甘油三酯葡萄糖乘积指数与动脉僵硬度相关性研究进展
Research Progress on the Correlation between Triglyceride Glucose Index and Arterial Stiffness
DOI: 10.12677/ACM.2023.13122751, PDF, HTML, XML, 下载: 115  浏览: 168 
作者: 杨 涵, 刘 好, 党 奎:成都中医药大学研究生院,四川 成都;罗 俊:成都市第一人民医院心血管内科,四川 成都
关键词: 动脉僵硬度胰岛素抵抗甘油三酯葡萄糖乘积指数Arterial Stiffness Insulin Resistance Triglyceride and Glucose Index
摘要: 动脉僵硬度是最早可检测的血管损伤指标之一,也是心血管疾病的独立危险因素。为了早期识别患者并制定预防策略,需要寻找可靠的标志物。胰岛素抵抗被认为是动脉硬化发展的重要因素,而血清甘油三酯葡萄糖乘积指数是一种新型的胰岛素抵抗替代指标。现就甘油三酯葡萄糖乘积指数与动脉僵硬度相关性研究进展作一综述。
Abstract: Arterial stiffness is one of the earliest detectable indicators of vascular damage and an independent risk factor for cardiovascular disease. In order to identify patients early and develop prevention strategies, we need to find reliable markers. Insulin resistance is considered an important factor in the development of arterial stiffness, and the serum triglyceride glucose product index is a novel surrogate marker for insulin resistance. In this review, we summarize the research progress on the correlation between the triglyceride glucose product index and arterial stiffness.
文章引用:杨涵, 刘好, 党奎, 罗俊. 甘油三酯葡萄糖乘积指数与动脉僵硬度相关性研究进展[J]. 临床医学进展, 2023, 13(12): 19541-19546. https://doi.org/10.12677/ACM.2023.13122751

1. 引言

动脉僵硬度增加是血管衰老过程中最早出现的功能性损伤之一,被认为是全因死亡率、心血管疾病(cardiovascular disease, CVD)死亡率和事件的有力预测因子 [1] [2] 。考虑到动脉硬化长期病理进展,迫切需要可靠的生物标志物来早期识别患者并制定适当的预防策略。甘油三酯葡萄糖乘积指数(triglyceride glucose index,TyG指数)是根据空腹血糖和血清甘油三酯水平计算得出的,已被提议作为胰岛素抵抗(Insulin resistance, IR)的替代标志物 [3] 。之前的一些研究表明,TyG指数与心血管风险呈正相关,包括冠状动脉疾病、中风、心肌梗死和颈动脉粥样硬化 [4] [5] [6] [7] 。最近,越来越多的研究探讨TyG指数与动脉僵硬度之间的关系。

2. 动脉僵硬度概述

动脉僵硬度是评估早期血管功能和结构病变的可靠指标,并且与发生CVD主要原因——单纯性收缩期高血压的发展有关。越来越多的证据表明,动脉僵硬度是预测将来发生CVD,如急性冠脉综合征、心力衰竭和缺血性或出血性中风的强有力指标 [8] 。大动脉由内皮细胞组成的内膜、富含弹性蛋白的中膜和以胶原蛋白为主的外膜组成。弹性蛋白形成的弹性纤维在收缩期间储存弹性能量,并在舒张期间释放,促进血液的流动,而胶原蛋白则限制了血管壁的过度膨胀 [9] 。在动脉树中,存在着主动脉与外周动脉之间的硬度梯度。在年轻健康个体中,从主动脉到外周动脉的僵硬度逐渐增加,形成这一梯度。这种硬度梯度可以抑制脉搏波和反射波的传导速度,从而起到保护微循环和心脏等靶器官的作用。随着年龄的增加和其他危险因素的影响,大动脉发生了多种病理改变,包括弹性蛋白的破裂及降解、胶原蛋白沉积、高级糖基化终产物对胶原蛋白和弹性蛋白的交联、血管平滑肌细胞的硬化、中层钙化、内皮功能障碍和炎症等。这些病理过程导致大动脉的僵硬度增加。随着动脉硬化的进展,硬度梯度消失甚至逆转,导致中央动脉压力和血流脉动的增加,这增加了对大脑、心脏和肾脏等器官损伤的潜在风险 [1] [10] 。

