单核细胞和内皮细胞上的Eph家族在动脉粥样硬化中的研究进展
Research Progress of Eph Family on Monocytes and Endothelial Cells in Atherosclerosis
DOI: 10.12677/MD.2023.134073, PDF, HTML, XML, 下载: 245  浏览: 405 
作者: 李建锻:广州市红十字会医院心内科(广州市应急医院,暨南大学附属广州红十字会医院,广州市红十字会医院互联网医院),广东 广州
关键词: Eph家族单核细胞内皮细胞动脉粥样硬化Eph Family Monocytes Endothelial Cells Atherosclerosis
摘要: 动脉粥样硬化是一种全身性炎症性疾病,其中单核细胞与内皮细胞的粘附和单核细胞迁移到内皮下层是形成动脉粥样硬化斑块的关键事件。Eph家族参与了与动脉粥样硬化相关的过程,包括单核细胞的趋化、粘附、迁移以及动脉粥样硬化炎症的调节等。Eph家族在单核细胞与内皮细胞之间构建了复杂的网络。本文将对这些关键事件进行综合概括,为未来的研究方向和寻找针对动脉粥样硬化的新治疗靶点提供新的见解。
Abstract: The formation of plaque in atherosclerosis, a systemic inflammatory disease, is largely dependent on the adherence of monocytes to endothelial cells and their migration into the subendothelial lay-er. The Eph family plays a role in monocyte chemotaxis, adhesion, migration, and the control of ath-erosclerotic inflammation, among other atherosclerosis-related events. Between monocytes and endothelial cells, the Eph family creates a complex network. This paper offers a thorough overview of these significant occasions, presenting fresh perspectives for potential future study avenues and the discovery of cutting-edge atherosclerosis treatment targets.
文章引用:李建锻. 单核细胞和内皮细胞上的Eph家族在动脉粥样硬化中的研究进展[J]. 医学诊断, 2023, 13(4): 478-486. https://doi.org/10.12677/MD.2023.134073

1. Eph家族与动脉粥样硬化

动脉粥样硬化是导致死亡的主要原因之一 [1] ,它是一种全身性炎症性疾病 [2] 。在动脉粥样硬化形成的早期,促炎症因子如肿瘤坏死因子-α (TNF-α)、白细胞介素-1 (IL-1)和氧化低密度脂蛋白(ox-LDL)等,会刺激内皮细胞活化,导致内皮通透性增强,细胞粘附分子表达增加,从而促进单核细胞的募集,以及内皮抗血栓功能障碍 [3] 。促炎症细胞粘附分子和趋化因子,如血管细胞粘附分子-1 (VCAM-1)、细胞间粘附分子-1 (ICAM-1)、E-选择素、单核细胞趋化蛋白-1 (MCP-1),在单核细胞粘附到内皮细胞上、浸润动脉粥样硬化管壁并转化为巨噬细胞表型、吞噬脂质沉积的过程中发挥着重要作用 [4] [5] [6] 。这些激活和功能失调的脂质负载巨噬细胞被称为“泡沫细胞”,通过分泌可溶性因子(如细胞因子和集落刺激因子)进入动脉粥样硬化斑块,引发持续的局部炎症和斑块进展 [3] 。因此,在动脉粥样硬化斑块的形成过程中,单核细胞与内皮细胞的粘附以及单核细胞迁移到内皮下层是至关重要的事件 [7] [8] [9] 。近年来的研究表明,Eph家族参与了动脉粥样硬化的相关过程,并在人类动脉粥样硬化斑块中发现了多种Ephrin和Eph受体 [10] [11] [12] [13] [14] 。此外,Eph A2、Eph A8和Eph B2基因位于小鼠动脉粥样硬化易感性强相关的位点(Athsq1位点),与人类早发性心肌梗死易感性位点高度同源 [15] 。目前公认Eph家族参与了动脉粥样硬化的相关过程,包括单核细胞趋化、粘附、迁移以及动脉粥样硬化炎症的调节等 [16] 。

2. Eph家族的组成、结构及功能

Eph家族由Ephrin配体和Eph受体组成,两者均为膜结合蛋白。Eph受体属于酪氨酸激酶受体中最大的亚群,其结构相似,包括N端的球形结构域(含有配体结合位点)、半胱氨酸富含区域、纤维连接蛋白-III型重复序列、跨膜结构域、膜旁区域、激酶结构域、SAM结构域和PDZ结合结构域。Ephrin与细胞膜结合方式不同,可分为两个亚类:A亚类通过糖基磷脂酰肌醇与细胞膜结合,而B亚类只含一个跨膜结构域。哺乳动物表达15种Eph受体,根据序列同源性和对Ephrin配体(Ephrin A1-5、Ephrin B1-3)的结合偏好,分为A类(Eph A1-8和10)和B类(Eph B1-6)受体 [17] [18] [19] [20] 。Ephrin和Eph受体具有双向信号传导能力:Eph受体通过其酪氨酸激酶活性介导正向信号传导,而Ephrin通过其保守的胞质结构域介导反向信号传导 [20] [21] 。Eph受体也能够独立于其配体发挥作用。例如,早期的研究表明,未受刺激的Eph A2受体与局灶性粘附激酶(FAK)存在结构性关联 [22] 。随后,Barquilla等人 [23] 和Miao等人 [24] 的研究表明了Eph A2信号的非配体调控。Eph受体相互作用复杂,它们也能够独立于其配体发挥作用 [22] [23] [24] 。Eph家族在调节细胞迁移、聚集、靶向等多种生理效应中起着关键作用,涉及神经轴突导向、血管生成和肿瘤形成等领域 [25] [26] [27] [28] 。在动脉粥样硬化的发生中,Eph家族在单核细胞与内皮细胞之间构建了复杂的信号通路,每一通路的具体机制都各有不同。本文详细阐述了Eph家族在调控动脉粥样硬化的发生和发展过程中的具体机制。

