肠道微生物群与心律失常的概述
Overview of the Gut Microbiota and Cardiovascular Disease
DOI: 10.12677/ACM.2023.13122781, PDF, HTML, XML, 下载: 144  浏览: 205 
作者: 郭 露:青海大学附属医院心内科,青海 西宁
关键词: 肠道微生物群及代谢物心律失常Intestinal Microbiota and Metabolites Cardiac Arrhythmia
摘要: 随着现代生活节奏和人口老龄化的加速推进,不健康生活习惯及饮食方式的日益突出,人们心血管疾病的罹患率逐年升高,患病年龄也越来越提前,其中据不完全统计每年因高血压死于心脑血管意外的人们就多达200万,并且呈逐年上升趋势,据统计,2000年至2010年间,美国住院心血管手术和程序的总数增加了28%,从593.9万增加到758.8万。且成逐年上升趋势,到2018年,超过500,000名的美国人死于心律失常,这表明心律失常对人们健康产生了致命性威胁。心血管疾病后期致残率高,心脏康复花费巨大。给社会及家庭带来巨大经济损失,提示对心血管疾病的早期干预刻不容缓。近年来随着心肠轴的发现,大量实验结果表明,肠道微生物群参与多种心血管疾病的发展,这为心血管疾病的治疗提供了新视野。
Abstract: With the pace of modern life and the aging of population accelerated, unhealthy living habits and diet increasingly prominent, cardiovascular disease rate increased year by year, sick age is more and more early, which according to incomplete statistics died of hypertension cardiovascular acci-dent people as many as 2 million, and with the rising trend year by year, according to statistics, between 2000 and 2010, the total number of hospital cardiovascular surgery and procedures in-creased by 28%, from 5.939 million to 7.588 million. By 2018, more than 500,000 Americans had died from cardiac arrhythmias, suggesting that cardiac arrhythmias pose a fatal threat to people’s health. The disability rate of cardiovascular disease is high, and cardiac rehabilitation is huge. It brings great economic losses to the society and the family, which suggests that the early interven-tion of cardiovascular disease is urgent. With the discovery of the cardiovascular axis in recent years, numerous experimental results show that the gut microbiota is involved in the development of many cardiovascular diseases, which provides a new field for the treatment of cardiovascular diseases.
文章引用:郭露. 肠道微生物群与心律失常的概述[J]. 临床医学进展, 2023, 13(12): 19759-19763. https://doi.org/10.12677/ACM.2023.13122781

1. 引言

冠脉粥样硬化、心律失常、高血压及心力衰竭这几种疾病属于严重威胁人体健康的心血管疾病,但目前临床治疗上依赖于传统抗心律失常、降压药及射频消融术治疗,但院外预后并不理想甚至再次复发,长期以来对心血管疾病的控制无突破性进展。且某些药物长期服用易耐受,病人依存性较差等因素混杂,长期治疗效果差强人意,临床上期待一种新型辅助治疗的可能媒介的作用打破僵局。最近研究表明,肠道菌群及其代谢物可通过代谢 [1] 、免疫 [2] 和神经通路 [3] 参与心血管疾病的发生发展,与其预后和长期治疗效果明显相关,研究表明,这提示着肠道微生物群在这种相互串扰中起着不可或缺的作用。本文综述了肠道微生物群及其代谢物对心血管疾病发展的影响,以期通过调节肠道微生物群及其代谢物为治疗和预防CVD提供新思路。

2. 肠道菌群及代谢物

人体与大量的细菌、古菌、病毒和单细胞真核生物等共生,这些微生物主要定植于与外界相通的皮肤、口腔粘膜、胃肠道、呼吸道、生殖及泌尿系统等分泌腺 [4] ,胃肠中的小肠最长,肠内环境变化跨度也大,从空肠到回肠部分,每毫升肠道内容物中的微生物数量从104增加到108 [5] 。大肠则是微生物定植密度最大的容器,大多数为专性厌氧菌,每毫升肠道内容物中有1010个微生物。大多数已鉴定的微生物群是属于拟杆菌门和厚壁菌门的细菌(约90%),以及其他细菌,如变形杆菌、放线杆菌、梭杆菌和疣状杆菌。

