al. (2016) Impact of the Visceral Fat Area Measured by Dual Impedance Method on the Diagnostic Components of Metabolic Diseases in a Mid-dle-Aged Japanese Population. Internal Medicine, 55, 1691-1696.
https://doi.org/10.2169/internalmedicine.55.6088
[16] Finch, P. (2017) Intra-Abdominal Fat: Comparison of Com-puted Tomography Fat Segmentation and Bioimpedance Spectroscopy. Malawi Medical Journal, 29, 155-159.
https://doi.org/10.4314/mmj.v29i2.15
[17] 徐艺文, 朱惠娟. 内脏脂肪的测定及临床应用进展[J]. 医学综述, 2016, 22(13): 2575-2578.
[18] Marra, M., Sammarco, R., De Lorenzo, A., et al. (2019) Assessment of Body Composi-tion in Health and Disease Using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-Ray Absorptiometry (DXA): A Critical Overview. Contrast Media & Molecular Imaging, 2019, Article ID: 3548284.
https://doi.org/10.1155/2019/3548284
[19] Ward, L.C. (2019) Bioelectrical Impedance Analysis for Body Compo-sition Assessment: Reflections on Accuracy, Clinical Utility, and Standardisation. European Journal of Clinical Nutrition, 73, 194-199.
https://doi.org/10.1038/s41430-018-0335-3
[20] Gao, B., Liu, Y., Ding, C., et al. (2020) Comparison of Visceral Fat Area Measured by CT and Bioelectrical Impedance Analysis in Chinese Patients with Gastric Cancer: A Cross-Sectional Study. BMJ Open, 10, e036335.
https://doi.org/10.1136/bmjopen-2019-036335
[21] Eto, K., Ida, S., Ohashi, T., et al. (2020) Perirenal Fat Thick-ness as a Predictor of Postoperative Complications after Laparoscopic Distal Gastrectomy for Gastric Cancer. BJS Open, 4, 865-872.
https://doi.org/10.1002/bjs5.50338
[22] Okamura, T., Hashimoto, Y., Hamaguchi, M., et al. (2020) Visceral Adiposity Index Is a Predictor of Incident Colorectal Cancer: A Population-Based Longitudinal Study. BMJ Open Gastroenterology, 7, e000400.
https://doi.org/10.1136/bmjgast-2020-000400
[23] Xia, M.F., Chen, Y., Lin, H.D., et al. (2016) A Indicator of Visceral Adipose Dysfunction to Evaluate Metabolic Health in Adult Chinese. Scientific Reports, 6, Article No. 38214.
https://doi.org/10.1038/srep38214
[24] 徐怿琳, 魏晨敏, 桑苗苗, 等. 中国中老年人群内脏脂肪指数与胰岛素抵抗和糖代谢的关系[J]. 南京医科大学学报(自然科学版), 2018, 38(9): 1252-1258.
[25] Han, M., Qie, R., Li, Q., Liu, L., Huang, S., Wu, X., Zhang, D., et al. (2021) Chinese Visceral Adiposity Index, a Novel Indicator of Visceral Obesity for Assessing the Risk of Incident Hypertension in a Prospective Cohort Study. British Journal of Nutrition, 126, 612-620.
https://doi.org/10.1017/S0007114520004298
[26] Wang, Y., Zhao, X., Chen, Y., Yao, Y., Zhang, Y., Wang, N., Liu, T. and Fu, C. (2022) Visceral Adiposity Measures Are Strongly Associated with Cardiovascular Disease among Female Participants in Southwest China: A Population-Based Prospective Study. Frontiers in Endocrinology (Lausanne), 13, Article ID: 969753.
https://doi.org/10.3389/fendo.2022.969753
[27] Tang, M., Wei, X.H., Cao, H., Zhen, Q., Liu, F., Wang, Y.F., Fan, N.G. and Peng, Y.D. (2022) Association between Chinese Visceral Adiposity Index and Metabolic-Associated Fatty Liver Disease in Chinese Adults with Type 2 Diabetes Mellitus. Frontiers in Endocrinology (Lausanne), 13, Article ID: 935980.
