脂多糖在心房颤动中的研究进展
Research Progress of Lipopolysaccharides in Atrial Fibrillation
DOI: 10.12677/ACM.2023.13122822, PDF, HTML, XML, 下载: 145  浏览: 193 
作者: 陈先慧:青海大学研究生院,青海 西宁
关键词: 肠道微生物群心房颤动脂多糖Gut Microbiota Atrial Fibrillation Lipopolysaccharides
摘要: 最近,很多学者提出肠–心轴假说,并提出心房颤动(atrial fibrillation, AF)中功能失调的肠道微生物群及其代谢物与心脏的相互作用。其中肠道菌群代谢物之一——脂多糖(lipopolysaccharide, LPS)通过其代谢途径直接或间接进促进心脏重塑来增加房颤易感性,促进房颤发生。此外,脂多糖在房颤的防治及预后方面也发挥了一定作用。本综述将从脂多糖促进房颤的发生、发展及其在预后与防治方面的影响展开叙述。
Abstract: Recently, many scholars have proposed the gut cardiac axis hypothesis and proposed the interac-tion between the dysfunctional gut microbiota and its metabolites in atrial fibrillation (AF) and the heart. One of the metabolites of the gut microbiota, lipopolysaccharide (LPS), directly or indirectly promotes heart remodeling through its metabolic pathway to increase susceptibility to atrial fibril-lation and promote its occurrence. In addition, lipopolysaccharides also play a certain role in the prevention, treatment, and prognosis of atrial fibrillation. This review will describe the role of lipo-polysaccharides in promoting the occurrence and development of atrial fibrillation, as well as their impact on prognosis and prevention and treatment.
文章引用:陈先慧. 脂多糖在心房颤动中的研究进展[J]. 临床医学进展, 2023, 13(12): 20037-20041. https://doi.org/10.12677/ACM.2023.13122822

1. 引言

心房颤动(AF)是最常见的持续性心律失常,它由多种危险因素引起,其发病率和死亡率都很高 [1] ,已成为导致全球心脏死亡的心血管事件的重要因素。随着心–肠轴概念的确立,越来越多的研究表明肠道微生物群及其代谢物在心血管疾病的发病机制中发挥着重要作用。有研究认为肠道微生物群衍生代谢物是AF底物的调节器。多项研究表明,肠道微生物代谢物脂多糖(LPS)可以增加心房电生理的不稳定性,并与AF相关 [2] 。

2. LPS

LPS是革兰氏阴性菌(例如大肠杆菌)的一种细胞壁结构成分,由疏水性脂质a和带有多糖O抗原的亲水性碳水化合物组成 [1] 。脱落的脂多糖通过存在于目标细胞的细胞膜中的TLR4 (Toll-Like Receptor, TLR4)来表现其作用。TLR家族与炎性细胞因子有关。在自然免疫中起着重要作用。

3. LPS与房颤

3.1. LPS与房颤相关危险因素

AF是心脏代谢谱疾病的一部分,更常见于心血管风险高的患者 [3] 。许多临床和临床前观察表明,大量伴随的可改变的心血管危险因素决定了房颤的发生和进展。如:冠状动脉疾病、心力衰竭、高血压、肥胖等 [4] 。LPS可能通过加速动脉粥样硬化、高血压等间接增加心房颤动的风险。

3.1.1. LPS与动脉粥样硬化

Menichelli等人 [5] 的队列研究结果表明,LPS在房颤发生中具有促氧化剂和促动脉粥样硬化的作用。在不同的心脏代谢疾病中,LPS 已被证明参与多种途径,导致活性氧的产生增加。之前的一项研究分析了颈动脉粥样硬化斑块的组成,结果表明,LPS诱导人单核细胞TLR4介导的剂量依赖性NADPH氧化酶2上调,氧化低密度脂蛋白胆固醇和过氧化氢生成增加 [6] 。胆固醇积聚,导致泡沫细胞生成增加,促进动脉粥样硬化斑块形成 [7] ,最终促进冠状动脉疾病发生,从而引起左心房灌注不足。心房缺血区氧化应激增加导致雷诺丁受体2 (Ryanodine Receptor 2)和钙调素结合特性改变,随后ryanodine受体2的钙释放增加,诱导左心房自发灶性放电 [8] 。此外,心房缺血缺氧可以导致心脏纤维化,促进房颤发生。

