阿尔茨海默病与糖尿病共病关系的机制探究
Exploration of the Mechanism of the Comorbidity Relationship between Alzheimer’s Disease and Diabetes Mellitus
DOI: 10.12677/MD.2023.134067, PDF, 下载: 130  浏览: 215  科研立项经费支持
作者: 温 涛*, 陈 妍, 车土玲, 庄琳琳:宁德师范学院医学院,福建 宁德;苏裕盛#:宁德师范学院医学院,福建 宁德;宁德师范学院毒物与药物毒理学重点实验室,福建 宁德
关键词: 阿尔茨海默病糖尿病神经炎症胰岛素Alzheimer’s Disease Diabetes Mellitus Neuroinflammation Insulin
摘要: 阿尔茨海默病(Alzheimer’s Disease, AD)是一种神经退行性疾病,主要表现为认知障碍,且是一种不可逆转的疾病。尽管近年来对AD发病机制的研究已经取得了许多成就,但还是没有发现能根治AD的方法。糖尿病(Diabetes Mellitus, DM)是一种异质性疾病,其特征是高血糖和胰岛素分泌不足,二者均会加剧神经炎症。通过研究AD的病理生理学特征、AD的遗传基础及病发后免疫系统的变化与DM的病理生理学特征及其遗传风险因素,表明了DM与AD具有相同的共病关系。本文以探讨AD与DM共病关系机制进行综述,旨在通过针对DM的发病机制来对AD进行有效的预测和预防。
Abstract: Alzheimer’s Disease (AD) is a kind of neurodegenerative disease, mainly manifested by cognitive impairment, and is an irreversible disease. Although many achievements have been made in the study of the pathogenesis of AD in recent years, no cure for AD has been found. Diabetes Mellitus (DM) is a heterogeneous group of diseases characterized by high blood sugar and insufficient insulin secretion, both of which exacerbate neuroinflammation. The study of the pathophysiology of AD, the genetic basis of AD, the changes of immune system after the onset of AD, the pathophysiology of DM and its genetic risk factors showed that DM and AD had the same comorbidity relationship. This ar-ticle reviews the mechanism of the comorbidity relationship between AD and DM, aiming at the ef-fective prediction and prevention of AD by targeting the pathogenesis of DM.
文章引用:温涛, 陈妍, 车土玲, 庄琳琳, 苏裕盛. 阿尔茨海默病与糖尿病共病关系的机制探究[J]. 医学诊断, 2023, 13(4): 440-450. https://doi.org/10.12677/MD.2023.134067

参考文献

[1] Lane, C.A., Hardy, J. and Schott, J.M. (2018) Alzheimer’s Disease. European Journal of Neurology, 25, 59-70.
https://doi.org/10.1111/ene.13439
[2] Cummings, J.L., Tong, G. and Ballard, C. (2019) Treatment Combinations for Alz-heimer’s Disease: Current and Future Pharmacotherapy Options. Journal of Alzheimer’s Disease, 67, 779-794.
https://doi.org/10.3233/JAD-180766
[3] Rostagno, A.A. (2022) Pathogenesis of Alzheimer’s Disease. International Journal of Molecular Sciences, 24, Article 107.
https://doi.org/10.3390/ijms24010107
[4] Ballard, C., Gauthier, S., Corbett, A., et al. (2011) Alzheimer’s Disease. The Lancet, 377, 1019-1031.
https://doi.org/10.1016/S0140-6736(10)61349-9
[5] Hinault, C., Caroli-Bosc, P., Bost, F., et al. (2023) Critical Overview on Endocrine Disruptors in Diabetes Mellitus. International Journal of Molecular Sciences, 24, Article 4537.
https://doi.org/10.3390/ijms24054537
[6] Laakso, M. (2019) Biomarkers for Type 2 Diabetes. Molecular Metabolism, 27, S139-S146.
https://doi.org/10.1016/j.molmet.2019.06.016
[7] Shieh, J.C., Huang, P.T. and Lin, Y.F. (2020) Alzheimer’s Disease and Dia-betes: Insulin Signaling as the Bridge Linking Two Pathologies. Molecular Neurobiology, 57, 1966-1977.