3. 存在于单核细胞与内皮细胞之间的Eph家族

研究发现,动脉粥样硬化相关的细胞,如单核细胞和动脉内皮细胞,均表达多种Ephrin和Eph基因 [13] 。在成年外周血单核细胞中,除了Ephrin A2、Eph A3、Eph A7和Ephrin B3之外,其余Ephrin和Eph基因都有检测到信号。Ephrin A4和Eph B2、Eph B4以及Eph B6的编码基因显示较强的信号。在HCAEC中,除了Eph A1和Eph B3的编码基因之外,其余成员都被发现,其中Eph A2、Eph A4、Ephrin A1、Ephrin A4、Ephrin A5、Ephrin B1、Ephrin B2、Eph B1、Eph B2以及Eph B4的编码基因均表现出强烈的信号 [13] 。单核细胞和动脉内皮细胞均表达了大部分Ephrin及EPH受体,根据受体作用机制的不同,我们将其分为配体依赖型相关信号通路和非配体依赖型相关信号通路。

3.1. 配体依赖型相关信号通路

3.1.1. Ephrin A1

Funk等人研究发现 [29] ,与标准饮食相比,敲除APOE基因的小鼠在西方饮食下,动脉粥样硬化血管中Eph A2和Ephrin A1的表达增强。在动脉粥样硬化斑块中,Eph A2主要在泡沫细胞中高度表达,而Ephrin A1主要浸润在斑块上皮细胞层。同时,免疫荧光染色显示Ephrin A1和Eph A2在斑块内皮细胞层中共定位。另外,Jiang等人 [30] 通过携带针对Eph A2的siRNA的腺相关病毒转染APOE基因敲除的小鼠,这些小鼠随后被喂食高胆固醇饮食12周。结果显示,Eph A2的下调并没有显著改变血浆中的脂质浓度,包括甘油三酯、胆固醇、低密度脂蛋白和高密度脂蛋白。然而,与对照组相比,敲除Eph A2的小鼠整个主动脉窦中形成的动脉粥样硬化斑块明显减小,炎症减轻,表现在斑块内巨噬细胞浸润减少,NF-κB活性下降,ICAM-1、E-选择素、MCP-1的表达减少 [30] 。由此可见,Eph A2受体和其配体Ephrin A1参与血管内皮细胞的炎症反应 [31] [32] 。进一步实验表明 [29] ,多种致动脉粥样硬化介质(如TNF、IL-1、ox-LDL)诱导内皮细胞中Eph A2受体表达及其Ephrin A1配体的表达。同时,配体与受体结合也会使Eph A2磷酸化激活,但不影响Eph A4、Ephrin A4、Ephrin A5的表达。ox-LDL刺激动脉内皮细胞可诱导VCAM-1的表达增多,此过程需要Eph A2的参与,但细胞因子TNF、IL-1诱导VCAM-1的表达增多不依赖于Eph A2。这些促炎症刺激在VCAM-1表达的机制、幅度和持续时间方面存在显著差异 [33] [34] ,这可能是因为细胞因子的早期、强烈的促炎症作用可以刺激负反馈通路,如IκB家族成员和A20的表达,限制NF-κB的激活和促炎基因的表达 [35] 。因此,炎症的自限性可能在细胞因子刺激的后期减小Eph A2激活介导的促炎症作用,在ox-LDL刺激后更明显。重组FC-Ephrin A1激活主动脉内皮细胞Eph A2,可显著增加动脉粥样硬化相关基因的表达,这些基因涉及炎性细胞的靶向(VCAM-1、E-选择素)以及血栓形成(组织因子)。有趣的是,重组FC-Ephrin A1还降低了动脉粥样硬化保护基因的表达,包括胶原XVIII和钙化抑制剂骨保护蛋白。同时,重组FC-Ephrin A1诱导了主动脉内皮细胞VCAM-1表达增多,促进了单核细胞的粘附,而抑制Eph A2则能够消除这一效应。然而,重组FC-Ephrin A1和ox-LDL均未能诱导静脉内皮细胞VCAM-1的表达。由于动脉与静脉内皮细胞Eph A2受体的表达相似,这可能是因为静脉内皮细胞参与将Eph A2激活与促炎症基因表达关联的关键下游介质表达减少所致,具体机制需要进一步研究。TNF-α是在全身炎症和免疫应答中最重要的细胞因子之一 [36] [37] 。它可通过激活内皮细胞的NF-κB来上调不同促粘附基因的表达,如VCAM-1或ICAM-1,从而诱导单核细胞与内皮细胞的粘附 [38] [39] 。然而。Ende等人 [11] 研究发现,TNF-α能够激活NF-κB,从而上调内皮细胞(HUVEC、HUAEC、HCAEC)中Ephrin A1的表达,上调的Ephrin A1与邻近的内皮细胞的Eph A4结合,Eph A4的正向信号能够改变内皮细胞的细胞骨架,进而影响VCAM-1和ICAM-1的表面呈现,从而促进单核细胞与内皮细胞的粘附,而不是通过影响VCAM-1和ICAM-1 mRNA或蛋白表达。有趣的是,Funk等人证实,重组FC-Ephrin A1也可激活Eph A2受体,通过上调主动脉内皮细胞VCAM-1的转录水平诱导单核细胞粘附,而刺激静脉内皮细胞则不会 [29] 。总之,Ephrin A1似乎在单核细胞与内皮细胞的粘附调节中具有双重功能。Ephrin A1主要激活内皮细胞上的Eph A2和Eph A4受体,Eph A2激活导致VCAM-1的转录激活(仅在动脉内皮细胞中),而激活Eph A4受体则通过调控细胞骨架变化(存在于静脉和动脉内皮细胞中),影响粘附分子VCAM-1和ICAM-1的表面呈现,导致单核细胞粘附增强。近年来,也有文章表明T细胞Ephrin A与内皮细胞Eph A受体相互作用,刺激T细胞与内皮细胞表面配体粘附,从而促进局部炎症浸润 [40] 。除炎症外,Ephrin A1和Eph A2还在血管生成过程中介导血管重构反应 [41] 。血管生成为单核细胞的靶向提供了额外的途径,在慢性炎症中促使炎症持续存在 [42] 。在日益增长的动脉粥样硬化斑块核心中,缺氧刺激斑块内的血管生成,而血管生成抑制剂足以减缓斑块的进展 [43] 。因此,通过限制Eph A2的活性或表达,可以减少炎症和斑块内的血管生成,从而缓解动脉粥样硬化。