3.1.2. LPS与高血压

大量研究证明肠道菌群失衡可破坏肠道屏障功能,增加肠粘膜通透性,刺激细菌易位,增加血清内毒素水平,引起炎症反应,最终导致内皮功能障碍,引起或加重高血压 [9] 。Manner等 [10] 对人类免疫缺陷病毒感染患者进行调查,发现肠道屏障功能障碍引起的内毒素易位是高血压的危险因素。LPS又称内毒素,其从肠道转运到循环系统时,LPS与LPS结合蛋白(LBP)形成复合物,可与单核细胞上的CD14受体结合。这可能导致由MD2/TLR4受体复合物介导的促炎细胞因子,如肿瘤坏死因子-α (TNF-α)、白细胞介素-1 (IL-1)和白细胞介素-6 (IL-6)的产生 [11] 。促进炎症反应,从而导致高血压。此外,在一项动物实验中,LPS可用于诱导血管功能障碍,导致血管舒张因子减少,血管收缩因子增加,外周阻力的增加最终导致血压升高 [9] 。一项对队列研究的荟萃分析表明,与非高血压患者相比,高血压患者发生AF的相对风险增加了50% [12] 。流行病学研究表明,血压升高易发生左心室肥厚 [13] ,此外,可通过激活肾素–血管紧张素–醛固酮系统,并使自主神经失调,从而刺激心肌细胞凋亡和炎症,导致纤维化和左心室肥厚。长期高血压使左室收缩舒张功能受损,心房压力升高,最终导致心房伸展、扩大和心房收缩恶化,诱发房颤 [14] 。

3.2. LPS与炎症反应

炎症免疫过程参与AF 的发病机制,AF发生在急性炎症(危重疾病)的临床环境中,但更常见于慢性低度炎症患者。多项研究报道,LPS可通过细胞旁或跨细胞机制从肠道黏膜进入循环,加重慢性炎症,导致房颤 [15] 。慢性低度炎症是促纤维化途径的潜在中介,在房颤基质形成中起着重要作用。研究表明,LPS通过激活TLR4/核因子-κB(NF-κB)/Nod样受体蛋白(NLRP)-3炎症小体信号通路,诱导不良心房重构(纤维化),增加房颤的易感性 [16] 。同样,靶向TLR4/NF-κB/NLRP3轴可减少AF临床前模型中的心房纤维化 [17] 。Menichelli [5] 等人在ATHERO-AF研究中证实,循环LPS可能导致抗氧化状态受损,氧化应激增加。动物实验发现,LPS可刺激M1巨噬细胞极化产生多种促炎细胞因子,此外,TLR4被LPS激活触发连续的MyD88和trf依赖信号通路,协同促进促炎反应 [18] 。炎性细胞因子的旁分泌作用或远处器官的传递可能导致全身炎症状态,从而导致心房重塑并导致AF的发生 [1] 。已有研究认为钙处理异常和连接蛋白调节异常是诱发AF的潜在机制。在犬模型中,给予LPS会增加促炎细胞因子在心房中的浓度,从而增加连接蛋白43的表达并导致连接蛋白的侧化,LPS下调L型钙通道的表达,缩短有效不应期,促进AF [4] 。

4. LPS与房颤预后

Pastori [19] 等人发现循环LPS通过增加血小板活化与房颤患者的主要不良心血管事件显著相关。急性动脉粥样硬化和血栓栓塞不良事件是AF相关发病率和死亡率的重要因素。LPS-TLR途径是血栓形成的主要促因。TLR2和TLR4均在内皮细胞和血小板上表达,TLR2和TLR4通路的激活将促进血管性假血友病因子(VWF)和凝血因子VIII表达的释放,促进血小板促炎细胞聚集 [20] 。有研究表明,LPS通过增加内皮和血小板中TLR4的相关信号通路,促进心房血栓形成(导致血栓栓塞性卒中)和动脉血栓形成(导致急性冠脉综合征)的发生 [15] 。此外,Wang等人 [18] 对159例房颤患者进行了单中心回顾性分析,研究结果表明,循环LPS是房颤复发的一个预测因子,循环LPS通过增加全身炎症和心房纤维化与射频消融术后房颤的复发有关。除此之外,LPS还可能通过加速心力衰竭导致房颤的复发,并可能诱发心肌梗死和左心室功能障碍,这两者都可能增加房颤的复发风险,这进一步说明促进房颤相关危险因素的发生可能是导致房颤复发的间接机制。

