三级淋巴结构与胃癌研究进展
Tertiary Lymphoid Structures and Gastric Cancer Research Progress
DOI: 10.12677/ACM.2023.13122828, PDF, HTML, XML, 下载: 151  浏览: 222 
作者: 米军丽*:青海大学研究生院,青海 西宁;马晓明#:青海大学附属医院肿瘤外科,青海 西宁
关键词: 胃癌三级淋巴结构机制预后免疫治疗肿瘤Gastric Cancer Tertiary Lymphoid Structure Mechanism Prognosis Immunotherapy Tumor
摘要: 目的:总结三级淋巴结构在胃癌中抗肿瘤的作用机制,及三级淋巴结构作为预测胃癌免疫治疗疗效及预后的生物标志物的临床研究进展,为今后临床研究提供参考和思路。方法:以“胃癌、三级淋巴结构、免疫治疗、肿瘤”为中文关键词,以“gastric cancer、tertiary lymphoid structure、immunological therapy、tumor”为英文关键词,系统检索中国知网和PubMed数据库建库至2023-06-31的相关文献。文献纳入标准:1) TLS在胃癌预后及治疗中的研究进展;2) TLS与肿瘤之间的研究进展。排除标准:数据陈旧文献、可信度较低的文献。最终纳入64篇文献。结果:TLS已被大部分研究证实可以作为预测胃癌免疫治疗疗效及预后的生物标志物,肿瘤外TLS对于肿瘤预后产生积极效果也有待进一步研究。结论:TLS可以通过肿瘤微环境发挥其可能抑癌或预测预后的作用,具有潜在的肿瘤临床治疗价值,但其作用于肿瘤的复杂机制仍需进一步探索。
Abstract: Objective: To summarize the anti-tumor mechanism of tertiary lymphoid structures in gastric can-cer and the progress of clinical research on tertiary lymphoid structures as biomarkers for predict-ing the efficacy and prognosis of immunotherapy in gastric cancer, so as to provide references and ideas for future clinical research. Methods: Taking “胃癌, 三级淋巴结构, 免疫治疗, 肿瘤” as Chi-nese keywords and “gastric cancer, tertiary lymphatic structure, immunological therapy, tumor” as English keywords, the related literatures built up to June 31, 2023 by China National Knowledge Infrastructure (CNKI) and PubMed database were systematically searched. Inclusion Criteria: 1) The research progress of TLS in the prognosis and treatment of gastric cancer; 2) The research pro-gress between TLS and tumor. Exclusion Criteria: Literature with obsolete data, literature with low credibility. Sixty-four literatures were finally included. Results: TLS has been confirmed by most studies as a biomarker for predicting the efficacy and prognosis of immunotherapy in gastric can-cer, and the positive effect of off-tumor TLS on tumor prognosis needs to be further investigated. Conclusions: TLS can play the possible role of cancer inhibition or prognosis prediction through the tumor microenvironment, which has potential clinical therapeutic value in tumor treatment, but the complex mechanism of its action on tumor still needs to be further explored.
文章引用:米军丽, 马晓明. 三级淋巴结构与胃癌研究进展[J]. 临床医学进展, 2023, 13(12): 20089-20097. https://doi.org/10.12677/ACM.2023.13122828

1. 引言

胃癌(Gastric cancer, GC)系全球第5大常见肿瘤之一,死亡原因居于前三,给全球公共卫生及财政带来了较大的压力 [1] 。因胃癌人群基数庞大,胃癌相关性病因、发病机制、诊断及治疗研究进展得到了大幅的提升。关于GC发病机制近年来有学者提出感染和慢性炎症是关键因素,如幽门螺杆菌感染尤其与肠道亚型GC有关,肠道亚型是全球最常见的诊断,可引发胃黏膜的慢性和持续性炎症,其特征是壁内炎症细胞浸润和大量炎症介质的表达 [2] [3] 。在治疗GC的方式上以延长患者预后为主,多种随机对照研究为寻求最佳术式、最佳术后辅助化疗方案及最佳新辅助治疗方案得以展开。然而伴随着耐药的出现,患者生存时间往往达不到人们所预期效果。

为进一步寻求治疗靶点,人们对三级淋巴结构(tertiary lymphoid structure, TLS)进行了相关性研究。TLS是非淋巴组织部位的异位淋巴结构,可出现在包括肿瘤在内的慢性炎症部位,它们在功能上类似于对适应性免疫至关重要的淋巴结淋巴组织,代表淋巴细胞活化和增殖的部位 [4] 。癌症相关的免疫和炎症反应可能诱导TLS的形成,有助于抗肿瘤免疫 [5] ,并且TLS与多种实体肿瘤的预后存在相关性。由此,本综述我们探讨了TLS形成的细胞、通路和趋化因子要求,并强调了这些异位淋巴结构在癌症中的作用和影响。由于肿瘤微环境(tumor microenvironment, TME)、肿瘤浸润淋巴细胞(Tumor Infiltrating Lymphocytes, TILs)与肿瘤内TLS的存在密切相关,我们进一步详细介绍了肿瘤浸润B细胞、T细胞在TLS中的作用机理,探讨TLS对于胃肿瘤的预后和治疗的预测价值。