研究表明,类杆菌属、粪杆菌属和双歧杆菌属在大肠中最为丰富,其中粪杆菌属具有抗炎作用,现以广泛应用于药物制剂中 [6] ,而拟杆菌门代谢物中的丁酸盐可以调节胃肠功能和抵抗肠道炎症 [7] ,变形杆菌中的硫还原物种产生H2S,半胱氨酸衍生的气体递送体硫化氢(H2S)具有有趣的血管松弛剂,细胞保护,抗氧化和抗炎特性。H2S有着显着益处,在对抗动脉粥样硬化、炎症、血管钙化和其他血管保护作用方面 [8] 。硫化氢(H2S)是一种内源性气体递质,与一氧化氮(NO)和一氧化碳(CO)一起被发现在糖尿病心肌病中起关键作用。此外,H2S供体在糖尿病条件下对心肌梗死、缺血再灌注损伤和心力衰竭具有良好的效果 [9] 。Emine M. Onal [10] 等人认为心血管和肾脏系统的健康和正常功能在很大程度上取决于肠–肾–心脏血管三角的相互作用。这提示着肠道微生物群在这种相互串扰中起着不可或缺的作用。越来越多的证据表明,慢性心血管疾病的发展遵循慢性炎症过程,这些炎症过程受肠道微生物群通过各种免疫、代谢、内分泌和神经通路的影响。如共生菌类脆弱杆菌和有益梭状芽孢杆菌可增加调节性T (Treg)细胞活性并降低辅助性T 17 (Th17)细胞免疫力,从而有助于营造更具抗炎性的环境,为身体抵御各种炎症发生,已发现,长双歧杆菌/脆弱双歧杆菌等菌株通过增强树突状细胞上的MHCI类和II类分子/肿瘤浸润和IFN-γ分泌来改善T细胞启动,从而改善肿瘤治疗 [11] [12] 。有报告假设了心动过缓的机制,如心肌直接损伤、缺氧、炎症及药物毒性。有研究发现,当机体发生炎症或炎症介质过度表达时,会导致细胞持续受损、坏死、纤维化、功能丧失和心脏易患心律失常以及心力衰竭。而促进炎性介质分解可能限制或最终逆转某些慢性炎症诱导的心脏疾病 [13] 。Aswin Srinivasan [14] 等人在对感染新冠病毒患者出现心动过缓现象的研究中发现,无心肌损伤患者感染冠状病毒后相关心动过缓发作时IL-6水平升高。所有患者在心动过缓发作时均表现出CRP升高。提示窦性心动过缓与宿主炎症反应期释放的炎症因子作用于窦房结有关,这一发现证实了宿主炎症反应与心动过缓密切相关。另外肠道双歧杆菌能合成γ-氨基丁酸,芽孢杆菌和酵母菌能合成去甲肾上腺素,芽孢杆菌能产生多巴胺,乳酸杆菌能产生乙酰胆碱等 [15] ,这些神经递质是否可以通过血液到达心脏,以影响心脏自主神经系统的而产生心律失常可能呢?综上研究提示,窦性心动过缓作为缓慢心律失常的一种,其发生发展亦或与肠道菌群的异常代谢相关,可见深度剖析肠道菌群与宿主之间的相互关系具有重要临床研究价值。可见深度剖析肠道菌群与宿主之间的相互关系具有重要临床研究价值。

3. 肠道菌群与心律失常

窦性心动过缓作为心律失常的一种,常见于青年人,运动员及睡眠状态,其他原因包括颅内疾病、严重缺氧、低温、血管迷走性晕厥和甲状腺功能减退等,以及应用拟胆碱药物、胺碘酮、β受体阻滞剂、非二氢吡啶类钙阻剂或洋地黄等药物,无症状窦性心动过缓一般无需治疗,如由于心率过慢出现代偿不足症状,则需应用阿托品或异丙肾上腺素等药物进行治疗,但长期应用往往效果不明显,易发生严重副反应,且患者依从性较差,往往不能很好的治疗,对于后期心脏失代偿最终发展为心力衰竭者,为了缓解症状和提高生活质量,一般需要行永久起搏器治疗,而无症状者可从症状隐匿发展为血流动力学障碍,引起胸闷、黑朦、低灌注性晕厥,甚至引起猝死等严重后果。除传统治疗方式外,是否可以从心律失常其他发病危险因素探讨窦性心动过缓新的发病机制,为其治疗提供新视野。

