miRNA参与支气管哮喘的作用机制
Mechanism of miRNA Involved in Bronchial Asthma
DOI: 10.12677/ACM.2023.13122864, PDF, HTML, XML, 下载: 185  浏览: 245 
作者: 姚 璐, 林星雪:新疆医科大学第二附属医院,新疆 乌鲁木齐;古力鲜·马合木提*:新疆医科大学呼吸内科,新疆 乌鲁木齐
关键词: 微小核糖核酸气道炎症气道重塑靶基因动物模型miRNA Airway Inflammation Airway Remodeling Target Spot Animal Model
摘要: 微小RNA (miRNA)是一种小型非编码RNA,通过与启动子的3’非翻译区(3’-UTR)结合、抑制翻译或诱导降解来调节靶基因的表达。miRNA参与包括炎症在内的许多生物学和病理过程,在包括哮喘在内的过敏性炎症疾病的发病机制中发挥作用,在本综述中,探讨miRNA在哮喘患者气道炎症和重塑中的作用机制。
Abstract: microRNA (miRNA) is a small non-coding RNA that regulates the expression of target genes by binding to the 3’-untranslated region (3’-UTR) of the promoter, inhibiting translation or inducing degradation Mirnas are involved in many biological and pathological processes, including inflam-mation, and play a role in the pathogenesis of allergic inflammatory diseases, including asthma, in this review, to explore the mechanism of miRNAs in airway inflammation and remodeling in asthma patients.
文章引用:姚璐, 林星雪, 古力鲜·马合木提. miRNA参与支气管哮喘的作用机制[J]. 临床医学进展, 2023, 13(12): 20342-20349. https://doi.org/10.12677/ACM.2023.13122864

1. 介绍

哮喘是由多种细胞以及细胞组分参与的慢性气道炎症性疾病,临床表现为反复发作的喘息、气急,伴或不伴胸闷或咳嗽等症状,同时伴有气道高反应性和可变的气流受限,随着病程延长可导致气道结构改变,即气道重塑。哮喘是一种异质性疾病,具有不同的临床表型 [1] 。哮喘是影响所有年龄段人群健康的全球问题,1995年“全球哮喘防治创议(Global Initiative for Asthma, GINA)”专家组出版了《全球哮喘管理和预防策略》(GINA报告)。2022年世界防治哮喘日(5月3日),GINA专家组发布了2022版《全球哮喘管理和预防策略》(GINA 2022),其中包含了有关哮喘的新科学证据 [2] 。我国哮喘患病率呈逐年增长的趋势,最新流行病学调查结果显示,≥20岁成年人哮喘患病率为4.2%,人数为4570万 [3] 。目前我国哮喘总体控制水平尚不理想,根据GINA定义的哮喘控制水平分级,我国城区哮喘总体控制率为28.5% [4] 。近年来,miRNA在参与支气管哮喘气道炎症、气道重塑方面发挥着重要作用,下面就miRNA参与各个方面做一个综述。

2. miRNA与气道炎症

哮喘气道炎症是由多种炎症(包括嗜酸性粒细胞型、中性粒细胞型、混合细胞型、少细胞型、寡细胞型)细胞及其相应的细胞组分参与形成了气道慢性炎症反应。已经证明有微小RNA家族(主要指let-7家族)和相应的网络可以调节与哮喘发病机制相关的途径 [5] 。研究表明已经证实以TH2为主的细胞(主要是嗜酸性粒细胞为主型),表现对糖皮质激素敏感,且以非辅助2型为主的细胞(中性粒细胞性),则表现对激素抵抗型 [6] 。探讨了miR-223如何调节气道炎症作用机制尚不清楚。已经证实mRNA NLRP3是miRNA223的靶点,阻断NLRP3炎症小体或IL-1β可减弱中性粒细胞哮喘期间miR-223-/-小鼠增强的炎症和使用MiR-223激动剂可以减轻以中性粒细胞性哮喘的气道炎症 [7] 。