Mulchandani-Bhoj-Conlin综合征个案报道
Mulchandani-Bhoj-Conlin Syndrome Case Report
DOI: 10.12677/ACM.2023.13122848, PDF, HTML, XML, 下载: 270  浏览: 365 
作者: 乔婷婷:三峡大学第一临床医学院儿科,湖北 宜昌;蔡正维*:宜昌市中心人民医院儿科,湖北 宜昌
关键词: Mulchandani-Bhoj-Conlin综合征单亲二体生长发育迟缓喂养困难Mulchandani-Bhoj-Conlin Syndrome Uniparental Disomy Growth Retardation Feeding Difficulties
摘要: Mulchandani-Bhoj-Conlin综合征(Mulchandani-Bhoj-Conlin syndrome, MBCS)是一种印记基因功能缺陷相关性遗传疾病。MBCS患者临床主要表现为胎儿宫内发育迟缓、发育迟滞、重度身材矮小伴头围减小、喂养困难(大部分患者在婴儿期或幼儿期需要鼻饲治疗)、第五指屈指畸形、肌张力减退、重度运动迟缓等。此外,MBCS患者对生长激素治疗反映良好,治疗后可出现线性生长加速。MBCS发病率不详。MBCS为常染色体显性遗传,通常由染色体20q11-q13区域母源单亲二体(Uniparental disomy, UPD)或该区域父源等位基因发生致病的缺失变异所致(Mulchandani (2016) Genet Med 18,309, Hjortshoj (2020) Clin Genet 97,902)。
Abstract: Mulchandani-Bhoj-Conlin syndrome (MBCS) is a genetic disease associated with functional defects in imprinted genes. The clinical manifestations of MBCS patients are mainly fetal intrauterine devel-opmental delay, developmental delay, severe short stature with reduced head circumference, feed-ing difficulties (most patients require nasal feeding treatment in infancy or early childhood), fifth finger flexion deformity, hypotonia, and severe motor delay. In addition, MBCS patients have a good response to growth hormone therapy and may experience linear growth acceleration after treat-ment. The incidence rate of MBCS is unknown. MBCS is an autosomal dominant inheritance, usually caused by pathogenic deletion mutations in the maternal uniparental disomy (UPD) or paternal al-lele of chromosome 20q11-q13 (Mulchandani (2016) Genet Med 18,309 Hjobshortj (2020) Clin Genet 97,902).
文章引用:乔婷婷, 蔡正维. Mulchandani-Bhoj-Conlin综合征个案报道[J]. 临床医学进展, 2023, 13(12): 20235-20238. https://doi.org/10.12677/ACM.2023.13122848

1. 引言

近年来因矮小就诊的患儿逐渐增多,部分患儿伴有其他临床症状及外貌特征,通过常见的检查方式难以确诊,越来越多家长选择基因检测等来明确病因。本文报道1例20号染色体母源单亲二体(Uniparental disomy, UPD)的MBCS患者,分析其临床表征,为临床识别、早期干预治疗MBCS患者提供证据。

2. 病历资料

患儿女,1岁,2020年9月因“生长发育咨询”就诊于宜昌市中心人民医院。患儿系其母第1胎第1产,孕40周,足月顺产,出生时无吸氧窒息,孕期最后两个月体重未增长,否认妊娠期糖尿病。出生体重2.45 kg,出生身长49 cm;6月龄身长62.2 cm;12月龄身长68.1 cm (<3rd),体重7.2 kg;18月龄身长72.5 cm;24月龄身长77 cm;3岁5月身长86 cm,体重11.2 kg。3月龄抬头,5~6月龄翻身,7~8月龄独坐稳,第1次就诊时不能独走。生后喂养困难,否认鼻饲,睡眠欠佳,身高、体重一直增长缓慢。2023年2月查体:头围:49 cm,前额稍突,前囟已闭,下颚稍小,身材匀称,SGA面容,无颈蹼,乳间距不宽,双侧乳房无隆起,未触及乳核,乳房分期Tanner 1期,无肘外翻,双肺呼吸音清晰,未闻及干湿性啰音,心音有力,律齐,无杂音,服软,肝脾肋下未触及。四肢肌张力正常,上肢肌力5级,下肢肌力4级。第五小指弯曲。检查:头颅核磁正常,外周血染色体正常,心脏、肝胆脾胰、泌尿系正常,肝肾功能、电解质、甲状腺功能、血常规、血糖、胰岛素正常。