https://doi.org/10.3389/fendo.2022.935980
[28] Zhao, Y., Zhang, J., Chen, C., Qin, P., Zhang, M., Shi, X., Yang, Y., Lu, J., Sun, L. and Hu, D. (2022) Comparison of Six Surrogate Insulin Resistance Indexes for Predicting the Risk of Incident Stroke: The Rural Chinese Cohort Study. Diabetes/Metabolism Research and Reviews, 38, e3567.
https://doi.org/10.1002/dmrr.3567
[29] Machann, J., Stefan, N., Wagner, R., et al. (2020) Normalized Indices De-rived from Visceral Adipose Mass Assessed by Magnetic Resonance Imaging and Their Correlation with Markers for Insulin Resistance and Prediabetes. Nutrients, 12, Article No. 2064.
https://doi.org/10.3390/nu12072064
[30] 周玉洁, 兰宁, 赵怡宁, 等. 内脏脂肪指数对胃癌患者根治术后补充性肠外营养期间血糖与短期并发症的影响[J]. 兰州大学学报(医学版), 2023, 49(1): 32-40+47.
https://doi.org/10.13885/j.issn.1000-2812.2023.01.006
[31] Matsui, R., Inaki, N. and Tsuji, T. (2022) Impact of Visceral Adipose Tissue on Long-Term Outcomes after Gastrectomy for Advanced Gastric Cancer. Nutrition, 97, Article ID: 111619.
https://doi.org/10.1016/j.nut.2022.111619
[32] Harada, K., Baba, Y., Ishimoto, T., et al. (2015) Low Visceral Fat Content Is Associated with Poor Prognosis in a Database of 507 Upper Gastrointestinal Cancers. Annals of Surgical Oncology, 22, 3946-3953.
https://doi.org/10.1245/s10434-015-4432-4
[33] Silveira, E.A., Kliemann, N., Noll, M., et al. (2021) Visceral Obe-sity and Incident Cancer and Cardiovascular Disease: An Integrative Review of the Epidemiological Evidence. Obesity Reviews, 22, e13088.
https://doi.org/10.1111/obr.13088
[34] Sung, H., Siegel, R.L., Torre, L.A., et al. (2019) Global Patterns in Excess Body Weight and the Associated Cancer Burden. CA: A Cancer Journal for Clinicians, 69, 88-112.
https://doi.org/10.3322/caac.21499
[35] Lauby-Secretan, B., Scoccianti, C., Loomis, D., et al. (2016) Body Fatness and Cancer-Viewpoint of the IARC Working Group. The New England Journal of Medicine, 375, 794-798.
https://doi.org/10.1056/NEJMsr1606602
[36] Friedenreich, C.M., Ryder-Burbidge, C. and McNeil, J. (2021) Physical Activity, Obesity and Sedentary Behavior in Cancer Etiology: Epidemiologic Evidence and Biologic Mecha-nisms. Molecular Oncology, 15, 790-800.
https://doi.org/10.1002/1878-0261.12772
[37] Li, H.J., Che, X.M., Zhao, W., He, S.C., Zhang, Z.L., Chen, R., Fan, L. and Jia, Z.L. (2013) Diet-Induced Obesity Promotes Murine Gastric Cancer Growth through a nampt/sirt1/c-myc Pos-itive Feedback Loop. Oncology Reports, 30, 2153-2160.
https://doi.org/10.3892/or.2013.2678
[38] Chen, X., Chen, W., Huang, Y., et al. (2019) A Quantified Risk-Scoring System Including the Visceral Fat Area for Peritoneal Metastasis of Gastric Cancer. Cancer Management and Research, 11, 2903-2913.
https://doi.org/10.2147/CMAR.S194356
[39] Huang, H., Yang, X., Sun, J., et al. (2020) Value of Visceral Fat Area in the Preoperative Discrimination of Peritoneal Metastasis from Gastric Cancer in Patients with Different Body Mass Index: A Prospective Study. Cancer Management and Research, 12, 6523-6532.
https://doi.org/10.2147/CMAR.S257849
[40] Yang, S.J., Li, H.R., Zhang, W.H., et al. (2020) Visceral Fat Area (VFA) Superior to BMI for Predicting Postoperative Complications after Radical Gastrectomy: A Prospective Cohort Study. Journal of Gastrointestinal Surgery, 24, 1298-1306.
https://doi.org/10.1007/s11605-019-04259-0
[41] Taniguchi, Y., Kurokawa, Y., Takahashi, T., et al. (2021) Im-pacts of Preoperative Psoas Muscle Mass and Visceral Fat Area on Postoperative Short- and Long-Term Outcomes in Patients with Gastric Cancer. World Journal of Surgery, 45, 815-821.
https://doi.org/10.1007/s00268-020-05857-9
[42] 张萍, 杨学堂, 王莹. 腹内脂肪组织总面积对腹腔镜远端胃癌切除术效果的影响[J]. 中国现代普通外科进展, 2019, 22(4): 328-330.
