Hadamard流形上的多目标邻近梯度算法
Proximal Gradient Algorithm forMultiobjective Optimization onHadamard Manifold
DOI: 10.12677/PM.2023.1312367, PDF, 下载: 178  浏览: 232  国家自然科学基金支持
作者: 刘仁金, 王湘美*:贵州大学数学与统计学院,贵州 贵阳
关键词: Hadamard流形邻近梯度算法Polyak-Loiasiewicz不等式Hadamard Manifold Proximal Gradient Algorithm Polyak-Lojasiewicz Inequality
摘要: 邻近梯度算法是求解非光滑优化问题的经典算法。本文将多目标优化问题的邻近梯度算法推广到Hadammard流形上。在一定条件下,证明了算法产生序列的聚点是Pareto稳定点。在目标函数满足Polyak-Loiasiewicz不等式时,得到算法的收敛速度是线性的。所得结果在Hadamard流形上是新的。
Abstract: Proximal gradient algorithm is a classical algorithm for solving nonsmooth optimiza- tion problems. In this paper, the multiobjective proximal gradient algorithm is ex- tended to Hadamard manifold. Under certain conditions, it is proved that the cluster point of the sequence generated by the algorithm is Pareto stationary. In the case, when the objective function satisfies the Polyak-Lojasiewicz inequality, the conver- gence rate of the algorithm is linear.
文章引用:刘仁金, 王湘美. Hadamard流形上的多目标邻近梯度算法[J]. 理论数学, 2023, 13(12): 3525-3536. https://doi.org/10.12677/PM.2023.1312367

参考文献

[1] Adler, R.L., Dedieu, J.P., Margulies, J.Y., et al. (2002) Newton's Method on Riemannian Manifolds and a Geometric Model for the Human Spine. IMA Journal of Numerical Analysis, 22, 359-390.
https://doi.org/10.1093/imanum/22.3.359
[2] Li, C. and Wang, J. (2006) Newton's Method on Riemannian Manifolds: Smale's Point Estimate Theory under the -Condition. IMA Journal of Numerical Analysis, 26, 228-251.
https://doi.org/10.1093/imanum/dri039
[3] Gabay, D. (1982) Minimizing a Differentiable Function over a Differential Manifold. Journal of Optimization Theory and Applications, 37, 177-219.
https://doi.org/10.1007/BF00934767
[4] Wang, J.H., Li, C., Lopez, G. and Yao, J.C. (2015) Convergence Analysis of Inexact Proximal Point Algorithms on Hadamard Manifolds. Journal of Global Optimization, 61, 553-573.
https://doi.org/10.1007/s10898-014-0182-2
[5] Wang, X.M. (2018) Subgradient Algorithms on Riemannian Manifolds of Lower Bounded Curvatures. Optimization, 67, 179-194.
https://doi.org/10.1080/02331934.2017.1387548
[6] Absil, P.A., Baker, C.G. and Gallivan, K.A. (2007) Trust-Region Methods on Riemannian Manifolds. Foundations of Computational Mathematics, 7, 303-330.
https://doi.org/10.1007/s10208-005-0179-9
[7] Huang, W. and Wei, K. (2022) Riemannian Proximal Gradient Methods. Mathematical Pro- gramming, 194, 371-413.
https://doi.org/10.1007/s10107-021-01632-3
[8] Jolliffe, I.T., Trendafilov, N.T. and Uddin, M. (2003) A Modified Principal Component Technique Based on the LASSO. Journal of Computational and Graphical Statistics, 12, 531-547.
https://doi.org/10.1198/1061860032148
[9] Genicot, M., Huang, W. and Trendafilov, N.T. (2015) Weakly Correlated Sparse Components with Nearly Orthonormal Loadings. Geometric Science of Information: Second International Conference, Palaiseau, 28-30 October 2015, 484-490.
https://doi.org/10.1007/978-3-319-25040-3 52
[10] Zhang, Y., Lau, Y., Kuo, H., et al. (2017) On the Global Geometry of Sphere-Constrained Sparse Blind Deconvolution. 2017 IEEE Conference on Computer Vision and Pattern Recog- nition, Honolulu, HI, 21-26 July 2017, 4894-4902.
[11] Tang, J. and Liu, H. (2012) Unsupervised Feature Selection for Linked Social Media Data. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, Beijing, 12-16 August 2012, 904-912.
[12] Beck, A. and Teboulle, M. (2009) A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM Journal on Imaging Sciences, 2, 183-202.
https://doi.org/10.1137/080716542
[13] Huang, W. (2013) Optimization Algorithms on Riemannian Manifolds with Applications. The Florida State University, Tallahassee, FL.
[14] Hosseini, S. and Uschmajew, A. (2017) A Riemannian Gradient Sampling Algorithm for Nonsmooth Optimization on Manifolds. SIAM Journal on Optimization, 27, 173-189.
https://doi.org/10.1137/16M1069298
[15] Hosseini, S., Huang, W. and Yousefpour, R. (2018) Line Search Algorithms for Locally Lipschitz Functions on Riemannian Manifolds. SIAM Journal on Optimization, 28, 596-619.
https://doi.org/10.1137/16M1108145
[16] Liu, Y., Shang, F., Cheng, J., et al. (2017) Accelerated First-Order Methods for Geodesically Convex Optimization on Riemannian Manifolds. Advances in Neural Information Processing Systems, 30.
[17] Chen, S., Ma, S., So, A.M.-C., et al. (2020) Proximal Gradient Method for Nonsmooth Optimization over the Stiefel Manifold. SIAM Journal on Optimization, 30, 210-239.
https://doi.org/10.1137/18M122457X
[18] Huang, W. and Wei, K. (2019) An Extension of Fast Iterative Shrinkage-thresholding to Riemannian Optimization for Sparse Principal Component Analysis.
https://doi.org/10.48550/arXiv.1909.05485
[19] Huang, W. and Wei, K. (2022) Riemannian Proximal Gradient Methods. Mathematical Pro- gramming, 194, 371-413.
https://doi.org/10.1007/s10107-021-01632-3
[20] Tanabe, H., Fukuda, E.H. and Yamashita, N. (2019) Proximal Gradient Methods for Multiobjective Optimization and Their Applications. Computational Optimization and Applications, 72, 339-361.
https://doi.org/10.1007/s10589-018-0043-x
[21] Tanabe, H., Fukuda, E.H. and Yamashita, N. (2023) Convergence Rates Analysis of a Multiobjective Proximal Gradient Method. Optimization Letters, 17, 333-350.
https://doi.org/10.1007/s11590-022-01877-7
[22] Do Carmo, M.P. and Flaherty Francis, J. (1992) Riemannian Geometry. Birkhauser.
[23] 陈维桓,李兴校.黎曼几何引论[M].北京: 北京大学出版社,2002: 12.
[24] Boothby, W.M. (1986) An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, Cambridge, MA.
[25] Padlewska, B. and Darmochwal, A. (1990) Topological Spaces and Continuous Functions. Formalized Mathematics, 1, 223-230.
[26] Hogan, W.W. (1973) Point-to-Set Maps in Mathematical Programming. SIAM Review, 15, 591-603.
https://doi.org/10.1137/1015073
[27] Tanabe, H., Fukuda, E.H. and Yamashita, N. (2023) New Merit Functions for Multiobjective Optimization and Their Properties. Optimization, 1-38.
https://doi.org/10.1080/02331934.2023.2232794