3. 诊断

临床表现:患儿有宫内和出生后发育迟缓、前额稍突、喂养困难,考虑Silver Russell综合征和Turner综合征。Silver Russell综合征是一种罕见的生长发育迟缓,临床诊断基于6个特征,出生前和出生后生长发育迟缓、相对大头畸形、额头突出、身体不对称和喂养困难(Netchine-Harbison临床评分系统(NH-CSS)) [1] 。存在NH-CSS中3个临床表现的患者,建议完善基因检测。若没有检测到基因异常,符合NH-CSS中4个标准的被诊断为“临床SRS” [1] [2] 。Turner综合征又称先天性卵巢发育不全,其主要表现是患者染色体核型有一条完整的X染色体,而另一条染色体完全或部分缺失,或者出现结构的异常 [3] 。TS主要临床特征表现为身材矮小、原发性性腺发育不良、心血管畸形、自身免疫性疾病等 [4] [5] [6] 。我们采集患儿及患儿父母外周血各3 ml,送至杭州博圣医学检验实验室进行了全外显子基因检测。检测出20号染色体母源单亲二体,该变异与Mulchandani-Bhoj-Conlin综合征有关。

4. 讨论

单亲二体是指体细胞染色体核型中,同源染色体或者同源染色体上的部分片段均来自同一个亲本,而完全缺乏另一个亲本的染色体 [7] 。UPD的形成机制比较复杂,包括减数分裂错误导致某条染色体的二体型配子或不含这条染色体的空配子与正常单倍体配子结合形成的三体或单体细胞的三体自救或单体自救、配子互补以及受精后细胞的有丝分裂错误等 [8] [9] 。根据同源染色体来源,可将UPD分为母源性UPD (maternal UPD, matUPD)和父源性UPD (paternal UPD, patUPD) [10] 。按产生机制分类,UPD主要包含同源染色体不分离所产生的单亲异二体和姐妹染色体不分离产生的单亲同二体,以及heterodisomy/isodisomy的混合型3种 [11] 。染色体核型、染色体阵列分析(chromosomal microarray analysis, CMA)检测发现matUPD (20)发生主要是由于第二次减数分裂错误或者合子有丝分裂异常导致 [8] 。matUPD (20)可能与激素受体的敏感性有关,这种敏感性可能会随着年龄的增长而加重 [12] 。

印记基因GNAS位于长臂20q13上,包括GSA、GSA(XLAS)和A/B。GSA在近端肾小管、甲状腺、垂体和性腺中表达,主要来自父源等位基因 [13] 。由于没有父亲的等位基因,母亲的等位基因上的失活突变会导致这些组织中GSA的表达显著降低,与甲状旁腺激素降低和高血钙症有关 [13] 。患儿有宫内和生后发育迟缓,大多数患者表现为胎盘发育不良、羊水过少以及骨龄延迟。这些表现是由于缺乏父系表达的GNAS转录,包括XLAS和A/B [14] 。有研究发现在父系等位基因上缺乏XLAS的小鼠表现出吸吮不良和生后生长缓慢 [15] [16] ,缺乏父系外显子1A (对应人类A/B)的动物表现出生前生长迟缓 [17] 。有多个小鼠模型表明,父系等位基因的丧失脂肪组织减少、代谢更快以及吸吮能力差 [18] 。大多数患者的母亲为高龄孕妇,是由于高龄孕妇增加了卵母细胞非整倍体的风险,以及母体异倍体产生于二体卵母细胞高龄孕妇可能会增加matUPD(20)的风险 [12] 。

5. 治疗经过

2023年2月予长效重组人生长激素治疗(0.18 mg/kg/w),2023年5月复查身高89.9 cm,体重12 kg,3个月身高增长3.9 cm。重组人生长激素治疗3个月后,家长表示肌肉力量及运动耐力方面有明显改善。