[43] 吴凯强, 张伟, 杨克硕, 等. CT测量内脏脂肪面积对腹腔镜胃癌切除术后发生并发症的预测价值[J]. 中华实用诊断与治疗杂志, 2022, 36(7): 667-671.
https://doi.org/10.13507/j.issn.1674-3474.2022.07.005
[44] 徐艳群, 江涌, 张跃, 等. 内脏脂肪面积对腹腔镜胃癌根治手术效果影响的研究[J]. 中华普外科手术学杂志(电子版), 2016, 10(5): 414-416.
[45] 付广华, 牛兆建, 周岩冰, 等. 内脏脂肪面积对腹腔镜胃癌根治术的影响[J]. 中华胃肠外科杂志, 2015, 18(8): 804-807.
[46] Go, J.E., Kim, M.C., Kim, K.H., et al. (2015) Effect of Visceral Fat Area on Outcomes of Laparoscopy Assisted Distal Gastrectomy for Gastric Cancer: Subgroup Analysis by Gender and Parameters of Obesity. Annals of Surgical Treatment and Research, 88, 318-324.
https://doi.org/10.4174/astr.2015.88.6.318
[47] 王纪全, 蔡梦娇, 龚柳云, 等. 腹部内脏脂肪面积对根治性胃癌切除术后患者预后诊断价值[J]. 西部医学, 2019, 31(9): 1375-1379.
[48] 牛磊, 刘烺飚, 蔡军. 内脏脂肪增多对腹腔镜辅助远端胃癌根治术围手术期的影响[J]. 国际外科学杂志, 2021, 48(9): 599-604.
[49] 王雅权, 闫宇, 董胜利. 内脏脂肪面积作为胃癌患者术后并发症预测指标有效性的Meta分析[J]. 中国现代手术学杂志, 2023, 27(3): 171-179.
https://doi.org/10.16260/j.cnki.1009-2188.2023.03.001
[50] Okada, K., Nishigori, T., Obama, K., et al. (2019) The Incidence of Postoperative Complications after Gastrectomy Increases in Proportion to the Amount of Preoperative Vis-ceral Fat. Journal of Oncology, 2019, Article ID: 8404383.
https://doi.org/10.1155/2019/8404383
[51] Kim, J.H., Kim, J., Lee, W.J., et al. (2019) A High Viscer-al-to-Subcutaneous Fat Ratio Is an Independent Predictor of Surgical Site Infection after Gastrectomy. Journal of Clinical Medicine, 8, Article No. 494.
https://doi.org/10.3390/jcm8040494
[52] Inoue, K., Yoshiuchi, S., Yoshida, M., et al. (2019) Preoperative Weight Loss Program Involving a 20-Day Very Low-Calorie Diet for Obesity before Laparoscopic Gastrectomy for Gastric Cancer. Asian Journal of Endoscopic Surgery, 12, 43-50.
https://doi.org/10.1111/ases.12479
[53] Matsunaga, T., Saito, H., Murakami, Y., et al. (2016) Usefulness of T-Shaped Gauze for Precise Dissection of Supra-Pancreatic Lymph Nodes and for Reduced Postoperative Pancreatic Fistula in Patients Undergoing Laparoscopic Gastrectomy for Gastric Cancer. Yonago Acta Medica, 59, 232-236.