研究者通过双荧光素活性测定miRNA451a在哮喘患者CD4T淋巴细胞miRNA-451a的下调和ETS1的上调,使IL5、IL13的释放减少,可能参与哮喘气道炎症的调节。抗白介素5抗体可以减少气道细胞因子的产生 [8] 。通过改变这个轴可能为哮喘治疗提供一个新的方案。miRNA-182在卵清蛋白诱导的哮喘小鼠模型中表现为下调,参与气道炎症机制表现在以下两个方面,第一在体外,IL-13刺激BEAS-2B细胞导致NOX4显着上调,并伴有NLRP3/IL-1β激活,并减少miRNA-182-5p,预测NOX4、NLRP3可能为miRNA-182-5p靶点。相反,miRNA-182-5p的过度表达减少上皮细胞凋亡和NLRP3/IL-1β激活。第二在体内,支气管肺泡灌洗液中嗜酸性粒细胞的百分比被miRNA-182-5p抗体抑制,使卵清蛋白诱导的Th2炎症因子(IL-4, IL-5, IL-13)的释放减少 [9] 。miRNA181b在OVA诱导的的以中性粒细胞哮喘小鼠肺部下调,双荧光素酶测定结果DEK是miR-181b-5p的直接靶点,参与哮喘气道炎症,通过建立OVA诱导小鼠模型已经证实,抗miRNA181b抗体药物可以减轻小鼠支气管和肺组织中炎症介质 [10] 。miR-206在哮喘支气管上皮中表达下调,且与TH2型气道炎症有关,使用在线计算miRNA206的靶基因,在人类哮喘中,已经证明与对照组相比,CD39转录水平表达上调。以2型高表达哮喘患者上皮CD39表达低于2型低表达哮喘患者,预测CD39为miR-206、、靶基因,已经证实miR-206的过度表达会使CD39表达下调 [11] 。使用人气道上皮细胞系,靶向人气道上皮细胞ORMDL3抑制miR-200a/200b诱导的炎症。MiR-200a和MiR-200b通过靶向ORMDL3调节哮喘中ERK/MMP-9通路抑制炎症,通过激活人气道上皮细胞ERK/MMP-9通路抑制miR-200a/200b诱导的炎症,参与气道炎症 [12] 。miR-135b在哮喘患儿和小鼠中表达下调,CXCL-12在哮喘患儿和小鼠中表达上调。预测CXCL12为MiR-135b的靶点,荧光素酶活性测定已经证实了CXCL12为MiR-135b的靶点,miR-135b表达可以的使OVA小鼠肺组织CXCL-12的表达下调,导致炎症浸润、杯状细胞增生、气道高反应性以及炎症细胞、细胞因子显著减少。以及Th17细胞和IL-17水平的比率也降低 [13] 。miR-20b在OVA诱导的哮喘模型小鼠中TXNIP和NLRP3表达不高,miR-20b过度表达可以下调气道炎症、气道高反应以及炎症细胞因子和抗炎细胞因子增加。miR-20b靶向TXNIP,荧光素酶活性测定已经证实TXNIP为miR-20b基因的靶点,并抑制TXNIP的表达,miR-20b与NLRP3结合并上调NLRP3表达。TXNIP或NLRP3的上调可以逆转miR-20b过度表达在由OVA诱导致过敏性哮喘小鼠中的保护作用 [14] 。在屋尘螨(HDM)诱导的哮喘小鼠模型肺的树突状细胞中miR-19a水平与RUNX3表达降低同时上调。双荧光素酶报告基因检测证实RUNX3是miR-19a的靶点。miR-19a的表达被抑制可以减少细胞因子的产生,主要是以辅助2型细胞产生的细胞因子为主,并通过增加W哮喘小鼠而非RUNX3小鼠的RUNX3表达来抑制树突状细胞(DC)成熟 [15] 。miR-146a-5p表达下调,证明miR-146a-5p参与气道炎症。过敏小鼠巨噬细胞中的NLRP 3炎性体活化被miR-146a-5p抑制,并预测该靶点为TIRAP。荧光素活性证实TIRAP为miR-146a-5p的靶点。miR-146a-5p调控TIRAP/NF-κB通路的激活,从而参与气道炎症的发生 [16] 。而另一个小鼠模型已经证实在严重中性粒细胞哮喘模型中使用146抗体治疗后,可以减少气道炎症的发生 [17] 。miRNA625在人支气管上皮细胞中表达,假设蛋白激酶B2为miRNA146的靶基因,使用荧光素酶活性验证结果证实蛋白激酶B2为miRNA146的靶基因,miR-625过度表达可以减少炎症因子的产生,miR-625抑制剂可以抑制炎症因子 [18] 。582-5P在小鼠脂肪组织中表达下调。TargetScan (release 7.2)来预测miR-582-5p靶标。