参考文献

NOTES

*通讯作者。

参考文献

[1] Wakeling, E.L., Brioude, F., Lokulo-Sodipe, O., et al. (2017) Diagnosis and Management of Silver-Russell Syndrome: First International Consensus Statement. Nature Reviews Endocrinology, 13, 105-124.
https://doi.org/10.1038/nrendo.2016.138
[2] Fuke, T., Nakamura, A., Inoue T., et al. (2021) Role of Imprinting Disorders in Short Children Born SGA and Silver-Russell Syndrome Spectrum. Journal of Clinical Endocrinology & Metabolism, 106, 802-813.
https://doi.org/10.1210/clinem/dgaa856
[3] Berglund, A., Viuff, M.H., Skakkebæk, A., Chang, S., Stochholm, K. and Gravholt, C.H. (2019) Changes in the Cohort Composition of Turner Syndrome and Severe Non-Diagnosis of Klinefelter, 47,XXX and 47,XYY Syndrome: A Nationwide Cohort Study. Orphanet Journal of Rare Diseases, 14, 16.
https://doi.org/10.1186/s13023-018-0976-2
[4] Calanchini, M., Moolla, A., Tomlinson, J.W., et al. (2018) Liver Biochemical Abnormalities in Turner Syndrome: A Comprehensive Characterization of an Adult Population. Clinical Endocrinology, 89, 667-676.
https://doi.org/10.1111/cen.13811
[5] Sun, L., Wang, Y., Zhou T., et al. (2019) Glucose Metabolism in Turner Syndrome. Frontiers in Endocrinology (Lausanne), 10, 49.
https://doi.org/10.3389/fendo.2019.00049
[6] Wegiel, M., Antosz, A., Gieburowska, J., et al. (2019) Autoimmunity Predisposition in Girls with Turner Syndrome. Frontiers in Endocrinology (Lausanne), 10, 511.
https://doi.org/10.3389/fendo.2019.00511
[7] Robinson, W.P. (2000) Mechanisms Leading to Uniparental Disomy and Their Clinical Consequences. Bioessays, 22, 452-459.
https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<452::AID-BIES7>3.0.CO;2-K
[8] Del Gaudio, D., Shinawi, M., Astbury, C., Tayeh, M.K., Deak, K.L. and Raca, G. (2020) Diagnostic Testing for Uniparental Disomy: A Points to Consider Statement from the American College of Medical Genetics and Genomics (ACMG). Genetics in Med-icine, 22, 1133-1141.
https://doi.org/10.1038/s41436-020-0782-9
[9] Yamazawa, K., Ogata, T. and Fergu-son-Smith A.C. (2010) Uniparental Disomy and Human Disease: An Overview. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 154C, 329-334.
https://doi.org/10.1002/ajmg.c.30270
[10] 刘勉, 张锐. 20号染色体的非整倍体及单亲二体的相关研究进展[J]. 中国产前诊断杂志(电子版), 2021, 13(3): 6-11.
[11] 朱丽芬, 张慧敏. 纯合区域/单亲二体的判定及临床咨询原则[J]. 中华医学遗传学杂志, 2021, 38(11): 1140-1144.
[12] Kawashima, S., Nakamura, A., Inoue, T., et al. (2018) Ma-ternal Uniparental Disomy for Chromosome 20: Physical and Endocrinological Characteristics of Five Patients. Journal of Clinical Endocrinology & Metabolism, 103, 2083-2088.
https://doi.org/10.1210/jc.2017-02780
[13] Turan, S. and Bastepe, M. (2015) GNAS Spectrum of Disorders. Cur-rent Osteoporosis Reports, 13, 146-158.
https://doi.org/10.1007/s11914-015-0268-x
[14] Geneviève, D., Sanlaville, D., Faivre, L., et al. (2005) Paternal Deletion of the GNAS Imprinted Locus (including Gnasxl) in Two Girls Presenting with Severe pre- and Post-Natal Growth Retardation and Intractable Feeding Difficulties. European Journal of Human Genetics, 13, 1033-1039.
https://doi.org/10.1038/sj.ejhg.5201448
[15] Plagge, A., Gordon, E., Dean, W., et al. (2004) The Imprinted Sig-naling Protein XL Alphas Is Required for Postnatal Adaptation to Feeding. Nature Genetics, 36, 818-826.
https://doi.org/10.1038/ng1397
[16] Xie, T., Plagge, A., Gavrilova, O., et al. (2006) The Alternative Stimulatory G Protein Alpha-Subunit XLalphas Is a Critical Regulator of Energy and Glucose Metabolism and Sympathetic Nerve Ac-tivity in Adult Mice. Journal of Biological Chemistry, 281, 18989-18999.
https://doi.org/10.1074/jbc.M511752200
[17] Ball, S.T., Kelly, M.L., Robson, J.E., et al. (2013) Gene Dosage Ef-fects at the Imprinted Gnas Cluster. PLOS ONE, 8, e65639.
https://doi.org/10.1371/journal.pone.0065639
[18] Yu, S., Gavrilova, O., Chen, H., et al. (2000) Paternal versus Maternal Transmission of a Stimulatory G-Protein Alpha Sub-unit Knockout Produces Opposite Effects on Energy Metabolism. Journal of Clinical Investigation, 105, 615-623.
https://doi.org/10.1172/JCI8437