https://doi.org/10.1007/s12035-019-01858-5
[8] Takasugi, N., Komai, M., Kaneshiro, N., et al. (2023) The Pursuit of the “In-side” of the Amyloid Hypothesis—Is C99 a Promising Therapeutic Target for Alzheimer’s Disease? Cells, 12, Article 454.
https://doi.org/10.3390/cells12030454
[9] Orobets, K.S. and Karamyshev, A.L. (2023) Amyloid Precursor Protein and Alz-heimer’s Disease. International Journal of Molecular Sciences, 24, Article 14794.
https://doi.org/10.3390/ijms241914794
[10] Tiwari, S., Atluri, V., Kaushik, A., et al. (2019) Alzheimer’s Disease: Pathogenesis, Diagnostics, and Therapeutics. International Journal of Nanomedicine, 14, 5541-5554.
https://doi.org/10.2147/IJN.S200490
[11] Sreenivasachary, N., Kroth, H., Benderitter, P., et al. (2017) Discovery and Character-ization of Novel Indole and 7-Azaindole Derivatives as Inhibitors of Beta-Amyloid-42 Aggregation for the Treatment of Alzheimer’s Disease. Bioorganic & Medicinal Chemistry Letters, 27, 1405-1411.
https://doi.org/10.1016/j.bmcl.2017.02.001
[12] Long, J.M. and Holtzman, D.M. (2019) Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 179, 312-339.
https://doi.org/10.1016/j.cell.2019.09.001
[13] Masters, C.L. and Selkoe, D.J. (2012) Biochemistry of Amyloid Beta-Protein and Amyloid Deposits in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2, a006262.
https://doi.org/10.1101/cshperspect.a006262
[14] Mucke, L. and Selkoe, D.J. (2012) Neurotoxicity of Amyloid Beta-Protein: Synaptic and Network Dysfunction. Cold Spring Harbor Perspectives in Medicine, 2, a006338.
https://doi.org/10.1101/cshperspect.a006338
[15] Musiek, E.S. and Holtzman, D.M. (2015) Three Dimensions of the Amyloid Hypothesis: Time, Space and “Wingmen”. Nature Neuroscience, 18, 800-806.
https://doi.org/10.1038/nn.4018
[16] Tarawneh, R., D’angelo, G., Macy, E., et al. (2011) Visinin-Like Protein-1: Diagnostic and Prognostic Biomarker in Alzheimer’s Disease. Annals of Neurology, 70, 274-285.
https://doi.org/10.1002/ana.22448
[17] Ferrari, C. and Sorbi, S. (2021) The Complexity of Alzheimer’s Disease: An Evolving Puzzle. Physiological Reviews, 101, 1047-1081.
https://doi.org/10.1152/physrev.00015.2020
[18] Maheshwari, S. (2023) AGEs RAGE Pathways: Alzheimer’s Disease. Drug Research (Stuttg), 73, 251-254.
https://doi.org/10.1055/a-2008-7948
[19] Moloney, C.M., Lowe, V.J. and Murray, M.E. (2021) Visualization of Neurofibrillary Tangle Maturity in Alzheimer’s Disease: A Clinicopathologic Perspective for Biomarker Research. Alzheimer’s & Dementia, 17, 1554-1574.
https://doi.org/10.1002/alz.12321
[20] Pîrşcoveanu, D., Pirici, I., Tudorică, V., et al. (2017) Tau Protein in Neurodegenerative Diseases—A Review. Romanian Journal of Morphology and Embryology, 58, 1141-1150.
[21] Huang, H.C. and Jiang, Z.F. (2009) Accumulated Amyloid-Beta Peptide and Hyperphosphorylated Tau Protein: Relationship and Links in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 16, 15-27.
https://doi.org/10.3233/JAD-2009-0960
[22] Šimić, G., Babić, L.M., Wray, S., et al. (2016) Tau Protein Hyperphosphorylation and Aggregation in Alzheimer’s Disease and Other Tauopathies, and Possible Neuroprotective Strategies. Biomolecules, 6, Article 6.
https://doi.org/10.3390/biom6010006
[23] Serrano-Pozo, A., Frosch, M.P., Masliah, E., et al. (2011) Neuropathological Altera-tions in Alzheimer’s Disease. Cold Spring Harbor Perspectives in Medicine, 1, a006189.