2. 三级淋巴结构概述

三级淋巴结构的形成

TLS是非生理情况下一类离散或聚集于非淋巴结构内的免疫细胞,由B细胞滤泡、T细胞区、滤泡树突状细胞(dendritic cells, DC)和高内皮小静脉组成(high endothelial venules, HEV) [6] [7] ,在长期、慢性疾病的诱导下产生并可独立于次级淋巴器官(secondary lymphoid organ, SLO)在体内诱发免疫应答。TLS的产生与SLO极其相似,正常SLO形成首先由一种在造血、神经及淋巴细胞增殖方面的关键性转录因子Ikaros的介导下由胎儿肝脏前体产生白细胞介素7受体α链(IL-7Rα, CD127),IL-7Rα在转录因子的介导下表达CD3、CD4、CD45及淋巴组织诱导细胞(lymphoid tissue inducer, LTi),后者继而参与诱导外周淋巴组织的发育、成熟等过程 [8] 。其次,LTi细胞可表达具有跨膜结构的淋巴毒素β受体(lymphotoxin beta receptor, LTβR),与基质细胞表面的淋巴毒素-α1β2配套(lymphotoxinα1β2, LTα1β2)结合在血管内皮生长因子C (vascular endothelial growth factor C, VEGFC)的诱导下可形成高内皮微静脉(high endothelial venules, HEV)所必须的血管细胞粘附分子1 (VCAM1),细胞间粘附分子1 (ICAM1),粘膜血管寻址素细胞粘附分子1 (MAdCAM1)和外周淋巴结寻址素(PNAd)以及CCL19,CCL21和CXCL13等稳态趋化因子。并且通过稳态趋化因子可以生成新的淋巴滤泡区室化如T细胞区、B细胞区和生发中心 [9] 。

另外,TLS还可以通过独特的途径所演变而来,LTi细胞在SLO的形成是起着承上启下的作用,动物实验发现 [10] ,在缺乏LTi细胞的小鼠的甲状腺中形成了TLS,提示TLS的形成可以不依赖于LTi细胞,进而研究发现IL-17、效应CD8+ T细胞、NK细胞和B淋巴细胞可以代替LTi细胞作用形成TLS。

在Chaurio RA等人 [11] 对TLS的研究中还发现,TGF-β介导的基因组组织者Satb1的变化调节控制着T滤泡辅助细胞(Tfh)细胞和T滤泡调节细胞(Tfr)的分化。Satb1是一种组织特异性的核基质结合蛋白,以独特的笼状结构锚定于特异的DNA序列并招募染色质重建因子调控基因转录。而抑制Satb1蛋白的分泌可以促进Tfh细胞的分化与Icos的表达,阻止Tfr细胞的生成,最终导致肿瘤内TLS的形成。

3. TLS在胃恶性肿瘤中预后预测的价值

TLS在生理条件下不存在,而是在持续炎症的环境中形成,例如,在自身免疫性疾病 [12] [13] ,慢性炎症 [4] 和癌症 [14] [15] 中。有另一种说法 [16] :胃壁解剖学上的粘膜下层和浆膜下含有正常淋巴结和异位淋巴聚集体,在稳态条件下是消化相关淋巴组织的一部分,在这两层中,TLS可能与肿瘤相关或预先存在,在胃肠道免疫反应中起着至关重要的作用。

在现有对于三级淋巴结构与胃癌预后的研究中 [16] - [21] ,由苏木精–伊红、免疫组化染色等检验方法进行TLS组织病理学评分判定后,将TLS予定性、定量单位密度、表达及直径,经回顾性分析得出高密度TLS、高表达TLS及最大直径TLS与胃癌患者总生存率(Overall Survival, OS)及无病生存率(Disease-free survival, DFS)存在相关性。在TLS内部,树突状细胞将抗原引入CD4+ T细胞,导致T细胞活化、B细胞成熟和抗体产生 [22] ,这可能解释了TLS最大直径高的患者预后更好。有学者 [23] [24] [25] 对于EB病毒相关性胃癌(EBV associated gastric carcinoma, EBVaGC)进行了初步研究,提出EBVaGC在富含免疫细胞的肿瘤微环境(TME)中表现出独特的组织学特征,但TLS在EBVaGC中的作用尚未完全清楚,根据研究结果得出高评分的成熟TLS (mTLS)与EBVaGC患者的良好治疗反应显着相关。