与对照组的相比,Skp 1的mRNA表达被外源性miR-582-5p抑制,但不抑制其他潜在靶基因的mRNA表达,已经证实LPS诱导的NF-κB信号通路被Skp1沉默和miR-582-5p表达抑制 [19] 。在大鼠哮喘模型已经证实。五味子素减轻哮喘大鼠气道炎症且抑制NLRP 3炎性体活化,并减少由LPS诱导的小鼠巨噬细胞的焦亡,SB-1被miR-135a-5p/TRPC 1轴调控。SB(五味子素)对NLRP3炎性小体激活被miR-135a-5p的下调减弱了抑制作用,总之SB通过miR135a-5p/TRPC 1轴抑制STAT 3/NF-κB通路,从而减轻哮喘气道炎症 [20] 。MiR-140在哮喘小鼠中显著下调,使用免疫组化已经证实,糖原合成酶激酶-3β (GSK-3β)为miR-140的靶点。哮喘小鼠的气道炎症和支气管上皮细胞凋亡被MiR-140减弱。进一步的实验表明,miR-140负性调控GSK3β的表达,并能与哮喘中的GSK3β结合,减轻小鼠气道炎症 [21] 。miR-218-5p在哮喘患者中表达下调,荧光素酶测定证实CTNND 2 (哮喘中的新型连环蛋白)上皮细胞miR-218-5p的靶基因且通过靶向CTNND 2 (哮喘中的新型连环蛋白)和抑制趋化因子CCL-26表达在嗜酸性粒细胞气道炎症中发挥保护作用 [22] 。

3. miRNA与气道重塑

气道重塑是哮喘慢性、持续性及激素抵抗性的病理基础,与哮喘反复发作密切相关,现多认为,气道重塑与气道平滑肌细胞的增值、肥大密切相关。近年研究发现,多种miRNA在气道平滑肌细胞的增值、肥大、收缩功能中扮演重要角色 [23] 。microRNA-192-5p在哮喘患者中肺中表达并下调。体外研究证实miR-192-5p、基质金属蛋白酶(MMP)-16在气道平滑肌细胞(ASMCs)中表达。Western印迹分析表明miR-192-5p抑制细胞增殖,使MMP-16的表达减低。miR-192-5p对哮喘小鼠气道重塑的抑制作用主要表现为成纤维细胞生长因子-23 (FGF-23)水平降低、MMP-2和MMP-9浓度降低以及I型胶原沉积减少,已经证实MMP-16被证实是miR-192-5p的靶点 [24] 。已经证明DEK在卵清蛋白(OVA)诱导哮喘小鼠中表达,主要表达在嗜酸性粒细胞上,并且DEK靶向适体DTA-64通过抑制TGF-β1/Smad、丝裂原活化蛋白激酶(MAPK)和PI3K信号通路缓解哮喘 [25] ,已经证实在OVA诱导的小鼠模型肺中miRNA181b-5p的表达降低最明显。在体内小鼠模型实验中使用荧光素酶测定DEK是miR-181b-5p的直接靶点,并且miR-181b-5p的单个靶位点足以抑制DEK表达。另一个小鼠模型试验证明miR-181b-5p作为抑制剂。结果显示,与对照组小鼠相比,模型组小鼠气管和肺组织中miR-181b-5p的表达显著降低,且参与气道重塑的发生 [10] 。miR-30a在哮喘儿童和卵清蛋白(OVA)小鼠模型中表达下调,同时自噬相关蛋白表达上调;此外,已经证实miR-30a通过下调自噬相关蛋白5 (ATG 5)抑制自噬。然后,且miR-30过度表达抑制了支气管上皮细胞的纤维化和白细胞介素-33 (IL-33)刺激的自噬通量。体内实验表明,miR-30a过度表达通过增强自噬抗气道重塑 [26] 。在卵清蛋白诱导的小鼠模型中,已经证明Smad7可抑制TGF-β信号通路并且是疾病中miR-21的直接靶标,因此,miR-21抑制剂治疗是否在该OVA诱导哮喘模型中诱导Smad7表达。已经证实与OVA + miRNA NC处理相比,OVA攻击小鼠的表达显着降低,miR-21抑制可以抑制TGF-β1的表达,使Smad7基因和蛋白的表达上调 [27] 。miR-638在ASMC表达,(qRT-PCR)测定的miR-638表达在增殖性人ASMC中显着下调。miR-638过表达显着降低了下游靶细胞周期蛋白D1的表达,已经证实细胞周期蛋白D1为miR-638基因的预测靶点,可以减轻气道重塑的发生 [28] 。microRNA-620在ASMC中表达显着上调。miR-620的下调抑制了TGF-β1刺激的ASMC的增殖。预测磷酸酶和张力蛋白同源物(PTEN)是miR-620的靶标。PTEN在miR-620抑制剂转染的ASMC中上调,但在用miR-620模拟物递送的细胞中降低。