https://doi.org/10.1101/cshperspect.a006189
[24] Khan, S., Barve, K.H. and Kumar, M.S. (2020) Recent Advancements in Path-ogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Current Neuropharmacology, 18, 1106-1125.
https://doi.org/10.2174/1570159X18666200528142429
[25] Huang, F., Wang, M., Liu, R., et al. (2019) CDT2-Controlled Cell Cycle Reentry Regulates the Pathogenesis of Alzheimer’s Disease. Alzheimer’s & Dementia, 15, 217-231.
https://doi.org/10.1016/j.jalz.2018.08.013
[26] Han-Chang H, Zhao-Feng J. (2009) Accumulated Amyloid-β Peptide and Hyper-phosphorylated Tau Protein: Relationship and Links in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 16, 15-27.
https://doi.org/10.3233/JAD-2009-0960
[27] Heneka, M.T., Carson, M.J., El, K.J., et al. (2015) Neuroinflammation in Alz-heimer’s Disease. The Lancet Neurology, 14, 388-405.
https://doi.org/10.1016/S1474-4422(15)70016-5
[28] Lyman, M., Lloyd, D.G., Ji, X., et al. (2014) Neuroinflammation: The Role and Consequences. Neuroscience Research, 79, 1-12.
https://doi.org/10.1016/j.neures.2013.10.004
[29] Kwon, H.S. and Koh, S.H. (2020) Neuroinflammation in Neurodegenerative Disorders: The Roles of Microglia and Astrocytes. Translational Neurodegeneration, 9, Article No. 42.
https://doi.org/10.1186/s40035-020-00221-2
[30] Hampel, H., Caraci, F., Cuello, A.C., et al. (2020) A Path toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer’s Disease. Frontiers in Immunology, 11, Article 456.
https://doi.org/10.3389/fimmu.2020.00456
[31] Ma, C., Hong, F. and Yang, S. (2022) Amyloidosis in Alzheimer’s Disease: Pathogeny, Etiology, and Related Therapeutic Directions. Molecules, 27, Article 1210.
https://doi.org/10.3390/molecules27041210
[32] Zhang, G., Wang, Z., Hu, H., et al. (2021) Microglia in Alzheimer’s Disease: A Target for Therapeutic Intervention. Frontiers in Cellular Neuroscience, 15, Article 749587.
https://doi.org/10.3389/fncel.2021.749587
[33] Al-Ghraiybah, N.F., Wang, J., Alkhalifa, A.E., et al. (2022) Glial Cell-Mediated Neuroinflammation in Alzheimer’s Disease. International Journal of Molecular Sciences, 23, Article 10572.
https://doi.org/10.3390/ijms231810572
[34] Wolf, S.A., Boddeke, H.W. and Kettenmann, H. (2017) Microglia in Physiology and Disease. Annual Review of Physiology, 79, 619-643.
https://doi.org/10.1146/annurev-physiol-022516-034406
[35] He, X.F., Xu, J.H., Li, G., et al. (2020) NLRP3-Dependent Microglial Training Impaired the Clearance of Amyloid-Beta and Aggravated the Cogni-tive Decline in Alzheimer’s Disease. Cell Death & Disease, 11, Article No. 849.
https://doi.org/10.1038/s41419-020-03072-x
[36] De Oliveira, P., Cella, C., Locker, N., et al. (2022) Improved Sleep, Memory, and Cellular Pathological Features of Tauopathy, Including the NLRP3 Inflammasome, after Chronic Administration of Trazodone in rTg4510 Mice. Journal of Neuroscience, 42, 3494-3509.
https://doi.org/10.1523/JNEUROSCI.2162-21.2022
[37] Feng, Y.S., Tan, Z.X., Wu, L.Y., et al. (2020) The Involvement of NLRP3 Inflammasome in the Treatment of Alzheimer’s Disease. Ageing Re-search Reviews, 64, Article ID: 101192.
https://doi.org/10.1016/j.arr.2020.101192
[38] Breijyeh, Z. and Karaman, R. (2020) Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules, 25, Article 5789.
https://doi.org/10.3390/molecules25245789
[39] (2023) 2023 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 19, 1598-1695.