3.1.2. Ephrin B1

单核细胞迁移到内皮下层是动脉粥样硬化斑块形成的初始步骤 [44] 。单核细胞与内皮细胞的相互作用是由粘附分子介导的,而它们的趋化性则是由趋化因子,如MCP-1等引导的 [45] 。单核细胞随后分化为巨噬细胞,巨噬细胞在动脉粥样硬化形成中扮演着关键角色 [46] 。Sakamoto等人的研究发现 [10] ,免疫组织学分析表明在动脉粥样硬化斑块中,Ephrin B1和Eph B2在巨噬细胞和T淋巴细胞中表达,而在健康成人的单核细胞、T淋巴细胞和动脉内皮细胞中也有表达。Ephrin B1和Eph B2在动脉粥样硬化斑块中的巨噬细胞和T淋巴细胞中均表达增加,它们可能通过调节MCP-1依赖性的趋化性来促进了动脉粥样硬化的发生。然而,外源性的Ephrin B1和Eph B2均抑制了外周血THP-1细胞和单核细胞自发性和细胞动力依赖性迁移。这个实验结果表明,正常内皮细胞上的Ephrin B1和(或) Eph B2可能抑制单核细胞的迁移,因此,由于内膜侵蚀导致这些分子的丧失可能促进动脉粥样硬化斑块中单核细胞的募集。与Ephrin A1和Eph A2相似,Ephrin B1和Eph B2也参与血管生成,这可能促进动脉粥样硬化的进展 [9] 。它们也可以诱导T细胞共刺激,引发适应性免疫 [47] ,甚至介导了炎症细胞在斑块中的滞留,从而促进了内皮下炎症。

3.1.3. Ephrin B2

动脉粥样硬化是一种慢性炎症性疾病,主要发生在动脉分叉处。振荡流、低血流剪切力或血管壁的周期性扩张会导致内皮功能障碍,这是早期动脉粥样硬化病变形成的标志 [48] 。MCP-1是一种动脉粥样硬化相关分子,由血管壁的常驻细胞和浸润的单核细胞表达 [49] 。IL-8在动脉粥样硬化斑块的巨噬细胞中表达 [50] [51] ,作为一种促进中性粒细胞激活和迁移的趋化因子 [52] 。MCP-1和IL-8均加重了小鼠主动脉中动脉粥样硬化病变,引发了单核细胞与内皮细胞的粘附 [53] 。研究表明,Ephrin B2存在于动脉粥样硬化的偏好部位,会在振荡流或低血流剪切力区域上调表达 [14] [31] [54] 。对动脉粥样硬化斑块中Ephrin B2表达模式的分析显示,它在主动脉弓小弯侧的内皮细胞上表达,而主动脉弓小弯侧是动脉粥样硬化病变的易感区域 [31] 。同时,升高的周向壁张力也能诱导内皮细胞上调Ephrin B2的表达,配体与单核细胞上的Eph B2受体结合,促进Eph B2的磷酸化,从而刺激单核细胞分泌IL-8和MCP-1,进一步促进单核细胞激活、粘附和募集。粘附后的单核细胞可上调自身Eph B2的表达,进而促进单核细胞向巨噬细胞分化 [31] 。同时,该团队还观察到,当THP-1细胞悬浮在Ephrin B2涂层上时,明显发生了Eph B2磷酸化。然而,当悬浮的THP-1细胞暴露于可溶性Ephrin B2时,既没有导致Eph B2的磷酸化,也没有引起促炎症基因表达的显著变化。这突出表明,只有Ephrin B2的聚集才能够引发与Eph B介导的生物学效应相关的变化 [31] [55] [56] 。尽管这些发现主要集中在内皮细胞的Ephrin B2激活单核细胞的EPH受体,但目前的研究结果表明,单核细胞上的Ephrin B2也能够激活内皮细胞 [57] 。单核细胞与内皮细胞的粘附过程中,一个重要的步骤是粘附分子在细胞表面呈现,如VCAM-1、ICAM-1和选择素家族成员,以及与细胞骨架成分相互作用,这被认为对于牢固的细胞粘附至关重要 [58] 。小型GTP酶,如RhoA、Rac和Cdc42,参与了肌动蛋白聚合的过程 [59] 。已知Eph系统能影响Ras和Rho等小型GTPases [60] ,这对细胞骨架重排至关重要。Poitz等研究发现,人动脉粥样硬化斑块免疫组化染色显示巨噬细胞中也表达Ephrin B2。炎症介质,如LPS和ox-LDL,能够诱导巨噬细胞中Ephrin B2的表达,进而与内皮细胞上的Eph A4受体结合,激活Rho信号通路,促进肌动蛋白丝聚合和应力纤维形成,从而调节肌动蛋白细胞骨架,独立于粘附受体的转录激活机制,以促进单核细胞与内皮细胞粘附 [57] 。此外,单核细胞的激活会导致Ephrin B2的表达增加,通过单核细胞上Ephrin B2和内皮细胞上的Eph B4受体之间的双向信号传导,增强单核细胞的粘附和转运 [61] ,但具体机制尚不清楚。