3.1. TLS与TILs在胃癌中关系及作用

关于TLS与肿瘤微环境(TME)之间在胃癌中的关系,我们发现TLS与肿瘤浸润淋巴细胞(TILs)相关作用,为先天免疫系统和后天免疫系统提供了一个局部和必要的微环境,以影响肿瘤的进展、发展和转移 [10] 。在Lizhou Jia等人 [26] 的研究中对肿瘤浸润 B 细胞 (TIB)的综合分析表明,在胃癌组织中检测到大量的粘膜相关淋巴组织MALT-B细胞,这些组织具有成熟的三级淋巴结构(mTLS),外周血样本中几乎没有MALT-B细胞。此外,MALT-B细胞是一类IgA浆细胞,据报道 [27] [28] ,IgA聚合物可以激活补体替代途径,而具有成熟TLS (mTLS) (含生发中心)的组织中IgA和补体因子(C5aR1)处于高表达水平。综上所述,IgA和补体激活途径可能在胃癌的TME中发挥重要作用。在Yoshihito Yamakoshi引领的研究中 [29] 也提出胃癌中的大多数肿瘤浸润B细胞以TLS的形式存在于肿瘤周围,并且已被抗原致敏和分化,并在TLS中增殖,但不在淋巴结中增殖。此外,TLS中的B细胞可能主要作为抗原呈递细胞,并与细胞毒性T细胞的诱导有关。在Takuya Mori等人的研究中 [30] 提到组织驻留记忆T细胞(TRM细胞)与TLSs在胃癌肿瘤免疫微环境(TIME)中的关系,研究结果表明GC组织中约70%的TIL是CD103+、CD8+ T细胞,在胃癌II、III和IV期CD103+ T细胞高的患者预后比CD103+ T细胞低的患者好,将CD103(+) CD8(+) T细胞共同组合比较CD103(−) CD8(+) T细胞表达更高水平的PD-1(程序性死亡受体1,programmed cell death protein 1)、颗粒酶B和干扰素-γ。 [29] 、 [31] 结合TLS在结构和功能上与次级淋巴器官相似,并且TLS形成是由CXCL13诱导的,该研究还提出假设,即CD103+、CD8+ T细胞通过产生CXCL13与TLS形成相关,并且TLS作为抗原呈递细胞并进一步激活CD103+、CD8+ T细胞,从而增强胃癌的抗肿瘤免疫。在Ji-Shang Yu等人 [19] 的研究中提出CD3+ T细胞、CD8+ T细胞和CD20+ B细胞在高密度TLS的肿瘤组织中比在低密度中的要更多。相反,在胃癌患者肿瘤组织中CD68+ TAMs的高密度与TLS的低密度明显相关。CD68+ TAMs (肿瘤相关巨噬细胞)来自先天性免疫系统,与肿瘤进展和生存率低下有关 [32] 。 [33] 一个关于胃癌的在临床前动物模型中观察到肿瘤相关的TLS (gp130F/F),其中肿瘤发生依赖于通过常见的IL-3家族信号传导受体gp6的过度活跃的STAT130信号传导。结合上述提及的胃肿瘤发生与富含B细胞和T细胞的粘膜下淋巴样聚集体的发生有关,这些聚集体含有CD21细胞网络和高内皮小静脉,故TLS的形成与胃癌的发展和包括Cxcl13,Ccl19和Ccl21在内的稳态趋化因子的诱导相吻合。这些反映了gp130驱动的STAT3信号传导对胃肿瘤发生的需求,粘膜下TLS的发育也是STAT3依赖性的。综上所述,一般TLS、成熟TLS (mTLS)、高TLS密度、最大直径TLS与部分信号通路、炎症相关通路和免疫激活相关通路都存在一定相关,TLS可能会产生更有效的抗肿瘤免疫反应,并成为有效免疫疗法的潜在生物标志物。

3.2. TLS与NLR在胃癌的作用

国内外不少报道中性粒细胞与淋巴细胞比值(NLR)与各种类型癌症的不良预后相关,Yoshihito Yamakoshi等人 [34] 发现术前NLR可能与肿瘤周围存在TLS有关,研究结果表明术前NLR是胃癌患者总生存期的独立预后因素,这表示NLR升高可能反映了宿主的免疫状态,NLR和TLS的组合可能有助于患者预后的分层,并且提出NLR和TLS密度可能是胃癌免疫治疗的替代标志物。Choi等人表明在肿瘤微环境(TME)中,NLR与CD4 T细胞的密度相关,支持参与胃癌全身炎症的预后价值评估 [36] 。Annelies Demeyer等人 [35] 还提出NLR可用于动态监测肿瘤微环境(TME)中的TLS表达水平,为诱导TLS形成以增强免疫治疗敏感性的联合治疗方案提供参考。

3.3. TLS在胃癌免疫治疗中的独特价值

最近的研究强调了三级淋巴结构(TLS)在免疫治疗反应预测中的独特价值。免疫检查点阻断(Immune Checkpoint Blockade, ICB)已被证明可有效延长胃癌的预后 [37] 。ICB治疗的主要作用机制是肿瘤浸润淋巴细胞(TILs)对癌细胞的抗肿瘤免疫反应。在261例患者中 [30] 10例患者接受纳武利尤单抗PD-1阻断作为复发或不可切除胃癌的三线治疗。根据实体瘤反应评估标准指南评估得出其中2例接受纳武利尤单抗 PD-1阻断的富含TLS及CD103+的胃癌患者得到部分缓解。在Takuya Mori [38] 的研究中纳入19例胃癌患者行纳武利尤单抗PD-1阻断治疗,结果分析显示高TLS的患者比低TLS的患者更常出现免疫相关不良事件(irAE),说明高TLS患者对于此免疫治疗的反应性更好。生存分析显示高TLS的患者在使用此免疫治疗后OS得到明显改善,PFS无明显变化。Quan Jiang等人 [17] 的研究中建立了中山免疫治疗队列,其中13例胃癌患者采用纳武利尤单抗PD-1阻断治疗,根据治疗后反应对患者进行分组,分析发现整体TLS、mTLS评分与PD-L0阳性细胞的百分比表现出显著正向关系。并将PD1/PD-L1表达水平与TLS评分变化作比较结果显示高TLS评分病例中PD1CD8+ T细胞和PD-L1阳性肿瘤细胞的显着增加,这解释了为什么高TLS评分可以预测PD1抑制剂对GC的有效性。综上所述,在晚期或复发性胃癌患者的免疫治疗中TLS评分是可以作为预测疗效的一个有效指标。