此外,单独敲低miR-620可有效降低蛋白激酶B(AKT)的磷酸化,降低TGF-β1诱导的增殖并促进ASMC细胞凋亡,减少气道重塑的发生 [29] 。已经证实II型钙粘蛋白Cadherin11 (CDH11)在卵清蛋白(OVA)哮喘小鼠模型的气道上皮细胞中表达增加。miRNA-451a-5p (miRNA-451a)对CDH11起调控作用。与CDH11相比,miRNA-451a在哮喘肺中的表达降低。miRNA-451a过表达减少了OVA诱导的炎症细胞浸润,体内CDH11的升高也被miRNA-451a抑制。双荧光素酶分析已经证实CDH11是miRNA-451a的新有效靶标。miRNA-451a还通过靶向CDH11抑制TGF-β诱导的气道上皮细胞中胶原蛋白沉积 [30] 。miR-204-5p在哮喘患者气道平滑肌细胞及TGF-β1刺激的细胞中表达下调。miR-204-5p过表达可抑制TGF-β1诱导的气道平滑肌细胞增殖和ECM沉积,miR-204-5p被抑制可促进气道平滑肌细胞增殖并上调纤连蛋白和III型胶原水平。双荧光素酶测定Six1为miR-204-5p的靶点,Westernblot测定miR-204-5p负调控Six1的蛋白表达,Six被1MiR-204-5p调控且抑制TGF-β1诱导的气道平滑肌细胞增殖和ECM产生,预防气道重塑的发生 [31] 。miR-1278在哮喘患者哮喘小鼠中表达,与健康志愿者相比,哮喘患者miR-1278表达上调;哮喘小鼠的miR-1278表达也上调,miR-1278被抑制可改善哮喘小鼠的肺组织且抗TGF-β1诱导ASMCs增殖和凋亡的作用。DLRA证实,miR-1278靶向Src-homology 2-containing phosphatase 1 (SHP-1)的3’-UTR。SHP-1为miR-1278的下游靶点,miR-1278通过靶向SHP-1减少气道重塑的发生 [32] 。miR-326已经证实转化生长因子-β1 (transforming growth factor-β1, TGF-β1)通过增加I型胶原和纤维连接蛋白的表达,促进ASMCs基质蛋白沉积、增殖。被TGF-β1处理过的ASMCs中miR-326表达降低。处理的ASMCs的I型胶原和纤连蛋白水平被miR-326模拟物显著降低,并抑制细胞增殖。荧光素酶证实肿瘤坏死因子超家族成员14 (TNFSF 14)是miR326的直接靶点。miR-326通过抑制TNFSF14抑制TGF-β1处理的ASMCs的基质蛋白沉积和细胞增殖。MiR-326可能是治疗哮喘的一个新靶点 [33] 。很多文献已经证实血小板衍生生长因子BB (PDGF-BB)参与气道重塑。采用qRT-PCR方法检测哮喘患者和健康志愿者痰液中miR-18a的表达。被PDGF-BB处理的ASMCs中miR-18a的被过度表达。miR-18a在哮喘患者痰液和PDGF-BB处理的ASMCs中表达下调。PDGF-BB可以使ASMCs增殖和迁移并激活PI 3 K通路。miR-18a可在一定程度上抑制PDGF-BB诱导的ASMCs增殖miR-18a使PI3K通路的激活被抑制。MiR-18a通过抑制PI3K通路抑制PDGF-BB诱导的ASMCs增殖,从而减轻哮喘中的气道重塑 [34] 。miRNAs-146a-5p (miR-146a-5p)在哮喘中的作用机制仍不确定。实验已经证实miR-146a-5p在哮喘患者血浆和血小板活化因子(PAF)诱导的人小气道上皮细胞(HSAECs)中的表达受到抑制。miR-146a-5p上调可减轻PAF诱导的HSAECs炎症反应和细胞屏障损伤,抑制细胞凋亡;miR-146a-5p下调则加重细胞凋亡。此外,miR-146a-5p可靶向TNF受体相关因子6 (TRAF6)并负调控其表达。TRAF6过表达可抵消miR-146a-5p上调对PAF诱导的HSAECs炎症、细胞屏障损伤和凋亡的影响。总之,miR-146a-5p可能通过靶向TRAF6保护气道上皮细胞并抑制哮喘的发病机制 [35] 。miR-133a在卵清蛋白诱导的哮喘小鼠模型中下调。采用真实的-time PCR和Western blot检测miR-133a及相应蛋白表达的变化。结果证明,miR-133a在哮喘中下调。在体内外气道平滑肌细胞中上调miR-133a表达可抑制PI 3 K/AKT/mTOR通路的激活,降低α-平滑肌肌动蛋白(α-SMA)的表达,并抑制气道重塑。荧光素酶报告IGF1R是miR-133a的直接靶点。