3.2. 非配体依赖型相关信号通路

3.2.1. Eph A2

凝血酶是一种丝氨酸蛋白酶,具有广泛的生物活性。它不仅能将纤维蛋白原裂解成纤维蛋白以形成血栓,还能诱导内皮细胞炎症 [62] 。Chan等人 [62] 研究发现,凝血酶能够激活内皮细胞上的PAR-1受体,进而激活Src酪氨酸激酶,导致Eph A2的酪氨酸磷酸化。Eph A2的反式激活引发了NF-κB的激活和随后的ICAM-1的表达,ICAM-1的增加促进单核细胞附着到内皮细胞上,进而引发内皮细胞的炎症浸润。凝血酶诱导的Eph A2酪氨酸磷酸化可以被Src酪氨酸激酶选择性抑制剂PP2完全消除 [62] 。如上所述,多种致动脉粥样硬化介质(如TNF、IL-1、ox-LDL)的刺激可以通过上调Ephrin A1来激活Eph A2受体,从而促进单核细胞与内皮细胞粘附 [29] 。在这里,凝血酶对Eph A2的激活不是由Ephrin A1或其他Ephrins介导的,而是依赖于Src酪氨酸激酶。Eph A2受体不仅参与了单核细胞与内皮细胞的粘附,还影响了内皮细胞之间的粘附以及内皮通透性 [63] 。高同型半胱氨酸血症(HHcy)被认为是心血管疾病重要且独立的危险因素 [64] 。HHcy可以改变内皮细胞屏障功能和血管生成潜能,从而导致内皮损伤 [65] 。颗粒蛋白前体(PGRN)是由颗粒蛋白编码的一种分泌性糖蛋白。Kojima等人首次报道了PGRN在动脉粥样硬化斑块中的表达 [66] 。相较于正常小鼠,敲除PGRN基因的小鼠表现出更严重的动脉粥样硬化病变 [67] 。VE-cadherin是一种仅在内皮细胞中表达的粘附分子,用于形成粘附连接并调节内皮细胞的通透性 [68] 。Tian等人 [69] 的研究发现,同型半胱氨酸能够降低PGRN的表达量,进而降低Eph A2和VE-cadherin的表达量。Eph A2的下调导致AKT磷酸化增多,而NF-κB p65磷酸化减少,进而导致VCAM-1的表达量减少。VCAM-1和VE-cadherin的表达降低导致血管生成潜力、迁移能力、细胞粘附能力下降,进而导致内皮细胞的粘附连接分离,内皮通透性增高,内皮屏障受损,从而促使急性心血管事件的发生 [69] 。有趣的是,体外研究证实Eph A2是PGRN的功能性受体,Eph A2的沉默可显著阻止PGRN介导的自动调节 [70] 。PGRN和Ephrin A1可能在生理条件下作为Eph A2的配体共存并维持相对平衡,直到炎症干扰了这种平衡 [69] 。

3.2.2. Eph B2

Vreeken等人 [16] 通过对动脉粥样硬化不同阶段的人主动脉切片进行Eph B2免疫组化染色,包括从I期(正常、适应性内膜增厚)到IV期(愈合破裂、纤维钙化斑块)。在正常血管组织中,Eph B2的表达量极少。然而,随着动脉粥样硬化病变的进展,Eph B2的表达逐渐增加。在IV期组织切片上,使用白细胞标记(CD45)或单核细胞/巨噬细胞标记(CD68)对Eph B2进行了双重染色,结果提示大多数对Eph B2阳性的细胞为单核细胞/巨噬细胞。进一步实验证明,单核细胞上的Eph B2与FAK结合可上调FAK的Y397磷酸化水平(独立于配体),导致Src酪氨酸激酶激活,从而调控小型GTP酶以影响肌动蛋白细胞骨架,促进了单核细胞与内皮细胞的粘附及迁移,从而引发单核细胞的积累,加速动脉粥样硬化斑块的形成和进展。该团队还发现,重组Eph B2受体激活内皮细胞的Ephrin B配体对内皮细胞的屏障功能没有影响,同时,重组FC-Ephrin B配体激活单核细胞EPH受体对单核细胞粘附没有影响,对迁移影响很小。虽然这个结果似乎与上述研究 [10] 中Ephrin B1能够抑制单核细胞迁移的结果矛盾,但值得注意的是,Ephrin配体呈现的方式是其主要影响因素。虽然表面涂有Ephrin配体可以阻止单核细胞的迁移 [10] [71] ,但在Transwell系统中,可溶性Ephrin B配体却能促进单核细胞的迁移 [16] [72] 。

4. 结论

综上所述,Ephrin A1、Ephrin B1、Ephrin B2以及Eph A2和Eph B2都有希望成为预防动脉粥样硬化的干预靶点。近年来,对于Eph系统的研究主要集中在肿瘤领域,同时也有报道使用不同的Eph受体靶向药物进行了相关临床试验 [73] [74] 。Eph系统在动脉粥样硬化的发生和发展中起到了至关重要的作用。尽管关于Eph系统的研究越来越多,但大多数研究仍处于临床前。为了进一步的研究,我们应该将重点放在上述Eph家族成员,并进行针对上述受体及配体的动物实验及临床药物研究,揭开复杂的动脉粥样硬化过程中的新角色将有助于我们探索更多治疗动脉粥样硬化的新靶点。