4. TLS与多种实体瘤

目前,研究证实TLS与除了胃癌以外的其他类型癌症患者的临床结果相关,例如非小细胞肺癌(NSCLC) [39] ,结直肠癌(CRC) [40] [41] ,肝细胞癌 [42] [43] ,乳腺癌(TFH) [44] ,胰腺癌 [45] 卵巢癌 [46] 和黑色素瘤 [47] 等。其中不同肿瘤研究结果的不一致可能是由于TLS的位置、TLS诊断方法的异质性及其免疫细胞组成的多样性造成 [10] 。

4.1. CXCL13在TLS中与实体瘤的关系

许多肿瘤内T细胞亚群,包括TFH [48] 中的细胞和NSCLC中的PD-1高CD8 T细胞 [49] ,以及卵巢癌中的巨噬细胞和B细胞 [50] 和三阴性乳腺癌中的成纤维细胞 [51] 表达CXCL13,Ton N Schumacher等人 [48] 认为这些都表明免疫和基质细胞可能能够作为间充质淋巴组织者(LTo)细胞发挥作用并有助于TLS的形成或维持。虽然CXCL13通常与树突状细胞和滤泡辅助性T细胞有关 [52] [53] ,几项研究 [6] 、 [54] 已经确定了CXCL13在肺癌、黑色素瘤和乳腺癌中高度耗尽的TIL中的表达。此外,Workkel等人 [49] [55] [56] [57] 最近在卵巢癌中发现CD103CD8 T细胞表达CXCL13 mRNA。由此推测,诱导TLS形成可能与CD103CD8 T细胞也有关 [58] 。综上所述,CXCL13不止在胃癌的TLS形成中处于重要地位,在其他实体瘤中也起着承上启下的作用,人们可以尝试在这方面研究治疗方法以提高生存率。

4.2. TLS的存在对于实体瘤的预后价值

Lucile Vanhersecke等人 [59] 认为TLS在治疗前存在时,可以被认为是患者对免疫治疗反应的预测指标,并提出在多种实体瘤中(包括NSCLC) PFS和OS得到改善是因为成熟TLS的存在预示着接受免疫检查点抑制剂治疗的癌症患者的客观反应得到改善,而与PD-L1状态和CD8+ T细胞浸润水平无关。Helmink等人 [60] 观察到,用免疫检查点抑制剂治疗可以有利于TLS的出现,并表明治疗后肿瘤样本中TLS更丰富的患者更有可能对治疗产生反应。在2021年发表的一个纳入30项关于各种实体瘤与TLS的临床病理预后的meta分析研究表明 [61] ,高表达TLS在肿瘤中的OS、无复发生存期(Recurrence free survival, RFS)和复发率方面提示肿瘤患者的良好预后价值。并且提出TLS表达与肿瘤分级(特别是在结直肠癌和乳腺癌中),T期(主要在胰腺癌中),N期(特别是在结直肠癌和乳腺癌中),肿瘤大小(主要在肝癌和胃癌中)和TIL (特别是在乳腺癌中)有关。最后结果分析显示肿瘤中的高TLS表达与口腔鳞状细胞癌和胃癌中更好的OS,更好的RFS和更低的复发率相关。综上所述,无论治疗前后TLS的出现对于人类各类实体瘤的预后都是正面效果,人们可以进行前瞻性研究来巩固或证实。

Hill DG等人 [33] 的动物研究得出一个相对负面的结果,在gp130 F/F小鼠中观察到的肿瘤相关TLS显示B和T细胞区隔化和生发中心反应,但未能建立强大的抗肿瘤反应以防止肿瘤发生可能与TLS的位置有关。而相比之下,与GC研究中TLS的位置一致 [62] [63] ,结直肠癌中肿瘤外TLS的存在并未产生积极的预后,只是反映了晚期疾病中肿瘤周围的促炎微环境。因此,在某些癌症中 [64] ,肿瘤外TLS可能反映了炎症相关肿瘤发生的病理后果,而不是有效抗癌反应的标志物。