https://doi.org/10.1002/alz.13016
[40] Bird, T.D. (2008) Genetic Aspects of Alzheimer Disease. Genetics in Medicine, 10, 231-239.
https://doi.org/10.1097/GIM.0b013e31816b64dc
[41] Sasaguri, H., Nilsson, P., Hashimoto, S., et al. (2017) APP Mouse Models for Alzheimer’s Disease Preclinical Studies. The EMBO Journal, 36, 2473-2487.
https://doi.org/10.15252/embj.201797397
[42] Baranello, R.J., Bharani, K.L., Padmaraju, V., et al. (2015) Amyloid-Beta Protein Clearance and Degradation (ABCD) Pathways and Their Role in Alzheimer’s Disease. Current Alzheimer Research, 12, 32-46.
https://doi.org/10.2174/1567205012666141218140953
[43] Selkoe, D.J. and Hardy, J. (2016) The Amyloid Hypothesis of Alz-heimer’s Disease at 25 Years. EMBO Molecular Medicine, 8, 595-608.
https://doi.org/10.15252/emmm.201606210
[44] Hardy, J. and Selkoe, D.J. (2002) The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science, 297, 353-356.
https://doi.org/10.1126/science.1072994
[45] Farrer, L.A., Cupples, L.A., Haines, J.L., et al. (1997) Effects of Age, Sex, and Ethnicity on the Association between Apolipoprotein E Genotype and Alzheimer Disease. A Meta-Analysis. APOE and Alz-heimer Disease Meta Analysis Consortium. The Journal of the American Medical Association, 278, 1349-1356.
[46] Kim, J., Basak, J.M. and Holtzman, D.M. (2009) The Role of Apolipoprotein E in Alzheimer’s Disease. Neuron, 63, 287-303.
https://doi.org/10.1016/j.neuron.2009.06.026
[47] Jevtic, S., Sengar, A.S., Salter, M.W., et al. (2017) The Role of the Immune System in Alzheimer Disease: Etiology and Treatment. Ageing Research Reviews, 40, 84-94.
https://doi.org/10.1016/j.arr.2017.08.005
[48] Weksler, M.E., Gouras, G., Relkin, N.R., et al. (2005) The Immune System, Am-yloid-Beta Peptide, and Alzheimer’s Disease. Immunological Reviews, 205, 244-256.
https://doi.org/10.1111/j.0105-2896.2005.00264.x
[49] Wu, K.M., Zhang, Y.R., Huang, Y.Y., et al. (2021) The Role of the Im-mune System in Alzheimer’s Disease. Ageing Research Reviews, 70, Article ID: 101409.
https://doi.org/10.1016/j.arr.2021.101409
[50] Holder, K. and Reddy, P.H. (2021) The COVID-19 Effect on the Immune System and Mitochondrial Dynamics in Diabetes, Obesity, and Dementia. Neuroscientist, 27, 331-339.
https://doi.org/10.1177/1073858420960443
[51] de la Rubia, O.J., Sancho, C.S., Benlloch, M., et al. (2017) Impact of the Rela-tionship of Stress and the Immune System in the Appearance of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 55, 899-903.
https://doi.org/10.3233/JAD-160903
[52] Maraschin, J.F. (2012) Classification of Diabetes. Advances in Experimental Medicine and Biology, 771, 12-19.
https://doi.org/10.1007/978-1-4614-5441-0_2
[53] Sapra, A. and Bhandari, P. (2023) Diabetes. In: StatPearls, StatPearls Pub-lishing, Treasure Island, FL.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=31855345&query_hl=1
[54] Li, L.M., Jiang, B.G. and Sun, L.L. (2022) HNF1A: From Monogenic Diabetes to Type 2 Diabetes and Gestational Diabetes Mellitus. Frontiers in Endocrinology (Lausanne), 13, Article 829565.
https://doi.org/10.3389/fendo.2022.829565
[55] Pasarica, M., St, O.E. and Lee, E. (2021) Diabetes: Type 1 Diabetes. FP Essen-tials, 504, 11-15.