参考文献

[1] Nichols, M., Townsend, N., Scarborough, P. and Rayner, M. (2014) Cardiovascular Disease in Europe 2014: Epidemiological Update. European Heart Journal, 35, 2950-2959.
https://doi.org/10.1093/eurheartj/ehu299
[2] Bobryshev, Y.V., Ivano-va, E.A., Chistiakov, D.A., et al. (2016) Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. BioMed Research International, 2016, Article ID: 9582430.
https://doi.org/10.1155/2016/9582430
[3] Libby, P. (2002) Inflammation in Atherosclerosis. Nature, 420, 868-874.
https://doi.org/10.1038/nature01323
[4] Chen, Y., Liu, S., Wu, L., Liu, Y., Du, J., Luo, Z., et al. (2023) Epigenetic Reg-ulation of Chemokine (CC-Motif) Ligand 2 in Inflammatory Diseases. Cell Proliferation, 56, e13428.
https://doi.org/10.1111/cpr.13428
[5] Pekayvaz, K., Gold, C., Hoseinpour, P., Engel, A., Martinez-Navarro, A., Eivers, L., et al. (2023) Mural Cell-Derived Chemokines Provide a Protective Niche to Safeguard Vascular Macrophages and Limit Chronic Inflammation. Immunity, 56, 2325-2341.e15.
https://doi.org/10.1016/j.immuni.2023.08.002
[6] Ross, R. (1999) Atherosclerosis—An Inflammatory Disease. The New England Journal of Medicine, 340, 115-126.
https://doi.org/10.1056/NEJM199901143400207
[7] Gordon, S. (1995) The Macrophage. Bioessays, 17, 977-986.
https://doi.org/10.1002/bies.950171111
[8] Murai, K.K. and Pasquale, E.B. (2003) ‘Eph’ective Signaling: Forward, Re-verse and Crosstalk. Journal of Cell Science, 116, 2823-2832.
https://doi.org/10.1242/jcs.00625
[9] Palmer, A. and Klein, R. (2003) Multiple Roles of Ephrins in Morphogenesis, Neuronal Networking, and Brain Function. Genes & Development, 17, 1429-1450.
https://doi.org/10.1101/gad.1093703
[10] Sakamoto, A., Ishibashi-Ueda, H., Sugamoto, Y., Higashikata, T., Miyamoto, S., Kawashiri, M.-A., et al. (2008) Expression and Function of Ephrin-B1 and Its Cognate Receptor EphB2 in Hu-man Atherosclerosis: From an Aspect of Chemotaxis. Clinical Science (London), 114, 643-650.
https://doi.org/10.1042/CS20070339
[11] Ende, G., Poitz, D.M., Wiedemann, E., Augstein, A., Friedrichs, J., Giebe, S., et al. (2014) TNF-α-Mediated Adhesion of Monocytes to Endothelial Cells—The Role of EphrinA1. Journal of Molecular and Cellular Cardiology, 77, 125-135.
https://doi.org/10.1016/j.yjmcc.2014.10.010
[12] Finney, A.C., Funk, S.D., Green, J.M., Yurdagul, A., Rana, M.A., Pis-torius, R., et al. (2017) EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis. Cir-culation, 136, 566-582.
https://doi.org/10.1161/CIRCULATIONAHA.116.026644
[13] Sakamoto, A., Sugamoto, Y., Tokunaga, Y., Yoshimuta, T., Hayashi, K., Konno, T., et al. (2011) Expression Profiling of the Ephrin (EFN) and Eph Receptor (EPH) Family of Genes in Atherosclerosis-Related Human Cells. Journal of International Medical Research, 39, 522-527.
https://doi.org/10.1177/147323001103900220
[14] van Gils, J.M., Ramkhelawon, B., Fernandes, L., Stewart, M.C., et al. (2013) Endothelial Expression of Guidance Cues in Vessel Wall Homeostasis Dysregulation under Proatherosclerotic Condi-tions. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 911-919.
https://doi.org/10.1161/ATVBAHA.112.301155
[15] Welch, C.L., Bretschger, S., Latib, N., Bezouevski, M., Guo, Y., Pleskac, N., et al. (2001) Localization of Atherosclerosis Susceptibility Loci to Chromosomes 4 and 6 Using the Ldlr Knockout Mouse Model. Proceedings of the National Academy of Sciences, 98, 7946-7951.
https://doi.org/10.1073/pnas.141239098
[16] Vreeken, D., Bruikman, C.S., Cox, S.M.L., Zhang, H., Lalai, R., Koudijs, A., et al. (2020) EPH Receptor B2 Stimulates Human Monocyte Adhesion and Migration Independently of Its EphrinB Ligands. Journal of Leukocyte Biology, 108, 999-1011.
https://doi.org/10.1002/JLB.2A0320-283RR
[17] Himanen, J.-P., Saha, N. and Nikolov, D.B. (2007) Cell-Cell Signaling via Eph Receptors and Ephrins. Current Opinion in Cell Biology, 19, 534-542.
https://doi.org/10.1016/j.ceb.2007.08.004
[18] Ivanov, A.I. and Romanovsky, A.A. (2006) Putative Dual Role of Ephrin-Eph Receptor Interactions in Inflammation. IUBMB Life, 58, 389-394.
https://doi.org/10.1080/15216540600756004
[19] Kalo, M.S. and Pasquale, E.B. (1999) Signal Transfer by Eph Recep-tors. Cell and Tissue Research, 298, 1-9.
https://doi.org/10.1007/PL00008807