通过PI3K/AKT/mTOR可能是miR-133a的下游信号通路,可能成为控制哮喘气道重塑的潜在治疗靶点 [36] 。MiR-182在哮喘小鼠模型中的哮喘组表达下调。进一步的实验显示,Sestrin2为miR-182的靶点,并且Sestrin2的过表达逆转了miR-182诱导的对哮喘组ASMC细胞进展的抑制。进一步研究了Sestrin2的下游信号通路,发现Sestrin2的表达增加可激活5’-腺苷一磷酸激活蛋白激酶(AMPK),AMPK可能为Sestrin2在哮喘中的下游信号通路,提供了一条新的通路 [37] 。miR-874在人胎儿气道平滑肌中表达下调。抑制PCNA和Ki-67的表达,减少I型胶原和III型胶原、基质金属蛋白酶(MMP)-9和MMP-2的产生,miR-874过表达可显著抑制TNF-α诱导的IL-6、IL-8和嗜酸性粒细胞趋化因子(eotaxin)的产生。荧光素酶活性测定证实STAT3被确定为miR-874的直接靶点,并且STAT3表达可以使miR-874对TNF-α诱导的气道重塑的保护减弱。总的来说,miR-874通过靶向STAT3抑制TNF-α诱导的人气道重塑 [38] 。结果证实PARP-1是miR-21的直接靶点,miR-21通过PI3K/AKT信号通路靶向PARP-1促进16 HBE细胞EMT。PI3K/AKT信号通路被LY 29400阻断可降低16 HBE细胞的EMT。结果已经表明,miR-21通过靶向PARP-1促进HBE细胞的EMT。此外,PI3K/AKT信号通路可能参与了气道重塑 [39] 。在卵清蛋白诱导的小鼠模型中表现为气道炎症和气道重塑的发生。已经MicroRNA-21抗体处理的表现为较少的炎症细胞、较少的TH2细胞因子产生,microRNA-21抗体会降低TGFβ1的表达并诱导肺组织中Smad7的表达。转化生长因子β1会刺激的人支气管平滑肌细胞增生,microRNA-21抗体上调了Smad7的表达并减轻了气道重塑的发生 [40] 。miR-140-3p在哮喘患者血液中表达下降。miR-140-3p上调可抑制细胞活力和迁移,减轻炎症反应,而抑制miR-140-3p则表现出炎症反应增强。此外,荧光素酶活性测定HMGB 1是miR-140-3p的直接靶点。miR-140-3p可通过靶向HMGB 1而抑制JAK 2/STAT 3的激活 [41] ,从而减少气道重塑的发生。miR-203a-3在哮喘患者血清中下调,SIX 1在哮喘患者血清中 [42] 上调。转化生长因子-β1 (Transforming growth factor-β1, TGF-β1)处理后,BEAS-2B和16 HBE细胞中miR-203a-3p表达减少,SIX 1表达增加,荧光素酶证实SIX 1被鉴定为miR-203a-3p的靶点,且miR-203a-3p被SIX 1的负调控。实验表明,miR-203a-3p被过度表达可通过调节SIX 1来减轻TGF-β1诱导的BEAS-2B和16 HBE细胞的EMT。结果证实MiR-203a-3p通过靶向SIX 1调节Smad 3通路来调节TGF-β1诱导的哮喘EMT [42] 。在卵清蛋白诱导的小鼠模型中。使用RT-qPCR和western blot分析检测S100 A4的表达,双荧光素酶报告基因测定验证S100 A4可能为miR-124-3p的靶点。结果表明S100 A4表达被miR-124-3p抑制可减少支气管粘液分泌和胶原纤维,并抑制炎性细胞浸润。此外,miR-124-3p表达使炎症细胞因子水平降低 [43] 。miR-506在哮喘组织和细胞模型中表达不高,过度表达的miR-506减少了由TGF-β1触发的ASMCs的异常增殖、迁移、炎症和胶原沉积。在机制上,已经证实PTBP 1的3’非翻译区(3-UTR)为miR-506直接靶点,而且对miR-506对PTBP 1的表达具有负调控作用。此外,IWR-1验证了Wnt/β-catenin通路的诱导被miR-506的过表达抑制 [44] 。

参考文献

参考文献

[1] 中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2020年版) [J]. 中华结核和呼吸杂志, 2020, 43(12): 1023-1048.
[2] 常春, 孙永昌. 2022版《全球哮喘管理和预防策略》更新解读[J]. 中国全科医学, 2022, 25(35): 4355-4362.