尽管已确定了多项CVD的危险因素,如年龄、男性性别、肥胖、高血压、高胆固醇和糖尿病,但近期的研究表明,部分没有这些危险因素的个体也可能患上CVD [11] [12] 。此外,尽管有先进技术的发展和初级和次级预防措施的推广,CVD患者再次发生不良心血管事件的风险仍然增加 [13] 。在一定程度上,动脉僵硬度可独立于传统危险因素预测心血管风险,可用于加强各种临床情况下的心血管风险评估,从而为初级预防策略提供有用的信息,因此动脉僵硬度的早期评估尤为重要。目前临床上主要通过脉搏波传导速度(pulse wave velocity, PWV)来评估动脉僵硬度,该方法通过测量心脏每次收缩时产生的压力波在动脉树中传播的速度来进行评估。颈动脉–股动脉PWV (carotid-femoral artery PWV, cfPWV)是目前评估动脉僵硬度的金标准,通过测量颈动脉到股动脉之间的PWV来准确反映患者不同部位的血流变化 [14] 。然而,由于PWV的测量需要专业的设备和受过培训的医疗专业人员,因此在社区等初级医疗机构难以广泛使用。因此,有必要寻找更加简便、可靠的指标来评估动脉僵硬度。

3. TyG指数概述

TyG指数是一种用于评估IR的新型标志物,由Simental-Mendía等 [15] 于2008年首次提出。在此之前,用于评估IR的传统指标包括高胰岛素–正葡萄糖钳夹试验(Hyperinsulinemic-euglycemic clamp, HIEC)和稳态模型评估(Homeostasis Model Assessment of Insulin Resistance, HOMA-IR)。HIEC被认为是目前评估IR的金标准,但由于它是一种侵入性的方法,执行起来非常复杂且耗时,该测试仅用于小规模研究,而不用于人群研究。HOMA-IR是在空腹状态下预测IR的葡萄糖和胰岛素动力学关系的模型,简化公式为:空腹胰岛素(mU/dL) × 空腹血糖(mmol/L)/22.5,由于在临床环境中不常规测量胰岛素水平,因此在研究环境之外的更广泛应用同样受到限制 [16] [17] 。TyG由血清甘油三酯和空腹血糖衍生而来,计算公式为TyG = Ln[空腹血糖(mg/dl) × 血清甘油三酯(mg/dl)/2]。TyG指数已被证明与评估胰岛素敏感性的HIEC相关,因此它可用于确定不同糖耐量和体重的受试者的IR [3] 。同时据报道,TyG指数也与HOMA-IR相关,可用作IR的标志 [18] [19] [20] 。与评估IR的传统指标相比,TyG指数的优势在于其中的血清甘油三酯和空腹血糖可以从单一样本的生化测试中获取,与基于胰岛素的指标相比,基于非胰岛素的TyG指数的测定简单且费用低廉,这使得在临床和流行病学研究中的使用更为便利。因此,TyG指数是一种很有潜力的替代指标。

4. TyG指数与动脉僵硬度的潜在机制

尽管TyG指数与动脉僵硬度的潜在机制尚未完全阐明,但似乎与IR相关。IR是指对胰岛素敏感的组织,如骨骼肌、心肌、脂肪组织和肝脏,对胰岛素信号的反应减弱。胰岛素在这些组织中无法充分发挥其生物活性,影响了将葡萄糖作为主要能量底物进入细胞的利用。多余的葡萄糖会滞留在血液循环中,导致高血糖。为了应对能量摄入不足,组织会改变其代谢途径,这导致了脂肪组织功能的受损,同时也与肥胖、炎症、血脂异常、活性氧的生成、动脉粥样硬化、内皮功能障碍和高血压等疾病相关 [21] 。IR会对动脉壁的功能和结构造成损害,包括血管舒张能力的受损、动脉壁弹性的降低、钙化和血管壁厚度的增加 [22] 。总的来说,这种作用有几个主要机制,涉及一氧化氮和血管紧张素II在IR早期对动脉僵硬度调节的作用。首先,IR会导致内皮一氧化氮合酶的磷酸化水平下降,由于缺乏内皮一氧化氮合酶,导致内皮细胞功能失调 [23] 。一氧化氮是一种重要的血管扩张剂,具有抗氧化、抗炎和抑制平滑肌细胞增殖的作用 [24] 。一氧化氮的产生和释放减少会导致内膜下的平滑肌细胞迁移和增殖,从而引发和加速动脉硬化的发展。其次,在IR状态下,肾素–血管紧张素–醛固酮系统被激活,增强了血管平滑肌细胞上的血管紧张素II类型1受体活性,具有血管紧张效应。血管紧张素II型1受体还会直接与内皮一氧化氮合酶结合,并抑制其活性,导致一氧化氮的产生减少 [25] [26] 。同时,醛固酮水平增高会激活内皮盐皮质激素受体,最终导致钠通道活性增加,可能导致包括皮质肌动蛋白骨架重建、血管通透性增加和炎症等多种不良后果 [27] [28] 。体外动物研究也显示,加强内皮细胞醛固酮活性与血管纤维化和僵硬有关 [29] 。此外,IR表现出的心血管代谢综合征通常伴随着游离脂肪酸增加和脂质代谢紊乱 [30] ,这已被众多研究证实与许多CVD密切相关。

