放疗与免疫治疗相结合治疗IV期非小细胞肺癌的现状和治疗前景
Current Status and Therapeutic Prospects of Combining Radiotherapy and Immunotherapy for the Treatment of Stage IV Non-Small Cell Lung Cancer
DOI: 10.12677/ACM.2023.13122714, PDF, HTML, XML, 下载: 199  浏览: 309 
作者: 伍 敏:青海大学研究生院,青海 西宁;姜 军*:青海大学附属医院肿瘤内科三病区,青海 西宁
关键词: 非小细胞肺癌免疫检查点抑制剂放射治疗综述Non-Small Cell Lung Cancer Immune Checkpoint Inhibitors Radiotherapy Review
摘要: 免疫疗法使转移性非小细胞肺癌(NSCLC)的治疗发生了革命性变化。与广泛性转移性疾病相比,少转移性肿瘤预后更好,可通过放射治疗治愈。放射治疗(RT)可激发免疫原性抗肿瘤活性,当与免疫检查点抑制剂(ICIS)等免疫治疗相结合时,这种活性可进一步增强。因此,它与免疫疗法的结合被认为是一种有希望的治疗选择,特别是在转移的环境中。然而,RT与免疫治疗相结合的最优方法仍然存在争议,早期临床证据正在出现。在这里,我们回顾了目前支持RT联合免疫疗法治疗转移性非小细胞肺癌的临床证据。此外,我们还讨论了当前的争议和与该治疗策略相关的进一步探索的领域。
Abstract: Immunotherapy has revolutionised the treatment of metastatic non-small cell lung cancer (NSCLC). Less metastatic tumours have a better prognosis than extensive metastatic disease and can be cured by radiotherapy. Radiation therapy (RT) stimulates immunogenic anti-tumour activity, which can be further enhanced when combined with immunotherapy such as immune checkpoint inhibi-tors (ICIS). Therefore, its combination with immunotherapy is considered a promising therapeutic option, especially in the setting of metastasis. However, the optimal approach to combining RT with immunotherapy remains controversial and early clinical evidence is emerging. Here, we review the current clinical evidence supporting the combination of RT with immunotherapy for metastatic non-small cell lung cancer. In addition, we discuss current controversies and areas for further ex-ploration related to this treatment strategy.
文章引用:伍敏, 姜军. 放疗与免疫治疗相结合治疗IV期非小细胞肺癌的现状和治疗前景[J]. 临床医学进展, 2023, 13(12): 19282-19288. https://doi.org/10.12677/ACM.2023.13122714

1. 前言

非小细胞肺癌(NSCLC)是癌症最常见的类型,约占所有肺癌的84% [1] 。免疫治疗,特别是免疫检查点抑制剂(ICIs),提高了转移性NSCLC患者的生存率。然而,对ICIs的反应率仍然不理想 [2] 。立体定向放疗(SBRT)是一种精确的放射治疗形式,可向肿瘤靶点提供高剂量的辐射,副作用最小,并据报道可诱导免疫原性细胞死亡 [3] 。将ICIs与SBRT等局部疗法相结合,有望提高照射区域外局部和远处的治疗效果 [4] 。这种远距离效应被称为潜逃效应。SBRT和ICIs之间的这种协同作用,尤其是联合治疗方法潜逃反应的频率值得在大型随机对照试验中进一步探索和验证 [5] 。Abdulhaleem [6] 等人发表了一系列关于转移性晚期非小细胞肺癌患者的研究,如果他们接受ICIs和立体定向放射术(SRS)治疗,他们的中位生存期为40个月,而如果他们只接受SRS治疗,他们的中位生存期为8个月。因此,放射治疗(RT)联合ICIs可能为非小细胞肺癌患者提供有利的治疗方案,在此,我们概述了放疗与免疫疗法联合治疗IV期NSCLC的最新进展和挑战。