[56] Forlenza, G.P., Moran, A. and Nathan, B. (2018) Other Specific Types of Diabetes. In: Cowie, C.C., et al., Eds., Diabetes in America, 3rd Edition, National Institute of Diabetes and Digestive and Kidney Diseases (US), Bethesda, MD, Chapter 6.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=33651540&query_hl=1
[57] Bonnefond, A., Unnikrishnan, R., Doria, A., et al. (2023) Monogenic Diabetes. Nature Reviews Disease Primers, 9, Article No. 12.
https://doi.org/10.1038/s41572-023-00421-w
[58] Urbanova, J., Brunerova, L., Nunes, M.A., et al. (2020) MODY Diabetes and Screening of Gestational Diabetes. Ceska Gynekologie, 85, 124-130.
[59] Lee, S.H., Park, S.Y. and Choi, C.S. (2022) Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes & Metabolism Journal, 46, 15-37.
https://doi.org/10.4093/dmj.2021.0280
[60] Matulewicz, N. and Karczewska-Kupczewska, M. (2016) Insulin Resistance and Chronic Inflammation. Postępy Higieny i Medycyny Doświadczalnej (Online), 70, 1245-1258.
[61] Shahwan, M., Alhumaydhi, F., Ashraf, G.M., et al. (2022) Role of Polyphenols in Combating Type 2 Diabetes and Insulin Resistance. International Journal of Bio-logical Macromolecules, 206, 567-579.
https://doi.org/10.1016/j.ijbiomac.2022.03.004
[62] Ramadori, G., Ljubicic, S., Ricci, S., et al. (2019) S100A9 Extends Lifespan in Insulin Deficiency. Nature Communications, 10, Article No. 3545.
https://doi.org/10.1038/s41467-019-11498-x
[63] Ruegsegger, G.N., Manjunatha, S., Summer, P., et al. (2019) Insulin Defi-ciency and Intranasal Insulin Alter Brain Mitochondrial Function: A Potential Factor for Dementia in Diabetes. FASEB Journal, 33, 4458-4472.
https://doi.org/10.1096/fj.201802043R
[64] Van der Harg, J.M., Eggels, L., Bangel, F.N., et al. (2017) Insulin Deficiency Results in Reversible Protein Kinase A Activation and Tau Phosphorylation. Neurobiology of Disease, 103, 163-173.
https://doi.org/10.1016/j.nbd.2017.04.005
[65] Cole, J.B. and Florez, J.C. (2020) Genetics of Diabetes Mellitus and Diabetes Complications. Nature Reviews Nephrology, 16, 377-390.
https://doi.org/10.1038/s41581-020-0278-5
[66] Wei, J., Tian, J., Tang, C., et al. (2022) The Influence of Different Types of Diabetes on Vascular Complications. Journal of Diabetes Research, 2022, Article ID: 3448618.
https://doi.org/10.1155/2022/3448618
[67] Singh, R., Chandel, S., Dey, D., et al. (2020) Epigenetic Modification and Therapeutic Targets of Diabetes Mellitus. Bioscience Reports, 40, BSR20202160.
https://doi.org/10.1042/BSR20202160
[68] Tao, Z., Shi, A. and Zhao, J. (2015) Epidemiological Perspectives of Diabetes. Cell Biochemistry and Biophysics, 73, 181-185.
https://doi.org/10.1007/s12013-015-0598-4
[69] Boles, A., Kandimalla, R. and Reddy, P.H. (2017) Dynamics of Diabetes and Obesity: Epidemiological Perspective. BBA Molecular Basis of Disease, 1863, 1026-1036.
https://doi.org/10.1016/j.bbadis.2017.01.016
[70] Lotfy, M., Adeghate, J., Kalasz, H., et al. (2017) Chronic Complications of Diabetes Mellitus: A Mini Review. Current Diabetes Reviews, 13, 3-10.
https://doi.org/10.2174/1573399812666151016101622
[71] Li, T., Cao, H.X. and Ke, D. (2021) Type 2 Diabetes Mellitus Easily Develops into Alzheimer’s Disease via Hyperglycemia and Insulin Resistance. Current Medical Science, 41, 1165-1171.
https://doi.org/10.1007/s11596-021-2467-2
[72] Hernandez-Rodriguez, M., Clemente, C.F., Macias-Perez, M.E., et al. (2022) Contribution of Hyperglycemia-Induced Changes in Microglia to Alzheimer’s Disease Pathology. Pharmacological Reports, 74, 832-846.