5. TyG指数与动脉僵硬度的研究进展

一项来自韩国的横断面研究 [31] 表明,在韩国普通人群中,TyG指数与动脉硬化程度(通过测量baPWV)呈正相关。在多个危险因素调整后,最高和最低四分位数的TyG指数男性组的动脉硬化风险比为2.92,女性组为1.84。同时该研究还发现,TyG指数在韩国成年人中与动脉硬化的关联比HOMA-IR更强,这表明TyG指数可能是一种更好的预测CVD风险的生物标志物。另一项来自中国的研究 [32] 也指出,TyG指数是中国健康个体中高baPWV的独立危险因素,并且与10年CVD风险呈正相关。Wang等 [33] 发现在2型糖尿病患者中TyG指数与动脉硬度的独立性和相关性比HOMA-IR更强,在高血压患者中也观察到TyG指数和baPWV之间存在显著正相关 [34] 。

以上的研究主要集中在单个时间点测量的TyG指数,可能无法捕捉长期暴露情况。考虑到血清甘油三酯、空腹血糖以及TyG指数随时间的动态变化,需要评估纵向TyG指数趋势的影响。除了以上的横断面研究以外,Wu等 [35] 探讨了中国开滦队列中TyG指数与动脉硬化进展之间的纵向关联,结果显示,TyG指数的增加与基线动脉硬化水平和年度动脉硬化增长率的增加显著相关,在随访期间,发生了883例动脉硬化事件,高TyG指数四分位组的参与者患动脉硬化的风险比低TyG指数四分位组高58%,结果还显示TyG指数与动脉硬化风险呈剂量–反应关系,即随着TyG指数的增加,动脉硬化风险逐渐增加。另一项使用了中国甘肃汉中青少年高血压队列的数据的研究 [36] 调查了单次测量和长期变化轨迹对动脉硬化的影响。在横断面分析中,研究人员发现TyG指数增加1个单位与baPWV增加37.1 cm/s相关。纵向分析中,研究人员识别出三种不同的TyG指数变化轨迹,并发现最高的TyG指数轨迹与动脉硬化风险最大相关,TyG指数水平升高和长期变化轨迹较高与动脉硬化风险增加独立相关,监测TyG指数的即时水平和长期趋势可能有助于预防动脉硬化。同时这项研究中的受试者相对年轻,平均年龄为42岁,中年期(40岁至65岁)是心血管特征快速变化的时期,也是心血管风险早期发现和干预的重要人生阶段,考虑到这些要点,TyG指数也可以作为动脉僵硬度的有用早期指标,从而反映中年早期的心血管风险。在对欧美人群的研究中,Muhammad等 [37] 对两个大型的瑞典前瞻性队列进行观察,即马尔默饮食与癌症研究-心血管队列(MDCS-CV)和马尔默预防项目(MPP),经过平均约16.9年的随访,他们得出结论:TyG指数与cfPWV存在显著相关性。另一项来自美国的研究 [38] 观察了TyG指数在20年内的4个不同轨迹,每个轨迹与未来外周动脉疾病的不同风险相关,其中TyG指数升高的20年轨迹呈现出最大的风险。最近的几项Meta分析也显示,TyG指数升高与动脉硬化风险增加相关,TyG指数可以作为动脉硬化风险增加的独立预测因子 [39] [40] [41] 。