[3] Huang, K., Yang, T., Xu, J., et al. (2019) Prevalence, Risk Factors, and Management of Asthma in China: A National Cross-Sectional Study. The Lancet, 394, 407-418.
https://doi.org/10.1016/S0140-6736(19)31147-X
[4] 林江涛, 王文巧, 周新, 等. 我国30个省市城区门诊支气管哮喘患者控制水平的调查结果[J]. 中华结核和呼吸杂志, 2017, 40(7): 494-498.
[5] Gomez, J.L., Chen, A., Diaz, M.P., et al. (2020) A Network of Sputum MicroRNAs Is Associated with Neutrophilic Airway Inflammation in Asthma. American Journal of Respiratory and Critical Care Medicine, 202, 51-64.
https://doi.org/10.1164/rccm.201912-2360OC
[6] Kim, J.-Y., Patrick, S., Manjula, K., et al. (2022) Targeting ETosis by miR-155 Inhibition Mitigates Mixed Granulocytic Asthmatic Lung Inflammation. Frontiers in Immunology, 13.
https://doi.org/10.3389/fimmu.2022.943554
[7] Xu, W.J., Wang, Y.M., Ma, Y., et al. (2020) MiR-223 Plays a Protecting Role in Neutrophilic Asthmatic Mice through the Inhibition of NLRP3 Inflammasome. Respiratory Research, 21, Article No. 116.
https://doi.org/10.1186/s12931-020-01374-4
[8] Wang, T.Y., Zhou, Q.L. and Shang, Y.X. (2021) Downregula-tion of miRNA-451a Promotes the Differentiation of CD4+ T Cells towards Th2 Cells by Upregulating ETS1 in Child-hood Asthma. Journal of Innate Immunity, 13, 38-48.
https://doi.org/10.1159/000509714
[9] Wang, Z.G., Song, Y.L., Jiang, J.Z., et al. (2022) MicroRNA-182-5p At-tenuates Asthmatic Airway Inflammation by Targeting NOX4. Frontiers in Immunology, 13, Article 853848.
https://doi.org/10.3389/fimmu.2022.853848
[10] Song, Y.L., Wang, Z.G., Jiang, J.Z., et al. (2022) miR-181-5p Attenuates Neutrophilic Inflammation in Asthma by Targeting DEK. International Immunopharmacology, 112, Article ID: 109243.
https://doi.org/10.1016/j.intimp.2022.109243
[11] Zhang, K., et al. (2021) Epithelial miR-206 Targets CD39/Extracellular ATP to Upregulate Airway IL-25 and TSLP in Type 2—High Asthma. JCI Insight, 6, e148103.
[12] Duan, X.J., Zhang, X., Li, L.R., et al. (2020) MiR-200a and miR-200b Restrain Inflammation by Target-ing ORMDL3 to Regulate the ERK/MMP-9 Pathway in Asthma. Experimental Lung Research, 46, 321-331.
https://doi.org/10.1080/01902148.2020.1778816
[13] Liu, Y., Huo, S.G., Xu, L., et al. (2022) MiR-135b Allevi-ates Airway Inflammation in Asthmatic Children and Experimental Mice with Asthma via Regulating CXCL12. Immu-nological Investigations, 51, 496-510.
https://doi.org/10.1080/08820139.2020.1841221
[14] Huang, J., Ruan, X., Tian, T., et al. (2023) miR-20b Attenu-ates Airway Inflammation by Regulating TXNIP and NLRP3 Inflammasome in Ovalbumin-Induced Asthmatic Mice. Journal of Asthma, 60, 2040-2051.
https://doi.org/10.1080/02770903.2023.2213332
[15] He, S.J., Zhou, J.R., Ma, Y., Wang, W. and Yang, J. (2023) MicroRNA-19a Inhibition Directly and Indirectly Ameliorates Th2 Airway Inflammation in Asthma by Targeting RUNX3. Inflammation, 46, 370-387.
https://doi.org/10.1007/s10753-022-01739-5
[16] Yang, Y.P., Huang, G.D., Xu, Q., et al. (2022) miR-146a-5p Attenuates Allergic Airway Inflammation by Inhibiting the NLRP3 Inflammasome Activation in Macrophages. Interna-tional Archives of Allergy and Immunology, 183, 919- 930.
https://doi.org/10.1159/000524718
[17] Duan, W.T., Huang, J., Wasti, B., et al. (2023) miR-146a-3p as a Potential Novel Therapeutic by Targeting MBD2 to Mediate Th17 Differentiation in Th17 Predominant Neutrophilic Severe Asthma. Clinical and Experimental Medicine, 23, 2839-2854.
https://doi.org/10.1007/s10238-023-01033-0
[18] Qian, F.H., Deng, X., Zhuang, Q.X., Wei, B. and Zheng, D.D. (2019) miR-625-5p Suppresses Inflammatory Responses by Targeting AKT2 in Human Bronchial Epithelial Cells. Mo-lecular Medicine Reports, 19, 1951-1957.