2. 免疫检查点抑制剂提高IV期非小细胞肺癌患者的存活率

近年来,ICIs显著改变了转移性非小细胞肺癌的治疗方法。单抗针对特定的抑制性免疫检查点,如细胞毒性T淋巴细胞抗原-4 (CTLA-4)、程序性死亡1 (PD1)或程序性死亡配体1 (PD-L1),并可改善多个大规模III期随机对照试验中转移性非小细胞肺癌患者的总生存率(OS)和无进展生存率(PFS),特别是在PD-L1肿瘤比例评分≥为50%的患者。CheckMate-017和CheckMate-057评估Nivolumab作为晚期非小细胞肺癌的二线治疗,与多西紫杉醇 [7] [8] 相比,PFS和OS有所改善。2021年,更新的数据显示,Nivolumab的5年OS率增加了5倍以上(13.4%比2.6%) [9] 。CHECKMate-078进一步证实了Nivolumab在中国患者中的有效性 [10] 。Checkmate-9LA和Checkmate-227显示在PD-L1中使用一线Nivolumab加Ipiimumab对NSCLC阳性患者有好处 [11] [12] 。

Atezolizumab,是FDA批准的第一个PD-L1单抗,有望用于晚期非小细胞肺癌。在Oak试验中,与以前治疗的非小细胞肺癌化疗相比,它改善了OS (中位数OS:13.8个月比9.6个月,p = 0.0003) [13] 。在晚期非小细胞肺癌的一线治疗中,Impower 110试验表明,在PD-L1高表达的患者中,Atezolizumab单一疗法比化疗有显著的益处,提供了另一种“免除化疗”的治疗选择 [14] 。IMPower130评估了Atezolizumab联合化疗对患有野生型EGFR/ALK的非鳞状NSCLC患者的一线治疗效果。PD-L1表达与较好的PFS相关 [15] 。Impower 150将Atezolizumab添加到化疗和Bevacizumab中,显著延长了转移性非鳞状NSCLC患者的PFS和OS,无论PD-L1表达或EGFR/ALK状态如何 [16] 。总体而言,Atezolizumab对转移性NSCLC患者是有希望的,特别是那些PD-L1高表达的患者。其他几种PD-1/PD-L1抑制剂也已安全地应用于晚期NSCLC [17] [18] 的一线和二线治疗。尽管ICIs的临床适应很快,但大多数患者对含ICI的方案反应很差。尽管探索了40多个预测肿瘤对ICIs反应的潜在生物标志物,但在患者选择方面尚未达成共识 [19] [20] 。

3. RT联合免疫疗法治疗转移性NSCLC的临床疗效

放射治疗促进肿瘤相关抗原的释放和免疫细胞向肿瘤的渗透,这可能导致未经放射治疗的肿瘤的异常反应 [21] 。与常规分割放射治疗(CFRT)相比,SBRT具有较少的淋巴细胞减少和较好的临床疗效 [22] [23] [24] 。因此,SBRT与免疫治疗相结合,有望成为一种新兴的肿瘤治疗方法。放射免疫联合治疗的疗效受多种因素的影响,包括放射剂量、分割计划、治疗量和ICI的给药顺序。最大限度地激活免疫的最佳剂量分级方案尚未确定。

尽管各种试验中的放射治疗方案各不相同,但8Gy × 3组分已非常常用 [25] [26] [27] 。一些研究发现,疗效的差异与不同的剂量有关,分割方案和不同部位的治疗 [28] 。威尔士等人。发现SBRT (50Gy4F)联合免疫治疗可获得38%的异常应答率(ARR),而放疗疗程较长(45Gy15F) [29] 的ARR仅为10%。需要进行大规模的临床研究,以探索与免疫治疗相结合的最佳SBRT剂量和分级方案。在SBRT治疗期间暴露在低剂量照射下的皮损中的肿瘤消退也有报道,这表明在接受SBRT和免疫治疗的患者中,将低剂量放射治疗(LDRT)添加到选定的转移灶中具有额外的好处 [30] [31] 。研究如何最好地将LDRT、SBRT和免疫疗法结合起来的临床试验是必要的。肿瘤内的异质性可能是联合免疫治疗和SBRT疗效不一致的部分原因 [32] 。

将放射治疗与免疫疗法相结合的可能顺序包括在放射治疗之前、同时或之后给药。在临床前研究中,同时使用抗PD-L1药物和放疗产生了最有效的抗肿瘤免疫反应 [33] 。值得注意的是,上述发现主要基于传统的分级放疗,但对于SBRT,在免疫治疗的任何阶段进行干预都可能带来生存益处。Bestvina等人首次对同时与连续双检查点阻断和SBRT进行了随机比较。他们表明,并发和继发性PFS的中位数没有统计学上的显著差异。