6. 总结与展望

综上所述,TyG指数与动脉僵硬度风险独立相关。将TyG指数纳入常规临床诊断中,可以有助于及早识别存在动脉硬化高风险的个体,从而更好地进行CVD的风险分层,制定更具针对性的治疗或预防措施,减轻患者的病情和经济负担,提高患者的生活质量。与此同时,作为一项新兴的生物标志物,TyG指数需要在更大规模的临床试验中进行深入研究,以进一步探讨其在健康管理中的作用。

参考文献

[1] Boutouyrie, P., Chowienczyk, P., Humphrey, J.D., et al. (2021) Arterial Stiffness and Cardiovascular Risk in Hyperten-sion. Circulation Research, 128, 864-886.
https://doi.org/10.1161/CIRCRESAHA.121.318061
[2] Vlachopoulos, C., Aznaouridis, K. and Stefanadis, C. (2010) Prediction of Cardiovascular Events and All-Cause Mortality with Arterial Stiffness: A Systematic Review and Meta-Analysis. Journal of the American College of Cardiology, 55, 1318-1327.
https://doi.org/10.1016/j.jacc.2009.10.061
[3] Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., et al. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Journal of Clinical Endocrinology and Metabolism, 95, 3347-3351.
https://doi.org/10.1210/jc.2010-0288
[4] Barzegar, N., Tohidi, M., Hasheminia, M., et al. (2020) The Impact of Triglyceride-Glucose Index on Incident Cardiovascular Events during 16 Years of Follow-Up: Tehran Lipid and Glucose Study. Cardiovascular Diabetology, 19, Article No. 155.
https://doi.org/10.1186/s12933-020-01121-5
[5] Wang, X., Xu, W., Song, Q., et al. (2022) Association between the Triglyceride-Glucose Index and Severity of Coronary Artery Disease. Cardiovascular Diabetology, 21, Article No. 168.
https://doi.org/10.1186/s12933-022-01606-5
[6] Li, W., Chen, D., Tao, Y., et al. (2022) Association between Triglyceride-Glucose Index and Carotid Atherosclerosis De-tected by Ultrasonography. Cardiovascular Diabetology, 21, Article No. 137.
https://doi.org/10.1186/s12933-022-01570-0
[7] Yang, Y., Huang, X., Wang, Y., et al. (2023) The Impact of Tri-glyceride-Glucose Index on Ischemic Stroke: A Systematic Review and Meta-Analysis. Cardiovascular Diabetology, 22, Article No. 2.
https://doi.org/10.1186/s12933-022-01732-0
[8] Mitchell, G.F., Hwang, S.-J., Vasan, R.S., et al. (2010) Arterial Stiffness and Cardiovascular Events: The Framingham Heart Study. Circulation, 121, 505-511.
https://doi.org/10.1161/CIRCULATIONAHA.109.886655
[9] Yanagisawa, H. and Wagenseil, J. (2020) Elastic Fibers and Biomechanics of the Aorta: Insights from Mouse Studies. Matrix Biology: Journal of the International Society for Matrix Biology, 85-86, 160-172.
https://doi.org/10.1016/j.matbio.2019.03.001
[10] Chirinos, J.A., Segers, P., Hughes, T., et al. (2019) Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 74, 1237-1263.
https://doi.org/10.1016/j.jacc.2019.07.012
[11] Choi, S. (2019) The Potential Role of Biomarkers As-sociated with ASCVD Risk: Risk-Enhancing Biomarkers. Journal of Lipid and Atherosclerosis, 8, 173-182.
https://doi.org/10.12997/jla.2019.8.2.173
[12] Rosenblit, P.D. (2019) Extreme Atherosclerotic Cardiovascular Dis-ease (ASCVD) Risk Recognition. Current Diabetes Reports, 19, Article No. 61.
https://doi.org/10.1007/s11892-019-1178-6
[13] Hubbard, D., Colantonio, L.D., Rosenson, R.S., et al. (2021) Risk for Recurrent Cardiovascular Disease Events among Patients with Diabetes and Chronic Kidney Disease. Cardiovascular Diabetology, 20, Article No. 58.
https://doi.org/10.1186/s12933-021-01247-0
[14] Townsend, R.R., Wilkinson, I.B., Schiffrin, E.L., et al. (2015) Recommendations for Improving and Standardizing Vascular Research on Arterial Stiffness: A Scientific Statement from the American Heart Association. Hypertension (Dallas, Tex.: 1979), 66, 698-722.