5. 结语与展望

TLS、mTLS在胃癌或其他实体瘤中仍是需要深入研究的领域。虽然目前就肿瘤外TLS能否产生积极预后仍存在争议,但在大部分的研究中证实TLS表达对于胃肿瘤患者的OS和RFS而言是预测预后生物标志物,同时,TLS也是可以预测胃肿瘤患者复发率的生物标志物。上述提到的TME、TIL、PD-1、PD-L1、CXCL13、gp130驱动的STAT3信号传导等与TLS的密切关联对于以后在胃肿瘤免疫治疗中值得研究。国内外关于TLS在胃肿瘤中术前术后治疗、病理及预后中的研究日益增多,期待这些研究能获得令人满意的结果。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Smyth, E.C., Nilsson, M., Grabsch, H.I., van Grieken, N.C. and Lordick, F. (2020) Gastric Cancer. The Lancet, 396, 635-648.
https://doi.org/10.1016/S0140-6736(20)31288-5
[2] O’Connor, A., O’Morain, C.A. and Ford, A.C. (2017) Population Screening and Treatment of Helicobacter pylori Infection. Nature Reviews Gastroenterology & Hepa-tology, 14, 230-240.
https://doi.org/10.1038/nrgastro.2016.195
[3] Roberts, S.E., Morrison-Rees, S., Samuel, D.G., Thorne, K., Akbari, A. and Williams, J.G. (2016) Review Article: The Prevalence of Helicobacter pylori and the Incidence of Gastric Cancer across Europe. Alimentary Pharmacology & Therapeutics, 43, 334-345.
https://doi.org/10.1111/apt.13474
[4] Neyt, K., Perros, F., GeurtsvanKessel, C.H., Hammad, H. and Lambrecht, B.N. (2012) Tertiary Lymphoid Organs in Infection and Autoimmunity. Trends in Immunology, 33, 297-305.
https://doi.org/10.1016/j.it.2012.04.006
[5] Hiraoka, N., Ino, Y. and Yamazaki-Itoh, R. (2016) Tertiary Lymphoid Organs in Cancer Tissues. Frontiers in Immunology, 7, Article 244.
https://doi.org/10.3389/fimmu.2016.00244
[6] Pimenta, E.M. and Barnes, B.J. (2014) Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS For-mation in Epithelial-Derived Cancers. Cancers, 6, 969-997.
https://doi.org/10.3390/cancers6020969
[7] Carragher, D.M., Rangel-Moreno, J. and Randall, T.D. (2008) Ectopic Lymphoid Tissues and Local Immunity. Seminars in Immu-nology, 20, 26-42.
https://doi.org/10.1016/j.smim.2007.12.004
[8] 杨爽, 张梦洁, 倪兵. 淋巴组织诱导细胞促炎作用及机制研究进展[J]. 免疫学杂志, 2013, 29(12): 1093-1096.
https://doi.org/10.13431/j.cnki.immunol.j.20130240
[9] Zhang, Q. and Wu, S. (2023) Tertiary Lymphoid Struc-tures Are Critical for Cancer Prognosis and Therapeutic Response. Frontiers in Immunology, 13, Article 1063711.
https://doi.org/10.3389/fimmu.2022.1063711
[10] Jacquelot, N., Tellier, J., Nutt, S. and Belz, G. (2021) Tertiary Lymphoid Structures and B Lymphocytes in Cancer Prognosis and Response to Immunotherapies. Oncoimmunology, 10, Article ID: 1900508.
https://doi.org/10.1080/2162402X.2021.1900508
[11] Chaurio, R.A., Anadon, C.M., Lee Costich, T., et al. (2022) TGF-β-Mediated Silencing of Genomic Organizer SATB1 Promotes Tfh Cell Differentiation and Formation of In-tra-Tumoral Tertiary Lymphoid Structures. Immunity, 55, 115-128.E9.
https://doi.org/10.1016/j.immuni.2021.12.007
[12] Manzo, A., Bombardieri, M., Humby, F. and Pitzalis, C. (2010) Secondary and Ectopic Lymphoid Tissue Responses in Rheumatoid Arthritis: From Inflammation to Autoimmunity and Tissue Damage/Remodeling. Immunological Reviews, 233, 267-285.
https://doi.org/10.1111/j.0105-2896.2009.00861.x
[13] Thaunat, O., Patey, N., Caligiuri, G., et al. (2010) Chronic Rejection Triggers the Development of an Aggressive Intragraft Immune Response through Recapitulation of Lymphoid Organogenesis. The Journal of Immunology, 185, 717-728.
https://doi.org/10.4049/jimmunol.0903589
[14] Sautès-Fridman, C., Lawand, M., Giraldo, N.A., et al. (2016) Ter-tiary Lymphoid Structures in Cancers: Prognostic Value, Regulation, and Manipulation for Therapeutic Intervention. Frontiers in Immunology, 7, Article 407.
https://doi.org/10.3389/fimmu.2016.00407
[15] Colbeck, E.J., Ager, A., Gallimore, A. and Jones, G.W. (2017) Tertiary Lymphoid Structures in Cancer: Drivers of Antitumor Immunity, Immunosuppression, or Bystander Sentinels in Disease? Frontiers in Immunology, 8, Article 1830.
https://doi.org/10.3389/fimmu.2017.01830
[16] He, W., Zhang, D., Liu, H., et al. (2020) The High Level of Ter-tiary Lymphoid Structure Is Correlated with Superior Survival in Patients with Advanced Gastric Cancer. Frontiers in Oncology, 10, Article 980.