越来越多研究表明,肠道菌群的失调在心血管疾病发生、发展方面起着至关重要的作用,包括动脉粥样硬化、高血压、心律失常、心力衰竭等疾病 [16] 。而肠道微生物群代谢产生的三甲胺、三甲胺氧化物、次生胆汁酸和吲哚硫酸酯与心血管疾病的发展和进展有关,包括心力衰竭等 [17] 。现有研究表明,肠道微生物可通过肠道菌群代谢产生的短链脂肪酸可以维持宿主的糖、脂和蛋白质代谢平衡,减少心血管疾病的发生和发展 [18] 。Zuo等 [19] 在试验中证明,在房颤患者的肠道中,链球菌、肠球菌、布劳特氏菌、Dorea菌、韦永氏球菌和粪杆菌的比例远高于正常患者;同时发现除真杆菌、双歧杆菌和罗斯氏菌外,瘤胃球菌在房颤患者中也过度表达。实验数据表明,在神经节丛中注射TMAO可增加促炎细胞因子的局部表达,这与神经节丛活动增加、房性心动过速引起的心房有效不应期缩短和房颤易感性增加有关。肠道代谢产生的氧化三甲胺(trimethylamine N-oxide, TMAO)还激活结构域蛋白3 (NACHT-LRR-PYD, NLRP3)的炎性小体,该炎性小体与房颤发病机制密切相关 [20] 。乳杆菌可减少肠道菌群代谢产物TMAO在动脉粥样硬化病理生理机制中起重要作用,而动脉粥样硬化是冠心病的主要发病原因 [21] 。研究调查了STEMI患者冠状动脉血栓的微生物多样性和组成,以及血栓微生物组相对于口腔和肠道微生物组的组成。对22名STEMI患者和20名年龄和性别匹配的健康对照者进行了病例对照研究,结果表明,肠道和口腔微生物组的相对丰度与血栓微生物组的相对丰度相关 [22] 。炎症作为动脉硬化的使动因子,在冠状动脉粥样硬化进程中扮演者重要角色,研究表明在超重和肥胖的孕妇中,产生丁酸盐的细菌和丁酸盐的产生因低强度炎症而减少,而通过增加丁酸酯产生的能力可以减少炎症标记物纤溶酶原激活物抑制剂-1来抑制炎症 [23] 。基因改造可将膳食纤维代谢成短链脂肪酸(SCFAs)。Francine等人的研究小组为高血压大鼠提供了膳食纤维或SCFA,从而降低了收缩压和舒张压,高血压患者表现出血液中SCFAs (乙酸盐和丁酸盐)水平降低,与血压升高相关。在高血压大鼠中补充乙酸盐(膳食纤维)可显著降低收缩压和舒张压,并减轻心脏和肾脏的纤维化 [24] 。另有一项动物实验结果表明,自发性高血压大鼠给予干酪乳杆菌C1菌株8周后,大鼠血压明显降低 [25] 。以上研究表明,高血压的发生与发展与肠道菌群的失调显著相关,可通过多种途径参与高血压的进展。多项证据表明,肠道微生物及其代谢物可刺激自主神经系统产生兴奋。众所周知,当功能自主神经系统紊乱,可导致一系列心血管事件的发生,如冠心病,高血压、心律失常。Liu等 [26] 发现,摄入乳酸杆菌菌种会影响宿主的情绪行为和中枢神经系统中γ-氨基丁酸受体的表达。综上所述,进一步探讨肠道菌群在窦缓患者的发生、发展中可能发挥的作用,把通过药物或饮食来调节肠道微生物群作为预防、治疗窦缓的新思路,为其探索新型治疗靶点很有创新意义。也为研究治疗窦缓药物作用的潜在靶点及探索新的治疗途径提供一定的询证参考。

4. 展望及小结

肠道菌群复杂多样,其本身及代谢物对机体而言是把双刃剑,因此想要把通过调控肠道微生物及代谢物应运在预防和治疗心血管疾病中仍存在一些疑问,生活方式(包括地理和种族因素)、遗传学、年龄和饮食是人类微生物群组成和功能的主要调节因素。饮食结构不同,肠道菌群结构及生物丰度也发生改变,如食用富含蛋白质和动物脂肪的饮食有利于类杆菌物种的生长,而富含碳水化合物的饮食会扩大肠道微生物群中的普氏杆菌物种,摄入富含类黄酮的水果、蔬菜会抑制致病性梭状芽孢杆菌的生长。此外,目前很少有研究探讨饮食干预对人体肠道微生物组的影响。且研究中绝大多数实验对象为动物,若将动物实验数据应用在临床治疗中仍需要进行多次临床研究。