[20] Kullander, K. and Klein, R. (2002) Mechanisms and Functions of Eph and Ephrin Signalling. Nature Reviews Molecular Cell Biology, 3, 475-486.
https://doi.org/10.1038/nrm856
[21] Pasquale, E.B. (2005) Eph Receptor Signalling Casts a Wide Net on Cell Behaviour. Nature Reviews Molecular Cell Biology, 6, 462-475.
https://doi.org/10.1038/nrm1662
[22] Miao, H., Li, D.-Q., Mukherjee, A., Guo, H., Petty, A., Cutter, J., et al. (2009) EphA2 Mediates Ligand-Dependent Inhibition and Ligand-Independent Promotion of Cell Migration and Invasion via a Recip-rocal Regulatory Loop with Akt. Cancer Cell, 16, 9-20.
https://doi.org/10.1016/j.ccr.2009.04.009
[23] Barquilla, A., Lamberto, I., Noberini, R., Heynen-Genel, S., Brill, L.M. and Pasquale, E.B. (2016) Protein Kinase A Can Block EphA2 Re-ceptor-Mediated Cell Repulsion by Increasing EphA2 S897 Phosphorylation. Molecular Biology of the Cell, 27, 2757-2770.
https://doi.org/10.1091/mbc.e16-01-0048
[24] Miao, H., Gale, N.W., Guo, H., Qian, J., Petty, A., Kaspar, J., et al. (2015) EphA2 Promotes Infiltrative Invasion of Glioma Stem Cells in Vivo through Cross-Talk with Akt and Regulates Stem Cell Properties. Oncogene, 34, 558-567.
https://doi.org/10.1038/onc.2013.590
[25] Strong, T.A., Esquivel, J., Wang, Q., Ledon, P.J., Wang, H., Gaidosh, G., et al. (2023) Activation of Multiple Eph Receptors on Neuronal Membranes Correlates with the Onset of Optic Neuropathy. Eye and Vision (London), 10, Article No. 42.
https://doi.org/10.1186/s40662-023-00359-w
[26] Li, W., Wen, L., Rathod, B., Gingras, A.C., Ley, K. and Lee, H.-S. (2023) Kindlin2 Enables EphB/EphrinB Bi-Directional Signaling to Support Vascular Development. Life Science Alliance, 6, 1-15.
https://doi.org/10.26508/lsa.202201800
[27] Papadakos, S.P., Dedes, N., Gkolemi, N., Machairas, N. and Theocharis, S. (2023) The EPH/Ephrin System in Pancreatic Ductal Adenocarcinoma (PDAC): From Pathogenesis to Treatment. International Journal of Molecular Sciences, 24, Article 3015.
https://doi.org/10.3390/ijms24033015
[28] Arora, S., Scott, A.M. and Janes, P.W. (2023) Eph Receptors in Cancer. Bio-medicines, 11, 1-15.
https://doi.org/10.3390/biomedicines11020315
[29] Funk, S.D., Yurdagul, A., Albert, P., Traylor, J.G., Jin, L., Chen, J. and Orr, A.W. (2012) EphA2 Activation Promotes the Endothelial Cell Inflammatory Response: A Potential Role in Athero-sclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 686-695.
https://doi.org/10.1161/ATVBAHA.111.242792
[30] Jiang, H., Li, X., Zhang, X., Liu, Y., Huang, S. and Wang, X. (2014) EphA2 Knockdown Attenuates Atherosclerotic Lesion Development in ApoE-/- Mice. Cardiovascular Pathology, 23, 169-174.
https://doi.org/10.1016/j.carpath.2014.01.006
[31] Braun, J., Hoffmann, S.C., Feldner, A., Ludwig, T., Henning, R., Hecker, M. and Korff, T. (2011) Endothelial Cell EphrinB2-Dependent Activation of Monocytes in Arteriosclerosis. Arterio-sclerosis, Thrombosis, and Vascular Biology, 31, 297-305.
https://doi.org/10.1161/ATVBAHA.110.217646
[32] Brantley-Sieders, D.M. and Chen, J. (2004) Eph Receptor Tyrosine Kinases in Angiogenesis: From Development to Disease. Angiogenesis, 7, 17-28.
https://doi.org/10.1023/B:AGEN.0000037340.33788.87
[33] Mitra, S., Goyal, T. and Mehta, J.L. (2011) Oxidized LDL, LOX-1 and Atherosclerosis. Cardiovascular Drugs and Therapy, 25, 419-429.
https://doi.org/10.1007/s10557-011-6341-5
[34] Tedgui, A. and Mallat, Z. (2006) Cytokines in Atherosclerosis: Patho-genic and Regulatory Pathways. Physiological Reviews, 86, 515-581.
https://doi.org/10.1152/physrev.00024.2005
[35] Werner, S.L., Kearns, J.D., Zadorozhnaya, V., Lynch, C., et al. (2008) Encoding NF-kappaB Temporal Control in Response to TNF: Distinct Roles for the Negative Regulators IkappaBalpha and A20. Genes & Development, 22, 2093-2101.
https://doi.org/10.1101/gad.1680708
[36] Hehlgans, T. and Pfeffer, K. (2005) The Intriguing Biology of the Tumour Ne-crosis Factor/Tumournecrosis Factor Receptor Superfamily: Players, Rules and the Games. Immunology, 115, 1-20.
https://doi.org/10.1111/j.1365-2567.2005.02143.x
[37] Old, L.J. (1985) Tumor Necrosis Factor (TNF). Science, 230, 630-632.
https://doi.org/10.1126/science.2413547