5. LPS与房颤新型防治途径

5.1. 微生物干预

在一项涉及846名高血压患者的荟萃分析中,服用益生菌后,血压、体重指数(BMI)和血糖水平均出现轻微下降,支持益生菌在血压控制中的有益作用 [21] 。在喂食高脂肪的apoE-/-小鼠中,补充鼠李糖乳杆菌可通过减轻氧化应激和炎症,显著减小动脉粥样硬化病变的大小 [22] 。间接降低房颤相关危险因素发生。Ghosh等人 [23] 发现姜黄素是姜黄的一种植物化学成分,通过调节肠道屏障功能,增加肠道通透性,降低LPS水平来减轻LDLR小鼠的动脉粥样硬化。

5.2. 粪便移植

粪便菌群移植(FMT)是一种直接引入肠道菌群的有效方法。许多研究表明它通过移植肠道菌群可以恢复肠道微生物稳态,可以有选择减少有害菌,如革兰氏阴性菌,而增加有益菌,如乳杆菌等。但在转移菌群同时一些其他内毒素也有可能随供体微生物一起转移而产生负面影响。因此,如何权衡实践中FMT的利弊仍然是一个有待解决的问题。

6. 总结与展望

目前,虽有大量研究直接或间接证实脂多糖与房颤的发生进展有着密切联系,但很多研究仍存在一定的局限性,可能对LPS导致房颤的具体作用机制的描述并不够详尽,研究并不透彻,而且对于从LPS相关的代谢途径来作为AF新型治疗方式的研究也甚少,未来期待有更多学者进行相关研究,为房颤防治提供新型治疗方式。