https://doi.org/10.3389/fonc.2020.00980
[17] Kemi, N., Ylitalo, O., Väyrynen, J.P., et al. (2023) Tertiary Lym-phoid Structures and Gastric Cancer Prognosis. APMIS, 131, 19-25.
https://doi.org/10.1111/apm.13277
[18] Jiang, Q., Tian, C., Wu, H., et al. (2022) Tertiary Lymphoid Structure Patterns Predicted Anti-PD1 Therapeutic Responses in Gastric Cancer. Chinese Journal of Cancer Research, 34, 365-382.
https://doi.org/10.21147/j.issn.1000-9604.2022.04.05
[19] Yu, J.S., Huang, W.B., Zhang, Y.H., et al. (2022) The Association of Immune Cell Infiltration and Prognostic Value of Tertiary Lymphoid Structures in Gastric Cancer. Neo-plasma, 69, 886-898.
https://doi.org/10.4149/neo_2022_220128N123
[20] 张大川, 何雯婷, 彭蕾, 等. 胃癌组织内三级淋巴结构及其临床意义[J]. 临床与实验病理学杂志, 2019, 35(2): 139-143.
https://doi.org/10.13315/j.cnki.cjcep.2019.02.003
[21] 何雯婷, 贺洋, 谈炎, 等. 胃癌组织内三级淋巴结构的形态学评价及与患者预后的关系[J]. 中国保健营养, 2018, 28(36): 39-40.
https://doi.org/10.3969/j.issn.1004-7484.2018.36.024
[22] Sautès-Fridman, C., Petitprez, F., Calderaro, J. and Fridman, W.H. (2019) Tertiary Lymphoid Structures in the Era of Cancer Immunotherapy. Nature Reviews Cancer, 19, 307-325.
https://doi.org/10.1038/s41568-019-0144-6
[23] Cheng, N., Li, P., Cheng, H., et al. (2021) Prognostic Value of Tumor-Infiltrating Lymphocytes and Tertiary Lymphoid Structures in Epstein-Barr Virus-Associated and -Negative Gastric Carcinoma. Frontiers in Immunology, 12, Article 692859.
https://doi.org/10.3389/fimmu.2021.692859
[24] Lin, Z., Huang, L., Li, S., Gu, J., Cui, X. and Zhou, Y. (2020) Pan-Cancer Analysis of Genomic Properties and Clinical Outcome Associated with Tumor Tertiary Lymphoid Structure. Scientific Reports, 10, Article No. 21530.
https://doi.org/10.1038/s41598-020-78560-3
[25] Yin, Y.X., Ling, Y.H., Wei, X.L., et al. (2022) Impact of Mature Tertiary Lymphoid Structures on Prognosis and Therapeutic Response of Epstein-Barr Virus-Associated Gastric Cancer Patients. Frontiers in Immunology, 13, Article 973085.
https://doi.org/10.3389/fimmu.2022.973085
[26] Jia, L., Wang, T., Zhao, Y., et al. (2021) Single-Cell Profiling of Infiltrating B Cells and Tertiary Lymphoid Structures in the TME of Gastric Adenocarcinomas. Oncoimmunology, 10, Article ID: 1969767.
https://doi.org/10.1080/2162402X.2021.1969767
[27] Tortajada, A., Gutierrez, E., Pickering, M.C., Praga Terente, M. and Medjeral-Thomas, N. (2019) The Role of Complement in IgA Nephropathy. Molecular Immunology, 114, 123-132.
https://doi.org/10.1016/j.molimm.2019.07.017
[28] Tezuka, H., Abe, Y., Iwata, M., et al. (2007) Regula-tion of IgA Production by Naturally Occurring TNF/iNOS-Producing Dendritic Cells. Nature, 448, 929-933.
https://doi.org/10.1038/nature06033
[29] Yamakoshi, Y., Tanaka, H., Sakimura, C., et al. (2020) Immunological Potential of Tertiary Lymphoid Structures Surrounding the Primary Tumor in Gastric Cancer. International Journal of Oncology, 57, 171-182.
https://doi.org/10.3892/ijo.2020.5042
[30] Mori, T., Tanaka, H., Suzuki, S., et al. (2021) Tertiary Lymphoid Structures Show Infiltration of Effective Tumor-Resident T Cells in Gastric Cancer. Cancer Science, 112, 1746-1757.
https://doi.org/10.1111/cas.14888
[31] Sakimura, C., Tanaka, H., Okuno, T., et al. (2017) B Cells in Tertiary Lymphoid Structures Are Associated with Favorable Prognosis in Gastric Cancer. Journal of Surgical Research, 215, 74-82.
https://doi.org/10.1016/j.jss.2017.03.033
[32] Jeremiasen, M., Borg, D., Hedner, C., et al. (2020) Tu-mor-Associated CD68+, CD163+, and MARCO+ Macrophages as Prognostic Biomarkers in Patients with Treat-ment-Naïve Gastroesophageal Adenocarcinoma. Frontiers in Oncology, 10, Article 534761.
https://doi.org/10.3389/fonc.2020.534761