https://doi.org/10.1161/HYP.0000000000000033
[15] Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerre-ro-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304.
https://doi.org/10.1089/met.2008.0034
[16] Wallace, T.M., Levy, J.C. and Matthews, D.R. (2004) Use and Abuse of HOMA Modeling. Diabetes Care, 27, 1487-1495.
https://doi.org/10.2337/diacare.27.6.1487
[17] Gutch, M., Kumar, S., Razi, S.M., et al. (2015) Assessment of Insulin Sensitivity/Resistance. Indian Journal of Endocrinology and Metabolism, 19, 160-164.
https://doi.org/10.4103/2230-8210.146874
[18] Salazar, J., Bermúdez, V., Calvo, M., et al. (2017) Optimal Cutoff for the Evaluation of Insulin Resistance through Triglyceride-Glucose Index: A Cross-Sectional Study in a Venezuelan Population. F1000Research, 6, Article No. 1337.
https://doi.org/10.12688/f1000research.12170.1
[19] Khan, S.H., Sobia, F., Niazi, N.K., et al. (2018) Metabolic Clustering of Risk Factors: Evaluation of Triglyceride-Glucose Index (TyG Index) for Evaluation of Insulin Resistance. Diabetology & Metabolic Syndrome, 10, Article No. 74.
https://doi.org/10.1186/s13098-018-0376-8
[20] Lim, J., Kim, J., Koo, S.H., et al. (2019) Comparison of Triglyc-eride Glucose Index, and Related Parameters to Predict Insulin Resistance in Korean Adults: An Analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey. PLOS ONE, 14, e0212963.
https://doi.org/10.1371/journal.pone.0212963
[21] Kosmas, C.E., Bousvarou, M.D., Kostara, C.E., et al. (2023) Insulin Resistance and Cardiovascular Disease. The Journal of International Medical Research, 51, 3.
https://doi.org/10.1177/03000605231164548
[22] Adeva-Andany, M.M., Ameneiros-Rodríguez, E., Fernán-dez-Fernández, C., et al. (2019) Insulin Resistance Is Associated with Subclinical Vascular Disease in Humans. World Journal of Diabetes, 10, 63-77.
https://doi.org/10.4239/wjd.v10.i2.63
[23] Grandl, G. and Wolfrum, C. (2018) Hemostasis, Endothelial Stress, In-flammation, and the Metabolic Syndrome. Seminars in Immunopathology, 40, 215-224.
https://doi.org/10.1007/s00281-017-0666-5
[24] Kapil, V., Khambata, R.S., Jones, D.A., et al. (2020) The Non-canonical Pathway for in Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacological Re-views, 72, 692-766.
https://doi.org/10.1124/pr.120.019240
[25] Brillante, D.G., O’Sullivan, A.J. and Howes, L.G. (2009) Arterial Stiffness in Insulin Resistance: The Role of Nitric Oxide and Angiotensin II Receptors. Vascular Health and Risk Man-agement, 5, 73-78.
https://doi.org/10.2147/VHRM.S3784
[26] Woodman, R.J. (2008) Does Compensatory Nitric Oxide and Angio-tensin II Receptor Activity Reduce Arterial Stiffness in Early-Stage Insulin Resistance? Clinical Science (London, Eng-land: 1979), 114, 119-121.
https://doi.org/10.1042/CS20070321
[27] Koenen, M., Hill, M.A., Cohen, P., et al. (2021) Obesity, Adipose Tis-sue and Vascular Dysfunction. Circulation Research, 128, 951-968.
https://doi.org/10.1161/CIRCRESAHA.121.318093
[28] Náray-Fejes-Tóth, A. and Fejes-Tóth, G. (2000) The Sgk, an Aldosterone-Induced Gene in Mineralocorticoid Target Cells, Regulates the Epithelial Sodium Channel. Kidney Inter-national, 57, 1290-1294.
https://doi.org/10.1046/j.1523-1755.2000.00964.x