[54] Tsujiura, M., Hiki, N., Ohashi, M., et al. (2017) “Pancre-as-Compressionless Gastrectomy”: A Novel Laparoscopic Approach for Suprapancreatic Lymph Node Dissection. An-nals of Surgical Oncology, 24, 3331-3337.
https://doi.org/10.1245/s10434-017-5974-4
[55] Wada, T., Kunisaki, C., Ono, H.A., Makino, H., Akiyama, H. and Endo, I. (2015) Implications of BMI for the Prognosis of Gastric Cancer among the Japanese Population. Digestive Sur-gery, 32, 480-486.
https://doi.org/10.1159/000440654
[56] Ongaro, E., Buoro, V., Cinausero, M., Caccialanza, R., Turri, A., Fanotto, V., et al. (2017) Sarcopenia in Gastric Cancer: When the Loss Costs Too Much. Gastric Cancer, 20, 563-572.
https://doi.org/10.1007/s10120-017-0722-9
[57] Matsui, R., Inaki, N. and Tsuji, T. (2021) Impact of Visceral Ad-ipose Tissue on Compliance of Adjuvant Chemotherapy and Relapse-Free Survival after Gastrectomy for Gastric Cancer: A Propensity Score Matching Analysis. Clinical Nutrition, 40, 2745-2753.
https://doi.org/10.1016/j.clnu.2021.04.019
[58] Zhang, Y., Li, Z., Jiang, L., et al. (2021) Impact of Body Composi-tion on Clinical Outcomes in People with Gastric Cancer Undergoing Radical Gastrectomy after Neoadjuvant Treatment. Nutrition, 85, Article ID: 111135.
https://doi.org/10.1016/j.nut.2020.111135
[59] Feng, W., Huang, M., Zhao, X., et al. (2020) Severe Loss of Vis-ceral Fat and Skeletal Muscle after Chemotherapy Predicts Poor Prognosis in Metastatic Gastric Cancer Patients without Gastrectomy. Journal of Cancer, 11, 3310-3317.
https://doi.org/10.7150/jca.37270
[60] Park, H.S., Kim, H.S., Beom, S.H., et al. (2018) Marked Loss of Muscle, Visceral Fat, or Subcutaneous Fat after Gastrectomy Predicts Poor Survival in Advanced Gastric Cancer: Single-Center Study from the CLASSIC Trial. Annals of Surgical Oncology, 25, 3222-3230.
https://doi.org/10.1245/s10434-018-6624-1
[61] 李啸文, 仇广林, 王海江, 等. 内脏脂肪面积对胃癌根治术患者预后的影响[J]. 西安交通大学学报(医学版), 2022, 43(3): 419-425.
[62] Bloomgarden, Z. (2018) Diabetes and Branched-Chain Amino Acids: What Is the Link? Journal of Diabetes, 10, 350-352.
https://doi.org/10.1111/1753-0407.12645
[63] Ben-Neriah, Y. and Karin, M. (2011) Inflammation Meets Cancer, with NF-κB as the Matchmaker. Nature Immunology, 12, 715-723.
https://doi.org/10.1038/ni.2060
[64] Lin, Y., He, Z., Ye, J., et al. (2020) Progress in Understanding the IL-6/STAT3 Pathway in Colorectal Cancer. OncoTargets and Therapy, 13, 13023-13032.
https://doi.org/10.2147/OTT.S278013
[65] Li, Q., Zhang, J., Zhou, Y., et al. (2012) Obesity and Gastric Cancer. Frontiers in Bioscience, 17, 2383-2390.
https://doi.org/10.2741/4059
[66] Ju, X., Zhang, H., Zhou, Z., Chen, M., et al. (2020) Tumor-Associated Macro-phages Induce PD-L1 Expression in Gastric Cancer Cells through IL-6 and TNF-α Signaling. Experimental Cell Re-search, 396, Article ID: 112315.
https://doi.org/10.1016/j.yexcr.2020.112315
[67] Nieman, K.M., Romero, I.L., Van Houten, B., et al. (2013) Adi-pose Tissue and Adipocytes Support Tumorigenesis and Metastasis. Biochimica et Biophysica Acta, 1831, 1533-1541.
https://doi.org/10.1016/j.bbalip.2013.02.010
[68] Ghasemi, A., Saeidi, J., Azimi-Nejad, M., et al. (2019) Lep-tin-Induced Signaling Pathways in Cancer Cell Migration and Invasion. Cellular Oncology (Dordr), 42, 243-260.
https://doi.org/10.1007/s13402-019-00428-0
[69] 高福利, 钱建清. 肥胖与胃癌的相关机制及临床研究[J]. 医学综述, 2014, 20(14): 2545-2547.