[33] Hill, D.G., Yu, L., Gao, H., et al. (2018) Hyperactive gp130/STAT3-Driven Gastric Tumourigenesis Promotes Submucosal Tertiary Lymphoid Structure Development. Inter-national Journal of Cancer, 143, 167-178.
https://doi.org/10.1002/ijc.31298
[34] Yamakoshi, Y., Tanaka, H., Sakimura, C., et al. (2021) Association between the Preoperative Neutrophil-to-Lymphocyte Ratio and Tertiary Lymphoid Structures Surrounding Tumor in Gastric Can-cer. Molecular and Clinical Oncology, 14, Article No. 76.
https://doi.org/10.3892/mco.2021.2238
[35] 关丽萍. 胃癌中炎症指标与三级淋巴结构的关系及其预后价值[D]: [硕士学位论文]. 苏州: 苏州大学, 2023.
https://doi.org/10.27351/d.cnki.gszhu.2021.001145
[36] Choi, Y., Kim, J.W., Nam, K.H., et al. (2017) Systemic Inflammation Is Associated with the Density of Immune Cells in the Tumor Microenvironment of Gastric Cancer. Gas-tric Cancer, 20, 602-611.
https://doi.org/10.1007/s10120-016-0642-0
[37] Figueroa-Protti, L., Soto-Molinari, R., Calderón-Osorno, M., Mora, J. and Alpízar-Alpízar, W. (2019) Gastric Cancer in the Era of Immune Checkpoint Blockade. Journal of Oncolo-gy, 2019, Article ID: 1079710.
https://doi.org/10.1155/2019/1079710
[38] Mori, T., Tanaka, H., Deguchi, S., et al. (2022) Clinical Efficacy of Nivolumab Is Associated with Tertiary Lymphoid Structures in Surgically Resected Primary Tumors of Recurrent Gastric Cancer. PLOS ONE, 17, e0262455.
https://doi.org/10.1371/journal.pone.0262455
[39] Kim, A., Lee, S.J., Ahn, J., et al. (2019) The Prognostic Signif-icance of Tumor-Infiltrating Lymphocytes Assessment with Hematoxylin and Eosin Sections in Resected Primary Lung Adenocarcinoma. PLOS ONE, 14, e0224430.
https://doi.org/10.1371/journal.pone.0224430
[40] Bergomas, F., Grizzi, F., Doni, A., et al. (2011) Tertiary Intra-tumor Lymphoid Tissue in Colo-Rectal Cancer. Cancers, 4, 1-10.
https://doi.org/10.3390/cancers4010001
[41] Posch, F., Silina, K., Leibl, S., et al. (2017) Maturation of Tertiary Lymphoid Structures and Recurrence of Stage II and III Colorectal Cancer. Oncoimmunology, 7, e1378844.
https://doi.org/10.1080/2162402X.2017.1378844
[42] Calderaro, J., Petitprez, F., Becht, E., et al. (2019) In-tra-Tumoral Tertiary Lymphoid Structures Are Associated with a Low Risk of Early Recurrence of Hepatocellular Carci-noma. Journal of Hepatology, 70, 58-65.
https://doi.org/10.1016/j.jhep.2018.09.003
[43] Finkin, S., Yuan, D., Stein, I., et al. (2015) Ectopic Lymphoid Structures Function as Microniches for Tumor Progenitor Cells in Hepatocellular Carcinoma. Nature Immunology, 16, 1235-1244.
https://doi.org/10.1038/ni.3290
[44] Liu, X., Tsang, J.Y.S., Hlaing, T., et al. (2017) Distinct Tertiary Lymphoid Structure Associations and Their Prognostic Relevance in HER2 Positive and Negative Breast Cancers. On-cologist, 22, 1316-1324.
https://doi.org/10.1634/theoncologist.2017-0029
[45] Hiraoka, N., Ino, Y., Yamazaki-Itoh, R., Kanai, Y., Kosuge, T. and Shimada, K. (2015) Intratumoral Tertiary Lymphoid Organ Is a Favourable Prognosticator in Patients with Pan-creatic Cancer. British Journal of Cancer, 112, 1782-1790.
https://doi.org/10.1038/bjc.2015.145
[46] Kroeger, D.R., Milne, K. and Nelson, B.H. (2016) Tumor-Infiltrating Plasma Cells Are Associated with Tertiary Lymphoid Structures, Cytolytic T-Cell Responses, and Superior Prognosis in Ovarian Cancer. Clinical Cancer Research, 22, 3005-3015.
https://doi.org/10.1158/1078-0432.CCR-15-2762
[47] Griss, J., Bauer, W., Wagner, C., et al. (2019) B Cells Sus-tain Inflammation and Predict Response to Immune Checkpoint Blockade in Human Melanoma. Nature Communications, 10, Article No. 4186.
https://doi.org/10.1038/s41467-019-12160-2
[48] Gu-Trantien, C., Loi, S., Garaud, S., et al. (2013) CD4+ Follicu-lar Helper T Cell Infiltration Predicts Breast Cancer Survival. Journal of Clinical Investigation, 123, 2873-2892.
https://doi.org/10.1172/JCI67428
[49] Thommen, D.S., Koelzer, V.H., Herzig, P., et al. (2018) A Transcriptionally and Functionally Distinct PD-1+ CD8+ T Cell Pool with Predictive Potential in Non-Small-Cell Lung Cancer Treated with PD-1 Blockade. Nature Medicine, 24, 994-1004.