[38] Collins, T., Read, M.A., Neish, A.S., Whitley, M.Z., Thanos, D. and Maniatis, T. (1995) Transcriptional Regulation of Endothelial Cell Adhesion Molecules: NF-kappaB and Cytokine-Inducible Enhancers. FASEB Journal, 9, 899-909.
https://doi.org/10.1096/fasebj.9.10.7542214
[39] Baeuerle, P.A. and Henkel, T. (1994) Function and Activation of NF-kappaB in the Immune System. Annual Review of Immunology, 12, 141-179.
https://doi.org/10.1146/annurev.iy.12.040194.001041
[40] Sharfe, N., Nikolic, M., Cimpeon, L., van de Kratts, A., Frey-wald, A. and Roifman, C.M. (2008) EphA and Ephrin-A Proteins Regulate Integrin-Mediated T Lymphocyte Interactions. Mo-lecular Immunology, 45, 1208-1220.
https://doi.org/10.1016/j.molimm.2007.09.019
[41] Cheng, N., Brantley, D.M., Liu, H., et al. (2002) Blockade of EphA Receptor Tyrosine Kinase Activation Inhibits Vascular Endothelial Cell Growth Factor-Induced Angiogenesis. Molecular Can-cer Research, 1, 2-11.
[42] Moulton, K.S., Vakili, K., Zurakowski, D., et al. (2003) Inhibition of Plaque Neovascularization Reduces Macrophage Accumulation and Progression of Advanced Atherosclerosis. Proceedings of the National Academy of Sciences, 100, 4736-4741.
https://doi.org/10.1073/pnas.0730843100
[43] Moulton, K.S., Heller, E., Konerding, M.A., Flynn, E., Palinski, W. and Folkman, J. (1999) Angiogenesis Inhibitors Endostatin or TNP-470 Reduce Intimal Neovasculariza-tion and Plaque Growth in Apolipoprotein E-Deficient Mice. Circulation, 99, 1726-1732.
https://doi.org/10.1161/01.CIR.99.13.1726
[44] Osterud, B. and Bjorklid, E. (2003) Role of Monocytes in Atherogenesis. Physiological Reviews, 83, 1069-1112.
https://doi.org/10.1152/physrev.00005.2003
[45] Imhof, B.A. and Aurrand-Lions, M. (2004) Adhesion Mechanisms Regulating the Migration of Monocytes. Nature Reviews Immunology, 4, 432-444.
https://doi.org/10.1038/nri1375
[46] Lucas, A.D. and Greaves, D.R. (2001) Atherosclerosis: Role of Chemokines and Macrophages. Expert Reviews in Molecular Medicine, 3, 1-18.
https://doi.org/10.1017/S1462399401003696
[47] Wu, J. and Luo, H. (2005) Recent Advances on T-Cell Regulation by Receptor Tyrosine Kinases. Current Opinion in Hematology, 12, 292-297.
https://doi.org/10.1097/01.moh.0000166497.26397.9f
[48] Davignon, J. and Ganz, P. (2004) Role of Endotheli-al Dysfunction in Atherosclerosis. Circulation, 109, III27-III32.
https://doi.org/10.1161/01.CIR.0000131515.03336.f8
[49] Terkeltaub, R., Boisvert, W.A. and Curtiss, L.K. (1998) Chemokines and Atherosclerosis. Current Opinion in Lipidology, 9, 397-405.
https://doi.org/10.1097/00041433-199810000-00003
[50] Apostolopoulos, J., Davenport, P. and Tipping, P.G. (1996) Interleukin-8 Production by Macrophages from Atheromatous Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 16, 1007-1012.
https://doi.org/10.1161/01.ATV.16.8.1007
[51] Wang, N., Tabas, I., Winchester, R., et al. (1996) Interleukin 8 Is Induced by Cholesterol Loading of Macrophages and Expressed by Macrophage Foam Cells in Human Atheroma. Journal of Biological Chemistry, 271, 8837-8842.
https://doi.org/10.1074/jbc.271.15.8837
[52] Ribeiro, R.A., Flores, C.A., Cunha, F.Q. and Ferreira, S.H. (1991) IL-8 Causes in Vivo Neutrophil Migration by a Cell-Dependent Mechanism. Immunology, 73, 472-477.
[53] Gerszten, R.E., Gar-cia-Zepeda, E.A., Lim, Y.C., Yoshida, M., Ding, H.A., Gimbrone, M.A., et al. (1999) MCP-1 and IL-8 Trigger firm Adhesion of Monocytes to Vascular Endothelium under Flow Conditions. Nature, 398, 718-723.
https://doi.org/10.1038/19546
[54] Suzuki, Y., Yamamoto, K., Ando, J., Matsumoto, K. and Matsuda, T. (2012) Arterial Shear Stress Augments the Differentiation of Endothelial Progenitor Cells Adhered to VEGF-Bound Surfaces. Biochemical and Biophysical Research Communications, 423, 91-97.
https://doi.org/10.1016/j.bbrc.2012.05.088
[55] Himanen, J.-P. and Nikolov, D.B. (2003) Eph Signaling: A Structural View. Trends in Neurosciences, 26, 46-51.
https://doi.org/10.1016/S0166-2236(02)00005-X
[56] Füller, T., Korff, T., Kilian, A., Dandekar, G. and Augustin, H.G. (2003) Forward EphB4 Signaling in Endothelial Cells Controls Cellular Repulsion and Segregation from EphrinB2 Positive Cells. Journal of Cell Science, 116, 2461-2470.
https://doi.org/10.1242/jcs.00426