[70] Mhaidat, N.M., Alzoubi, K.H., Kubas, M.A., et al. (2021) High Levels of Lep-tin and Non-High Molecular Weight-Adiponectin in Patients with Colorectal Cancer: Association with Chemotherapy and Common Genetic Polymorphisms. Biomedical Reports, 14, Article No. 13.
https://doi.org/10.3892/br.2020.1389
[71] Muppala, S., Konduru, S.K.P., Merchant, N., et al. (2017) Adiponectin: Its Role in Obesity-Associated Colon and Prostate Cancers. Critical Reviews in Oncology/Hematology, 116, 125-133.
https://doi.org/10.1016/j.critrevonc.2017.06.003
[72] Xie, L., Wang, Y., Wang, S., et al. (2011) Adiponectin In-duces Growth Inhibition and Apoptosis in Cervical Cancer HeLa Cells. Biologia, 66, 712-720.
https://doi.org/10.2478/s11756-011-0063-9
[73] Lu, G.W., Wang, Q.J., Xia, M.M., et al. (2014) Elevated Plasma Visfatin Levels Correlate with Poor Prognosis of Gastric Cancer Patients. Peptides, 58, 60-64.
https://doi.org/10.1016/j.peptides.2014.05.016
[74] Dalamaga, M., Christodoulatos, G.S. and Mantzoros, C.S. (2018) The Role of Extracellular and Intracellular Nicotinamide Phosphoribosyl-Transferase in Cancer: Diagnostic and Therapeutic Perspectives and Challenges. Metabolism, 82, 72-87.
https://doi.org/10.1016/j.metabol.2018.01.001
[75] Wang, Y., Gao, C., Zhang, Y., et al. (2016) Visfatin Stimulates Endometrial Cancer Cell Proliferation via Activation of PI3K/Akt and MAPK/ERK1/2 Signalling Pathways. Gynecologic Oncology, 143, 168-178.
https://doi.org/10.1016/j.ygyno.2016.07.109
[76] Gholinejad, Z., Kheiripour, N., Nourbakhsh, M., et al. (2017) Extracellular NAMPT/Visfatin Induces Proliferation through ERK1/2 and AKT and Inhibits Apoptosis in Breast Cancer Cells. Peptides, 92, 9-15.
https://doi.org/10.1016/j.peptides.2017.04.007
[77] 伍志通, 覃文周, 叶慧芬, 等. 内脏脂肪素在消化道恶性肿瘤中的研究进展[J]. 中国医药科学, 2021, 11(18): 48-52.
[78] Liu, H., Luo, J., Guillory, B., et al. (2020) Ghrelin Ameliorates Tumor-Induced Adipose Tissue Atrophy and Inflammation via Ghrelin Receptor-Dependent and -Independent Pathways. Oncotarget, 11, 3286-3302.
https://doi.org/10.18632/oncotarget.27705
[79] Deng, T., Lyon, C.J., Bergin, S., et al. (2016) Obesity, Inflamma-tion, and Cancer. Annual Review of Pathology, 11, 421-449.
https://doi.org/10.1146/annurev-pathol-012615-044359
[80] Kalantarhormozi, M., Jouyan, N., Asadipooya, K., et al. (2020) Evaluation of Adipokines, Adiponectin, Visfatin, and Omentin, in Uncomplicated Type I Diabetes Patients be-fore and after Treatment of Diabetic Ketoacidosis. Journal of Endocrinological Investigation, 43, 1723-1727.
https://doi.org/10.1007/s40618-020-01259-9
[81] Cao, J. and Yee, D. (2021) Disrupting Insulin and IGF Receptor Function in Cancer. International Journal of Molecular Sciences, 22, Article No. 555.
https://doi.org/10.3390/ijms22020555
[82] Van Bree, S.H., Cailotto, C., Di Giovangiulio, M., et al. (2013) Sys-temic Inflammation with Enhanced Brain Activation Contributes to More Severe Delay in Postoperative Ileus. Neurogas-troenterology & Motility, 25, e540-e549.
https://doi.org/10.1111/nmo.12157
[83] Iida, M., Takeda, S., Nakagami, Y., et al. (2020) The Effect of the Visceral Fat Area on the Predictive Accuracy of C-Reactive Protein for Infectious Complications after Laparoscopy-Assisted Gas-trectomy. Annals of Gastroenterological Surgery, 4, 386-395.
https://doi.org/10.1002/ags3.12329