https://doi.org/10.1007/s43440-022-00405-9
[73] Lupaescu, A.V., Iavorschi, M. and Covasa, M. (2022) The Use of Bioactive Compounds in Hyperglycemia- and Amyloid Fibrils-Induced Toxicity in Type 2 Diabetes and Alzheimer’s Disease. Pharmaceutics, 14, Article 235.
https://doi.org/10.3390/pharmaceutics14020235
[74] Ferreiro, E., Lanzillo, M., Canhoto, D., et al. (2020) Chronic Hyperglycemia Impairs Hippocampal Neurogenesis and Memory in an Alzheimer’s Disease Mouse Model. Neurobiology of Aging, 92, 98-113.
https://doi.org/10.1016/j.neurobiolaging.2020.04.003
[75] Cacciatore, M., Grasso, E.A., Tripodi, R., et al. (2022) Impact of Glu-cose Metabolism on the Developing Brain. Frontiers in Endocrinology (Lausanne), 13, Article 1047545.
https://doi.org/10.3389/fendo.2022.1047545
[76] Huo, Y., Grotle, A.K., Ybarbo, K.M., et al. (2020) Effects of Acute Hypergly-cemia on the Exercise Pressor Reflex in Healthy Rats. Autonomic Neuroscience, 229, Article ID: 102739.
https://doi.org/10.1016/j.autneu.2020.102739
[77] Nunomura, A. and Perry, G. (2020) RNA and Oxidative Stress in Alzheimer’s Disease: Focus on microRNAs. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 2638130.
https://doi.org/10.1155/2020/2638130
[78] Newsholme, P., Cruzat, V.F., Keane, K.N., et al. (2016) Molecular Mechanisms of ROS Production and Oxidative Stress in Diabetes. Biochemical Journal, 473, 4527-4550.
https://doi.org/10.1042/BCJ20160503C
[79] Poblete-Aro, C., Russell-Guzman, J., Parra, P., et al. (2018) Exercise and Oxidative Stress in Type 2 Diabetes Mellitus. Revista Médica de Chile, 146, 362-372.
https://doi.org/10.4067/s0034-98872018000300362
[80] Calis, Z., Mogulkoc, R. and Baltaci, A.K. (2020) The Roles of Flavo-nols/Flavonoids in Neurodegeneration and Neuroinflammation. Mini-Reviews in Medicinal Chemistry, 20, 1475-1488.
https://doi.org/10.2174/1389557519666190617150051
[81] Herradon, G., Ramos-Alvarez, M.P. and Gramage, E. (2019) Con-necting Metainflammation and Neuroinflammation Through the PTN-MK-RPTPbeta/zeta Axis: Relevance in Therapeutic Development. Frontiers in Pharmacology, 10, Article 377.
https://doi.org/10.3389/fphar.2019.00377
[82] Kopp, K.O., Glotfelty, E.J., Li, Y., et al. (2022) Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists and Neuroinflammation: Implications for Neurodegenerative Disease Treatment. Pharmacological Research, 186, Article ID: 106550.
https://doi.org/10.1016/j.phrs.2022.106550
[83] Choubaya, C., Chahine, N., Aoun, G., et al. (2021) Expression of Inflammatory Mediators in Periodontitis over Established Diabetes: An Experimental Study in Rats. Medical Archives, 75, 436-443.
https://doi.org/10.5455/medarh.2021.75.436-443
[84] Heiston, E.M. and Malin, S.K. (2019) Impact of Exercise on Inflammatory Mediators of Metabolic and Vascular Insulin Resistance in Type 2 Diabetes. Advances in Experimental Medicine and Biology, 1134, 271-294.
https://doi.org/10.1007/978-3-030-12668-1_15
[85] Kempuraj, D., Thangavel, R., Selvakumar, G.P., et al. (2017) Brain and Pe-ripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration. Frontiers in Cellular Neuroscience, 11, Article 216.
https://doi.org/10.3389/fncel.2017.00216
[86] Azizi, G., Navabi, S.S., Al-Shukaili, A., et al. (2015) The Role of Inflammatory Mediators in the Pathogenesis of Alzheimer’s Disease. Sultan Qaboos University Medical Journal, 15, e305-e316.