参考文献

[1] Zhang, Y., Zhang, S., Li, B.L., et al. (2022) Gut Microbiota Dysbiosis Promotes Age-Related Atrial Fibrillation by Lip-opolysaccharide and Glucose-Induced Activation of NLRP3-Inflammasome. Cardiovascular Research, 118, 785-797.
https://doi.org/10.1093/cvr/cvab114
[2] Tabata, T., Yamashita, T., Hosomi, K., et al. (2021) Gut Microbial Com-position in Patients with Atrial Fibrillation: Effects of Diet and Drugs. Heart and Vessels, 36, 105-114.
https://doi.org/10.1007/s00380-020-01669-y
[3] Inceu, A.-I., Neag, M.-A., Craciun, A.-E., et al. (2023) Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. International Journal of Molecular Sciences, 24, Article No. 3385.
https://doi.org/10.3390/ijms24043385
[4] Gawałko, M., Agbaeden, T.A., Saljic, A., et al. (2022) Gut Microbiota, Dysbiosis and Atrial Fibrillation. Arrhythmogenic Mechanisms and Potential Clinical Implications. Cardiovascular Re-search, 118, 2415-2427.
https://doi.org/10.1093/cvr/cvab292
[5] Menichelli, D., Carnevale, R., Nocella, C., et al. (2021) Circulating Lipo-polysaccharides and Impaired Antioxidant Status in Patients with Atrial Fibrillation. Data from the ATHERO-AF Study. Frontiers in Cardiovascular Medicine, 8, Article ID: 779503.
https://doi.org/10.3389/fcvm.2021.779503
[6] Carnevale, R., Nocella, C., Petrozza, V., et al. (2018) Localization of Lipopolysaccharide from Escherichia coli into Human Atherosclerotic Plaque. Scientific Reports, 8, Article No. 3598.
https://doi.org/10.1038/s41598-018-22076-4
[7] Xu, J. and Yang, Y.J. (2021) Gut Microbiome and Its Me-ta-Omics Perspectives: Profound Implications for Cardiovascular Diseases. Gut Microbes, 13, e1936379.
https://doi.org/10.1080/19490976.2021.1936379
[8] Corban, M.T., Toya, T., et al. (2021) Atrial Fibrillation and Endothelial Dysfunction: A Potential Link? Mayo Clinic Proceedings, 96, 1609-1621.
https://doi.org/10.1016/j.mayocp.2020.11.005
[9] Yang, Z.H., Wang, Q.C., Liu, Y.X., et al. (2023) Gut Microbi-ota and Hypertension: Association, Mechanisms and Treatment. Clinical and Experimental Hypertension, 45, 2195135.
https://doi.org/10.1080/10641963.2023.2195135
[10] Manner, I.W., Baekken, M., Kvale, D., et al. (2013) Markers of Microbial Translocation Predict Hypertension in HIV-Infected Individuals. HIV Medicine, 14, 354-361.
https://doi.org/10.1111/hiv.12015
[11] Verhaar, B.J.H., Prodan, A., Nieuwdorp, M., et al. (2020) Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients, 12, Article No. 2982.
https://doi.org/10.3390/nu12102982
[12] Aune, D., Mahamat-Saleh, Y., Kobeissi, E., et al. (2023) Blood Pressure, Hypertension and the Risk of Atrial Fbrillation: A Systematic Review and Meta-Analysis of Cohort Studies. European Journal of Epidemiology, 38, 145-178.
https://doi.org/10.1007/s10654-022-00914-0
[13] Cao, X., Broughton, S.T., Waits, G.S., et al. (2019) Interrela-tions between Hypertension and Electrocardiographic Left Ventricular Hypertrophy and Their Associations with Cardio-vascular Mortality. American Journal of Cardiology, 123, 274-283.
https://doi.org/10.1016/j.amjcard.2018.10.006
[14] Gumprecht, J., Domek, M., Lip, G.Y.H. and Shantsila, A. (2019) Invited Review: Hypertension and Atrial Fibrillation: Epidemiology, Pathophysiology, and Implications for Man-agement. Journal of Human Hypertension, 33, 824-836.
https://doi.org/10.1038/s41371-019-0279-7
[15] Blöbaum, L., Witkowski, M., Wegner, M., et al. (2023) Intestinal Barrier Dysfunction and Microbial Translocation in Patients with First-Diagnosed Atrial Fibrillation. Biomedicines, 11, Article No. 176.
https://doi.org/10.3390/biomedicines11010176
[16] Kong, B., Fu, H., Xiao, Z., et al. (2022) Gut Microbiota Dysbiosis Induced by a High-Fat Diet Increases Susceptibility to Atrial Fibrillation. Canadian Journal of Cardiology, 38, 1962-1975.
https://doi.org/10.1016/j.cjca.2022.08.231
[17] Zhan, X., Cheng, L., Huo, N., et al. (2022) Sodi-um-Glucose Cotransporter-2 Inhibitor Alleviated Atrial Remodeling in STZ-Induced Diabetic Rats by Targeting TLR4 Pathway. Frontiers in Cardiovascular Medicine, 9, Article ID: 908037.
https://doi.org/10.3389/fcvm.2022.908037
[18] Wang, M., Xiong, H., Lu, L., et al. (2022) Serum Lipopolysaccha-ride Is Associated with the Recurrence of Atrial Fibrillation after Radiofrequency Ablation by Increasing Systemic In-flammation and Atrial Fibrosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2405972.
https://doi.org/10.1155/2022/2405972
[19] Pastori, D., Carnevale, R., Nocella, C., et al. (2017) Gut-Derived Serum Lipopolysaccharide Is Associated with Enhanced Risk of Major Adverse Cardiovascular Events in Atrial Fibrillation: Ef-fect of Adherence to Mediterranean Diet. Journal of the American Heart Association, 6, e005784.
https://doi.org/10.1161/JAHA.117.005784
[20] Zhou, W.Y., Cheng, Y.Y., Zhu, P., et al. (2020) Implication of Gut Microbiota in Cardiovascular Diseases. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 5394096.
https://doi.org/10.1155/2020/5394096
[21] Smits, L.P., Kootte, R.S., Levin, E., et al. (2018) Effect of Vegan Fecal Microbiota Transplantation on Carnitine- and Choline-Derived Trimethylamine-N-Oxide Production and Vascular In-flammation in Patients with Metabolic Syndrome. Journal of the American Heart Association, 7, e008342.
https://doi.org/10.1161/JAHA.117.008342
[22] de Almeida, S.M., Mowry, F.E., Peaden, S.C., Andrade, T.U. and Biancardi, V.C. (2020) Kefir Ameliorates Hypertension via Gutbrain Mechanisms in Spontaneously Hypertensive Rats. The Journal of Nutritional Biochemistry, 77, Article ID: 108318.
https://doi.org/10.1016/j.jnutbio.2019.108318
[23] Ghosh, S.S., Bie, J., Wang, J. and Ghosh, S. (2014) Oral Sup-plementation with Non-Absorbable Antibiotics or Curcumin Attenuates Western Diet-Induced Atherosclerosis and Glu-cose Intolerance in LDLR-/- Mice-Role of Intestinal Permeability and Macrophage Activation. PLOS ONE, 9, e108577.
https://doi.org/10.1371/journal.pone.0108577