参考文献

[1] 杨晓明, 郑祥, 王超超. 肠道菌群代谢产物与冠心病合并慢性心力衰竭的相关性及对患者预后水平的预测作用[J]. 中华全科医学, 2023, 21(10): 1676-1678+1718.
https://doi.org/10.16766/j.cnki.issn.1674-4152.003198
[2] Mogilevski, T., Burgell, R., Aziz, Q. and Gibson, P.R. (2019) Review Article: The Role of the Autonomic Nervous System in the Pathogenesis and Therapy of IBD. Alimentary Pharmacology & Therapeutics, 50, 720-737.
https://doi.org/10.1111/apt.15433
[3] Zhang, Y., Zhang, S., Li, B. and Luo, Y. (2022) Gut Microbiota Dysbiosis Promotes Age-Related Atrial Fibrillation by Lipopolysaccharide and Glucose-Induced Activation of NLRP3-Inflammasome. Cardiovascular Research, 118, 785-797.
https://doi.org/10.1093/cvr/cvab114
[4] Sorboni, S.G., Moghaddam, H.S., Jafarzadeh-Esfehani, R. and So-leimanpour, S. (2022) A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clinical Microbiology Reviews, 35, e0033820.
https://doi.org/10.1128/CMR.00338-20
[5] Booijink, C.C., El-Aidy, S., Rajilic-Stojanovic, M., Heilig, H.G., Troost, F.J., Smidt, H., et al. (2010) High Temporal and Inter-Individual Variation Detected in the Human Ileal Microbi-ota. Environmental Microbiology, 12, 3213-3227.
https://doi.org/10.1111/j.1462-2920.2010.02294.x
[6] El Hage, R., Hernandez-Sanabria, E. and Van de Wiele, T. (2017) Emerging Trends in “Smart Probiotics”: Functional Consideration for the Development of Novel Health and In-dustrial Applications. Frontiers in Microbiology, 8, Article No. 1889.
https://doi.org/10.3389/fmicb.2017.01889
[7] Marques, F.Z., Nelson, E., Chu, P.Y., et al. (2017) High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Fail-ure in Hypertensive Mice. Circulation, 135, 964-977.
https://doi.org/10.1161/CIRCULATIONAHA.116.024545
[8] Bechelli, C., Macabrey, D., Deglise, S. and Allag-nat, F. (2023) Clinical Potential of Hydrogen Sulfide in Peripheral Arterial Disease. International Journal of Molecular Sciences, 24, Article No. 9955.
https://doi.org/10.3390/ijms24129955
[9] Sun, H.J., Wu, Z.Y., Nie, X.W., Wang, X.Y. and Bian, J.S. (2021) An Updated Insight into Molecular Mechanism of Hydrogen Sulfide in Cardiomyopathy and Myocardial Ische-mia/Reperfusion Injury under Diabetes. Frontiers in Pharmacology, 12, Article ID: 651884.
https://doi.org/10.3389/fphar.2021.651884
[10] Onal Emine, M., Afsar, B., Covic, A., et al. (2019) Gut Microbiota and Inflammation in Chronic Kidney Disease and Their Roles in the Development of Cardiovascular Disease. Hyperten-sion Research, 42, 123-140.
https://doi.org/10.1038/s41440-018-0144-z
[11] Round, J.L., Lee, S.M., Li, J., Tran, G., Jabri, B., Chatila, T.A., et al. (2011) The Toll-Like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota. Sci-ence, 332, 974-977.
https://doi.org/10.1126/science.1206095
[12] Staudt, S., Ziegler-Martin, K., Visekruna, A., Slingerland, J., Shouval, R., Hudecek, M., van den Brink, M. and Luu, M. (2023) Learning from the Microbes: Exploiting the Microbiome to En-force T Cell Immunotherapy. Frontiers in Immunology, 14, Article ID: 1269015.
https://doi.org/10.3389/fimmu.2023.1269015
[13] Younes, R., LeBlanc, C.-A. and Hiram, R. (2022) Evidence of Failed Resolution Mechanisms in Arrhythmogenic Inflammation, Fibrosis and Right Heart Disease. Biomolecules, 12, Article No. 720.