https://doi.org/10.1038/s41591-018-0057-z
[50] Yang, M., Lu, J., Zhang, G., et al. (2021) CXCL13 Shapes Immunoactive Tumor Microenvironment and Enhances the Efficacy of PD-1 Checkpoint Blockade in High-Grade Serous Ovarian Cancer. Journal for ImmunoTherapy of Cancer, 9, e001136.
https://doi.org/10.1136/jitc-2020-001136
[51] Wu, S.Z., Roden, D.L., Wang, C., et al. (2020) Stromal Cell Diver-sity Associated with Immune Evasion in Human Triple-Negative Breast Cancer. EMBO Journal, 39, e104063.
https://doi.org/10.15252/embj.2019104063
[52] Schumacher, T.N. and Thommen, D.S. (2022) Tertiary Lymphoid Structures in Cancer. Science, 375, eabf9419.
https://doi.org/10.1126/science.abf9419
[53] Dieu-Nosjean, M.C., Giraldo, N.A., Kaplon, H., Germain, C., Frid-man, W.H. and Sautès-Fridman, C. (2016) Tertiary Lymphoid Structures, Drivers of the Anti-Tumor Responses in Hu-man Cancers. Immunological Reviews, 271, 260-275.
https://doi.org/10.1111/imr.12405
[54] Germain, C., Gnjatic, S. and Dieu-Nosjean, M.C. (2015) Tertiary Lymphoid Structure-Associated B Cells Are Key Players in Anti-Tumor Immunity. Frontiers in Immunology, 6, Article 67.
https://doi.org/10.3389/fimmu.2015.00067
[55] Vissers, J.L., Hartgers, F.C., Lindhout, E., Figdor, C.G. and Ade-ma, G.J. (2001) BLC (CXCL13) Is Expressed by Different Dendritic Cell Subsets in Vitro and in Vivo. European Jour-nal of Immunology, 31, 1544-1549.
https://doi.org/10.1002/1521-4141(200105)31:5<1544::AID-IMMU1544>3.0.CO;2-I
[56] Tirosh, I., Izar, B., Prakadan, S.M., et al. (2016) Dissecting the Multicellular Ecosystem of Metastatic Melanoma by Single-Cell RNA-seq. Science, 352, 189-196.
https://doi.org/10.1126/science.aad0501
[57] Gu-Trantien, C., Migliori, E., Buisseret, L., et al. (2017) CXCL13-Producing TFH Cells Link Immune Suppression and Adaptive Memory in Human Breast Cancer. JCI Insight, 2, e91487.
https://doi.org/10.1172/jci.insight.91487
[58] Workel, H.H., Lubbers, J.M., Arnold, R., et al. (2019) A Transcriptionally Distinct CXCL13+CD103+CD8+ T-Cell Population Is Associated with B-cell Recruitment and Neoantigen Load in Human Cancer. Cancer Immunology Research, 7, 784-796.
https://doi.org/10.1158/2326-6066.CIR-18-0517
[59] Vanhersecke, L., Brunet, M., Guégan, J.P., et al. (2021) Mature Tertiary Lymphoid Structures Predict Immune Checkpoint Inhibitor Efficacy in Solid Tumors Independently of PD-L1 Expression. Nature Cancer, 2, 794-802.
https://doi.org/10.1038/s43018-021-00232-6
[60] Helmink, B.A., Reddy, S.M., Gao, J., et al. (2020) B Cells and Tertiary Lymphoid Structures Promote Immunotherapy Response. Nature, 577, 549-555.
https://doi.org/10.1038/s41586-019-1922-8
[61] Zhao, Z., Ding, H., Lin, Z.B., et al. (2021) Relationship between Tertiary Lymphoid Structure and the Prognosis and Clinicopathologic Characteristics in Solid Tumors. International Journal of Medical Sciences, 18, 2327-2338.
https://doi.org/10.7150/ijms.56347
[62] Martinet, L., Filleron, T., Le Guellec, S., Rochaix, P., Garrido, I. and Girard, J.P. (2013) High Endothelial Venule Blood Vessels for Tumor-Infiltrating Lymphocytes Are Associated with Lymphotoxin β-Producing Dendritic Cells in Human Breast Cancer. The Journal of Immunology, 191, 2001-2008.
https://doi.org/10.4049/jimmunol.1300872
[63] Martinet, L., Garrido, I., Filleron, T., et al. (2011) Human Solid Tumors Contain High Endothelial Venules: Association with T- and B-Lymphocyte Infiltration and Favorable Prognosis in Breast Cancer. Cancer Research, 71, 5678-5687.
https://doi.org/10.1158/0008-5472.CAN-11-0431
[64] Bento, D.C., Jones, E., Junaid, S., et al. (2015) High En-dothelial Venules Are Rare in Colorectal Cancers But Accumulate in Extra-Tumoral Areas with Disease Progression. Oncoimmunology, 4, e974374.
https://doi.org/10.4161/2162402X.2014.974374