https://doi.org/10.18295/squmj.2015.15.03.002
[87] Deng, H.P. and Chai, J.K. (2009) The Effects and Mechanisms of Insulin on Systemic Inflammatory Response and Immune Cells in Severe Trauma, Burn Injury, and Sepsis. International Immunopharmacology, 9, 1251-1259.
https://doi.org/10.1016/j.intimp.2009.07.009
[88] Ahluwalia, N. and Vellas, B. (2003) Immunologic and Inflammatory Mediators and Cognitive Decline in Alzheimer’s Disease. Immunology and Allergy Clinics of North America, 23, 103-115.
https://doi.org/10.1016/S0889-8561(02)00048-6
[89] Sudar-Milovanovic, E., Gluvic, Z., Obradovic, M., et al. (2022) Trypto-phan Metabolism in Atherosclerosis and Diabetes. Current Medicinal Chemistry, 29, 99-113.
https://doi.org/10.2174/0929867328666210714153649
[90] Pikula, A., Howard, B.V. and Seshadri, S. (2018) Stroke and Dia-betes. In: Cowie, C.C., et al., Eds., Diabetes in America, 3rd Edition, National Institute of Diabetes and Digestive and Kidney Diseases (US), Bethesda, MD, Chapter 19.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=33651535&query_hl=1
[91] Elluru, R.G. (2013) Cutaneous Vascular Lesions. Facial Plastic Surgery Clinics of North America, 21, 111-126.
https://doi.org/10.1016/j.fsc.2012.11.001
[92] Castillo, C., Saez-Orellana, F., Godoy, P.A., et al. (2022) Microglial Activation Modulated by P2X4R in Ischemia and Repercussions in Alzheimer’s Disease. Frontiers in Physiology, 13, Article 814999.
https://doi.org/10.3389/fphys.2022.814999
[93] Ulamek-Koziol, M., Czuczwar, S.J., Januszewski, S., et al. (2020) Proteomic and Genomic Changes in Tau Protein, Which Are Associated with Alzheimer’s Disease after Ischemia-Reperfusion Brain Injury. In-ternational Journal of Molecular Sciences, 21, Article 892.
https://doi.org/10.3390/ijms21030892
[94] Pakdin, M., Toutounchian, S., Namazi, S., et al. (2022) Type 2 Diabetes Mellitus and Alzheimer’s Disease: A Review of the Potential Links. Current Diabetes Reviews, 18, Article ID: e418409792.
https://doi.org/10.2174/1573399818666211105122545
[95] Yin, F., Sancheti, H., Patil, I., et al. (2016) Energy Metabolism and Inflammation in Brain Aging and Alzheimer’s Disease. Free Radical Biology and Medicine, 100, 108-122.
https://doi.org/10.1016/j.freeradbiomed.2016.04.200
[96] Sun, Y., Ma, C., Sun, H., et al. (2020) Metabolism: A Novel Shared Link between Diabetes Mellitus and Alzheimer’s Disease. Journal of Diabetes Research, 2020, Article ID: 4981814.
https://doi.org/10.1155/2020/4981814
[97] Kubis-Kubiak, A., Dyba, A. and Piwowar, A. (2020) The Interplay between Diabetes and Alzheimer’s Disease—In the Hunt for Biomarkers. International Journal of Molecular Sciences, 21, Article 2744.
https://doi.org/10.3390/ijms21082744
[98] Mahapatra, G., Gao, Z., Bateman, J.R., et al. (2023) Blood-Based Bioenergetic Pro-filing Reveals Differences in Mitochondrial Function Associated with Cognitive Performance and Alzheimer’s Disease. Alzheimer’s & Dementia, 19, 1466-1478.
https://doi.org/10.1002/alz.12731
[99] Johnson, E., Dammer, E.B., Duong, D.M., et al. (2020) Large-Scale Proteomic Analysis of Alzheimer’s Disease Brain and Cerebrospinal Fluid Reveals Early Changes in Energy Metabolism Associated with Microglia and Astrocyte Activation. Nature Medicine, 26, 769-780.
https://doi.org/10.1038/s41591-020-0815-6