[57] Poitz, D.M., Ende, G., Stütz, B., Augstein, A., Friedrichs, J., Brunssen, C., et al. (2015) EphrinB2/EphA4-Mediated Activation of Endothelial Cells Increases Monocyte Adhesion. Molecular Immunology, 68, 648-656.
https://doi.org/10.1016/j.molimm.2015.10.009
[58] Mestas, J. and Ley, K. (2008) Monocyte-Endothelial Cell Interactions in the Development of Atherosclerosis. Trends in Cardiovascular Medicine, 18, 228-232.
https://doi.org/10.1016/j.tcm.2008.11.004
[59] Dawes, A.T. and Edelstein-Keshet, L. (2007) Phosphoinositides and Rho Proteins Spatially Regulate Actin Polymerization to Initiate and Maintain Directed Movement in a One-Dimensional Model of a Motile Cell. Biophysical Journal, 92, 744-768.
https://doi.org/10.1529/biophysj.106.090514
[60] Pasquale, E.B. (2008) Eph-Ephrin Bidirectional Signaling in Physiology and Disease. Cell, 133, 38-52.
https://doi.org/10.1016/j.cell.2008.03.011
[61] Zamora, D.O., Babra, B., Pan, Y., Planck, S.R. and Rosenbaum, J.T. (2006) Human Leukocytes Express EphrinB2 Which Activates Microvascular Endothelial Cells. Cellular Immunology, 242, 99-109.
https://doi.org/10.1016/j.cellimm.2006.10.001
[62] Chan, B. and Sukhatme, V.P. (2009) Receptor Tyrosine Kinase EphA2 Mediates Thrombin-Induced Upregulation of ICAM-1 in Endothelial Cells in Vitro. Thrombosis Research, 123, 745-752.
https://doi.org/10.1016/j.thromres.2008.07.010
[63] Carpenter, T.C., Schroeder, W., Stenmark, K.R. and Schmidt, E.P. (2012) Eph-A2 Promotes Permeability and Inflammatory Responses to Bleomycin-Induced Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 46, 40-47.
https://doi.org/10.1165/rcmb.2011-0044OC
[64] Veeranna, V., Zala-wadiya, S.K., Niraj, A., Pradhan, J., et al. (2011) Homocysteine and Reclassification of Cardiovascular Disease Risk. Journal of the American College of Cardiology, 58, 1025-1033.
https://doi.org/10.1016/j.jacc.2011.05.028
[65] Lai, W.K.C. and Kan, M.Y. (2015) Homocysteine-Induced Endothelial Dysfunction. Annals of Nutrition and Metabolism, 67, 1-12.
https://doi.org/10.1159/000437098
[66] Kojima, Y., Ono, K., Inoue, K., Takagi, Y., Kikuta, K., Nishimura, M., et al. (2009) Progranulin Expression in Advanced Human Atherosclerotic Plaque. Atherosclerosis, 206, 102-108.
https://doi.org/10.1016/j.atherosclerosis.2009.02.017
[67] Kawase, R., Ohama, T., Matsuyama, A., Matsuwaki, T., Okada, T., Yamashita, T., et al. (2013) Deletion of Progranulin Exacerbates Atherosclerosis in ApoE Knockout Mice. Cardiovascular Research, 100, 125-133.
https://doi.org/10.1093/cvr/cvt178
[68] Vincent, P.A., Xiao, K., Buckley, K.M. and Kowalczyk, A.P. (2004) VE-Cadherin: Adhesion at Arm’s Length. American Journal of Physiology-Cell Physiology, 286, C987-C997.
https://doi.org/10.1152/ajpcell.00522.2003
[69] Tian, D., Qin, Q., Li, M., Li, X., Xu, Q. and Lv, Q. (2020) Homocysteine Impairs Endothelial Cell Barrier Function and Angiogenic Potential via the Progranulin/EphA2 Pathway. Frontiers in Pharma-cology, 11, Article 614760.
https://doi.org/10.3389/fphar.2020.614760
[70] Neill, T., Buraschi, S., Goyal, A., Sharpe, C., Natkanski, E., Schaefer, L., Morrione, A. and Iozzo, R.V. (2016) EphA2 Is a Functional Receptor for the Growth Factor Progranulin. Journal of Cell Biol-ogy, 215, 687-703.
https://doi.org/10.1083/jcb.201603079
[71] Sharfe, N., Freywald, A., Toro, A., Dadi, H. and Roifman, C. (2002) Ephrin Stimulation Modulates T Cell Chemotaxis. European Journal of Immunology, 32, 3745-3755.
https://doi.org/10.1002/1521-4141(200212)32:12<3745::AID-IMMU3745>3.0.CO;2-M
[72] Kitamura, T., Kabuyama, Y., Kamataki, A., Homma, M.K., Kobayashi, H., Aota, S., et al. (2008) Enhancement of Lymphocyte Migration and Cytokine Production by EphrinB1 System in Rheumatoid Arthritis. American Journal of Physiology-Cell Physiology, 294, C189-C196.
https://doi.org/10.1152/ajpcell.00314.2007
[73] Boyd, A.W., Bartlett, P.F. and Lackmann, M. (2014) Therapeutic Target-ing of EPH Receptors and Their Ligands. Nature Reviews Drug Discovery, 13, 39-62.
https://doi.org/10.1038/nrd4175
[74] Lennon, S., Oweida, A., Milner, D., Phan, A.V., Bhatia, S., van Court, B., et al. (2019) Pancreatic Tumor Microenvironment Modulation by EphB4-EphrinB2 Inhibition and Radiation Combination. Clinical Cancer Research, 25, 3352-3365.
https://doi.org/10.1158/1078-0432.CCR-18-2811