[29] Jia, G., Habibi, J., Aroor, A.R., et al. (2018) Epithelial So-dium Channel in Aldosterone-Induced Endothelium Stiffness and Aortic Dysfunction. Hypertension (Dallas, Tex.: 1979), 72, 731-738.
https://doi.org/10.1161/HYPERTENSIONAHA.118.11339
[30] Ormazabal, V., Nair, S., Elfeky, O., et al. (2018) Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovascular Diabetology, 17, Article No. 122.
https://doi.org/10.1186/s12933-018-0762-4
[31] Lee, S.B., Ahn, C.W., Lee, B.K., et al. (2018) Association between Triglyceride Glucose Index and Arterial Stiffness in Korean Adults. Cardiovascular Diabetology, 17, Article No. 41.
https://doi.org/10.1186/s12933-018-0692-1
[32] Guo, W., Zhu, W., Wu, J., et al. (2021) Tri-glyceride Glucose Index Is Associated with Arterial Stiffness and 10-Year Cardiovascular Disease Risk in a Chinese Population. Frontiers in Cardiovascular Medicine, 8, Article ID: 585776.
https://doi.org/10.3389/fcvm.2021.585776
[33] Wang, S., Shi, J., Peng, Y., et al. (2021) Stronger Association of Triglyceride Glucose Index than the HOMA-IR with Arterial Stiffness in Patients with Type 2 Diabetes: A Real-World Single-Centre Study. Cardiovascular Diabetology, 20, Article No. 82.
https://doi.org/10.1186/s12933-021-01274-x
[34] Li, M., Zhan, A., Huang, X., et al. (2020) Positive Association between Triglyceride Glucose Index and Arterial Stiffness in Hypertensive Patients: The China H-Type Hypertension Registry Study. Cardiovascular Diabetology, 19, Article No. 139.
https://doi.org/10.1186/s12933-020-01124-2
[35] Wu, S., Xu, L., Wu, M., et al. (2021) Association between Tri-glyceride-Glucose Index and Risk of Arterial Stiffness: A Cohort Study. Cardiovascular Diabetology, 20, Article No. 146.
https://doi.org/10.1186/s12933-021-01342-2
[36] Yan, Y., Wang, D., Sun, Y., et al. (2022) Triglycer-ide-Glucose Index Trajectory and Arterial Stiffness: Results from Hanzhong Adolescent Hypertension Cohort Study. Cardiovascular Diabetology, 21, Article No. 33.
https://doi.org/10.1186/s12933-022-01453-4
[37] Muhammad, I.F., Bao, X., Nilsson, P.M., et al. (2022) Triglyc-eride-Glucose (TyG) Index Is a Predictor of Arterial Stiffness, Incidence of Diabetes, Cardiovascular Disease, and All-Cause and Cardiovascular Mortality: A Longitudinal Two-Cohort Analysis. Frontiers in Cardiovascular Medicine, 9, Article ID: 1035105.
https://doi.org/10.3389/fcvm.2022.1035105
[38] Gao, J.-W., Hao, Q.-Y., Gao, M., et al. (2021) Triglycer-ide-Glucose Index in the Development of Peripheral Artery Disease: Findings from the Atherosclerosis Risk in Commu-nities (ARIC) Study. Cardiovascular Diabetology, 20, Article No. 126.
https://doi.org/10.1186/s12933-021-01319-1
[39] Sajdeya, O., Beran, A., Mhanna, M., et al. (2022) Triglyceride Glucose Index for the Prediction of Subclinical Atherosclerosis and Arterial Stiffness: A Meta-Analysis of 37,780 Indi-viduals. Current Problems in Cardiology, 47, Article ID: 101390.
https://doi.org/10.1016/j.cpcardiol.2022.101390
[40] Liu, F., Ling, Q., Xie, S., et al. (2023) Association between Triglyceride Glucose Index and Arterial Stiffness and Coronary Artery Calcification: A Systematic Review and Expo-sure-Effect Meta-Analysis. Cardiovascular Diabetology, 22, Article No. 111.
https://doi.org/10.1186/s12933-023-01819-2
[41] Zhong, H., Shao, Y., Guo, G., et al. (2023) Association between the Triglyceride-Glucose Index and Arterial Stiffness: A Meta-Analysis. Medicine, 102, e33194.
https://doi.org/10.1097/MD.0000000000033194