https://doi.org/10.3390/biom12050720
[14] Srinivasan, A., Pansuriya, T. and Wilson, B. (2021) Systemic Inflam-mation-Related Bradycardia in COVID-19. Case Reports in Cardiology, 2021, Article ID: 9986955.
https://doi.org/10.1155/2021/9986955
[15] Dinan, T.G., Cryan, J.F. and Stanton, C. (2018) Gut Microbes and Brain Development Have Black Box Connectivity. Biological Psychiatry, 83, 97-99.
https://doi.org/10.1016/j.biopsych.2017.11.005
[16] Tang, W.H.W., Bäckhed, F., Landmesser, U. and Hazen, S.L. (2019) Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review. Journal of the Amer-ican College of Cardiology, 73, 2089-2105.
https://doi.org/10.1016/j.jacc.2019.03.024
[17] Tang, W.H.W., Li, D.Y. and Hazen, S.L. (2019) Dietary Metabo-lism, the Gutmicrobiome, and Heart Failure. Nature Reviews Cardiology, 16, 137-154.
https://doi.org/10.1038/s41569-018-0108-7
[18] Bachhawat, A.K., et al. (2020) Heart Failure and the Glutathione Cycle: An Integrated View. Biochemical Journal, 477, 3123-3130.
https://doi.org/10.1042/BCJ20200429
[19] Zuo, K., Li, J., Li, K., et al. (2019) Disordered Gut Microbiota and Alterations in Metabolic Patterns Are Associated with Atrial Fibrillation. Gigascience, 8, giz058.
https://doi.org/10.1093/gigascience/giz058
[20] Linz, D., Gawako, M., Sanders, P., et al. (2021) Does Gut Microbiota Affect Atrial Rhythm? Causalities and Speculations. European Heart Journal, 42, 3521-3525.
https://doi.org/10.1093/eurheartj/ehab467
[21] Wu, P., Chen, J.N., Chen, J.J., et al. (2020) Trimethylamine N-Oxide Promotes ApoE-/-Mice Atherosclerosis by Inducing Vascular Endothelial Cell Pyroptosis via the SDHB/ROS Pathway. Journal of Cellular Physiology, 235, 6582-6591.
https://doi.org/10.1002/jcp.29518
[22] Kwun, J.S., Kang, S.H., Lee, H.J., Park, H.K., Lee, W.J., Yoon, C.H., Suh, J.W., Cho, Y.S., Youn, T.J. and Chae, I.H. (2020) Comparison of Thrombus, Gut, and Oral Microbiomes in Korean Pa-tients with ST-Elevation Myocardial Infarction: A Case-Control Study. Experimental & Molecular Medicine, 52, 2069-2079.
https://doi.org/10.1038/s12276-020-00543-1
[23] Gomez-Arango, L.F., Barrett, H.L., McIntyre, H.D., et al. (2016) Increased Systolic and Diastolic Blood Pressure Is Associated with Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy. Hypertension, 68, 974-981.
https://doi.org/10.1161/HYPERTENSIONAHA.116.07910
[24] Jiao, Y., Li, W., Zhang, Q. and Jiang, Q. (2023) Gut Microbiota and Hypertension: A Bibliometric Analysis of Recent Research (2014-2023). Frontiers in Nutrition, 10, Article ID: 1253803.
https://doi.org/10.3389/fnut.2023.1253803
[25] Yap, W.B., Ahmad, F.M., Lim, Y.C., et al. (2016) Lactobacillus casei Strain C1 Attenuates Vascular Changes in Spontaneously Hypertensive Rats. The Korean Journal of Physiology & Pharmacology, 20, 621-628.
https://doi.org/10.4196/kjpp.2016.20.6.621
[26] Liu, Y., Sanderson, D., Mian, M.F., McVey Neufeld, K.A. and Forsythe, P. (2021) Loss of Vagal Integrity Disrupts Immune Components of the Microbiota-Gut-Brain Axis and Inhib-its the Effect of Lactobacillus rhamnosus on Behavior and the Corticosterone Stress Response. Neuropharmacology, 195, Article ID: 108682.
https://doi.org/10.1016/j.neuropharm.2021.108682