[19] Li, R.Z., Sano, T., Mizokami, A., et al. (2023) miR-582-5p Targets Skp1 and Regulates NF-κB Signaling-Mediated Inflammation. Archives of Biochemistry and Biophysics, 734, Article ID: 109501.
[20] Chen, X.F., Xiao, Z., Jiang, Z.Y., et al. (2021) Schisandrin B Attenuates Airway Inflammation and Air-way Remodeling in Asthma by Inhibiting NLRP3 Inflammasome Activation and Reducing Pyroptosis. Inflammation, 44, 2217-2231.
https://doi.org/10.1007/s10753-021-01494-z
[21] Yang, T., Xu, C., Ding, N., et al. (2021) MiR-140 Suppresses Airway Inflammation and Inhibits Bronchial Epithelial Cell Apoptosis in Asthma by Targeting GSK3β. Ex-perimental and Molecular Pathology, Article ID: 104717.
https://doi.org/10.1016/j.yexmp.2021.104717
[22] Liang, Y.X., Feng, Y.C., Wu, W.L., et al. (2020) mi-croRNA-218-5p Plays a Protective Role in Eosinophilic Airway Inflammation via Targeting δ-Catenin, a Novel Catenin in Asthma. Clinical & Experimental Allergy, 50, 29-40.
https://doi.org/10.1111/cea.13498
[23] Chen, Y., Mao, Z.D., Shi, Y.J., et al. (2019) Comprehensive Analysis of miRNA-Mrna-lncRNA Networks in Severe Asthma. Epigenomics, 11, 115-131.
https://doi.org/10.2217/epi-2018-0132
[24] Lou, L.L., et al. (2020) MiRNA-192-5p Attenuates Airway Remodel-ing and Autophagy in Asthma by Targeting MMP-16 and ATG7. Biomedicine & Pharmacotherapy, 122, Article ID: 109692.
[25] Song, Y.L., Wang, Z.G., Jiang, J.Z., et al. (2020) DEK-Targeting Aptamer DTA-64 Attenuates Bronchial EMT-Me- diated Airway Remodelling by Suppressing TGF-β1/Smad, MAPK and PI3K Signalling Pathway in Asthma. Journal of Cellular and Molecular Medicine, 24, 13739-13750.
https://doi.org/10.1111/jcmm.15942
[26] Li, B.B., Chen, Y.L. and Pang, F.Z. (2020) MicroRNA-30a Targets ATG5 and Attenuates Airway Fibrosis in Asthma by Sup-pressing Autophagy. Inflammation, 43, 44-53.
https://doi.org/10.1007/s10753-019-01076-0
[27] Hur, J., Rhee, C.K., Lee, S.Y., et al. (2021) MicroRNA-21 Inhibition Attenuates Airway Inflammation and Remodelling by Modulating the Transforming Growth Factor β-Smad7 Pathway. The Korean Journal of Internal Medicine, 36, 706-720.
https://doi.org/10.3904/kjim.2020.132
[28] Wang, H.Y., Yao, H.J., Yi, B., et al. (2019) MicroRNA-638 Inhibits Human Airway Smooth Muscle Cell Proliferation and Migration through Targeting Cyclin D1 and NOR1. Journal of Cellular Physiology, 234, 369-381.
https://doi.org/10.1002/jcp.26930
[29] Chen, H., Guo, S.X., Zhang, S., et al. (2020) MiRNA-620 Promotes TGF-β1-Induced Proliferation of Airway Smooth Muscle Cell through Controlling PTEN/AKT Signaling Pathway. The Kaohsiung Journal of Medical Sciences, 36, 869-877.
https://doi.org/10.1002/kjm2.12260
[30] Wang, T.Y., Zhou, Q.L. and Shang, Y.X. (2020) MiRNA-451a Inhibits Airway Remodeling by Targeting Cadherin 11 in an Allergic Asth-ma Model of Neonatal Mice. International Immunopharmacology, 83, Article ID: 106440.
https://doi.org/10.1016/j.intimp.2020.106440
[31] Yang, Z.C., Qu, Z.H., Yi, M.J., et al. (2020) MiR-204-5p Inhib-its Transforming Growth Factor-β1-Induced Proliferation and Extracellular Matrix Production of Airway Smooth Muscle Cells by Regulating Six1 in Asthma. International Archives of Allergy and Immunology, 181, 239-248.
https://doi.org/10.1159/000505064
[32] Li, J., Chen, R.C., Lu, Y.Z. and Zeng, Y.W. (2022) The mi-croRNA-1278/SHP-1/STAT3 Pathway Is Involved in Airway Smooth Muscle Cell Proliferation in a Model of Severe Asthma Both Intracellularly and Extracellularly. Molecular and Cellular Biochemistry, 477, 1439-1451.
https://doi.org/10.1007/s11010-022-04358-8
[33] Zhang, H., Yan, H.L., Li, X.Y. and Guo, Y.N. (2020) TNFSF14, a Novel Target of miR-326, Facilitates Airway Remodeling in Airway Smooth Muscle Cells via Inducing Extracellular Matrix Protein Deposition and Proliferation. The Kaohsiung Journal of Medical Sciences, 36, 508-514.
https://doi.org/10.1002/kjm2.12197
[34] Yang, W., Chen, Y., Huang, C., et al. (2021) MiR-18a Inhibits PI3K/AKT Signaling Pathway to Regulate PDGF BB-Induced Airway Smooth Muscle Cell Proliferation and Phenotypic Transformation. Physiological Research, 70, 883-892.
https://doi.org/10.33549/physiolres.934753
[35] Yan, F., Wufuer, D., Ding, J.B., et al. (2021) MicroRNA miR-146a-5p Inhibits the Inflammatory Response and Injury of Airway Epithelial Cells via Targeting TNF Receptor-Associated Factor 6. Bioengineered, 12, 1916-1926.
https://doi.org/10.1080/21655979.2021.1927545
[36] Shao, Y.Y., Chong, L., Lin, P., et al. (2019) Mi-croRNA-133a Alleviates Airway Remodeling in Asthtama through PI3K/AKT/mTOR Signaling Pathway by Targeting IGF1R. Journal of Cellular Physiology, 234, 4068-4080.
https://doi.org/10.1002/jcp.27201
[37] Xiao, Y.L., Zhu, H., Lei, J.H., et al. (2023) MiR-182/Sestrin2 Affects the Function of Asthmatic Airway Smooth Muscle Cells by the AMPK/mTOR Pathway. Journal of Translational Internal Medicine, 11, 282-293.
https://doi.org/10.2478/jtim-2021-0033
[38] Sun, M.H., Huang, Y.Y., Li, F., et al. (2018) MicroRNA-874 Inhibits TNF-α-Induced Remodeling in Human Fetal Airway Smooth Muscle Cells by Targeting STAT3. Respiratory Physiology & Neurobiology, 251, 34-40.
[39] Zhang, S.Q., Sun, P., Xiao, X.R., et al. (2022) MicroRNA-21 Promotes Epitheli-al-Mesenchymal Transition and Migration of Human Bronchial Epithelial Cells by Targeting Poly (ADP-Ribose) Poly-merase-1 and Activating PI3K/AKT Signaling. The Korean Journal of Physiology & Pharmacology, 26, 239-253.
https://doi.org/10.4196/kjpp.2022.26.4.239
[40] Yu, Z.W., Xu, Y.Q., Zhang, X.J., et al. (2019) Mutual Regulation between miR-21 and the TGFβ/Smad Signaling Pathway in Human Bronchial Fibroblasts Promotes Airway Remodeling. The Journal of Asthma, 56, 341-349.
https://doi.org/10.1080/02770903.2018.1455859
[41] Meng, J., Zou, Y.X., Hou, L., et al. (2022) MiR-140-3p Ameliorates the Inflammatory Response of Airway Smooth Muscle Cells by Targeting HMGB1 to Regulate The JAK2/STAT3 Signaling Pathway. Cell Journal, 24, 673-680.
[42] Fan, Q. and Jian, Y. (2020) MiR-203a-3p Regulates TGF-β1-Induced Epithelial—Mesenchymal Transition (EMT) in Asthma by Regulating Smad3 Pathway through SIX1. Bioscience Reports, 40, BSR20192645.
https://doi.org/10.1042/BSR20192645
[43] Liu, M., Liu, S., Li, F.J., et al. (2023) The miR-124-3p Regulates the Allergic Airway Inflammation and Remodeling in an Ovalbumin-Asthmatic Mouse Model by Inhibiting S100A4. Im-munity, Inflammation and Disease, 11, e730.
https://doi.org/10.1002/iid3.730
[44] Cai, Y.X., Tian, J.F., Su, Y.F. and Shi, X.L. (2023) MiR-506 Targets Polypyrimidine Tract-Binding Protein 1 to Inhibit Airway Inflammatory Response and Remodeling via Mediating Wnt/β-Catenin Signaling Pathway. Allergologia et Immunopathologia, 51, 15-24.
https://doi.org/10.15586/aei.v51i3.676