考虑到ICIs和辐射诱导的毒性作用机制的冗余性,辐射肿瘤学家通常避免同时进行SBRT和ICIs,因为担心毒性增加 [34] 。然而,目前的证据仅表明,在免疫治疗期间接受SBRT的患者发生某些毒性反应的风险略有升高 [35] 。多系统irAEs的发展也可能与ICIS [36] 治疗的晚期NSCLC患者的生存改善有关。需要前瞻性试验来研究放射治疗和ICI相结合的最优顺序,以提高患者的存活率,同时保持较低的治疗相关毒性发生率。同样重要的是,进一步探索如何最好地为联合治疗方案选择患者。例如,一些研究表明,SBRT和免疫治疗的结合可能更适合PD-L1低表达的患者,因为在PD-L1高表达的患者中,单独使用免疫治疗效果更好。因此,根据特定生物标志物的存在和/或水平来选择患者可能有助于克服当前临床试验中难以满足的研究终点的障碍。有必要对这一领域进行进一步调查。

4. 如何使放射治疗联合免疫治疗更有效

从迄今为止进行的临床试验中吸取的经验教训,以及对致电离辐射(IR)、肿瘤微环境和肿瘤内T细胞之间相互作用的临床前研究,应指导设计更有效的放射免疫疗法组合。在这里,我们提出了实现这一目标的一些具体方法:

1) 对所有站点进行辐射

基于上面讨论的观察和其他证据,我们最近提出,免疫治疗和放射治疗之间的潜在协同作用需要治疗所有或大部分转移疾病 [37] 。这一结论得到了该领域其他人的认同 [38] ,并基于最近的技术进步,这些技术进步允许以高精度和低毒性提供高剂量IR。此外,在我们最近结合了pembrolizumab和SBRT的临床试验中,来自探索性子集分析的观察也支持了这一方法,该分析表明,与完全照射相比,必须进行部分照射(由于技术限制)的肿瘤显示出类似的肿瘤控制。这表明,即使在可能不可能对所有部位进行照射的情况下,对所有病变进行部分照射也可能足够。反对这种方法的一个论点是,T细胞可能对辐射敏感,在这种情况下,放射治疗可能是免疫抑制的,这一点我们在下面讨论。

2) 应用肿瘤生物学方面的知识

最近,Pitroda和Weichselbaum实验室对切除后的结直肠癌肝转移进行了整合转录分析(mRNA + miRNA) [39] ,目的是区分结直肠癌转移的不同分子亚型及其与临床结果的关系。我们发现,与原发性结直肠癌不同临床结果相关的分子特征在切除肝转移的患者中未能做到这一点。然而,综合转录分析确定了与不同总存活率相关的3种结直肠癌转移的分子亚型。亚型1,因其增加了细胞增殖的表达,改变了细胞周期和DNA修复途径,在33%的样本中存在,并与较差的存活率相关,被称为“典型”。该亚型免疫标志物低表达。相反,亚型2,或“免疫”(28%),有高表达的T细胞激活,抗原呈递和干扰素信号基因,并与最有利的总体生存相关。最后,亚型3或“间质”(39%)的特征是一些免疫标志物的表达以及强烈的上皮–间充质转化、血管生成和293个细胞外基质重塑途径的激活。间质亚型存活率低。这三个亚型使人想起对接受检查点抑制剂治疗的患者所描述的“免疫沙漠/炎症/排斥”表型 [40] [41] 。先前的研究表明,在人类肺癌肿瘤周围的致密细胞外基质沉积中,产生CXCL12的活化成纤维细胞“隔离”了T细胞 [42] [43] 。与TGF激活成纤维细胞的观点一致β通过将T细胞保留在肿瘤周围基质区域,用抗TGF治疗小鼠肿瘤,有助于将T细胞从肿瘤床中排除β提高了抗PD-L1阻断的治疗效果,可能是通过对抗成纤维细胞的“屏障”,这导致肿瘤内T细胞浸润增加。决定“基质”/“排除”肿瘤类型的遗传/环境因素尚未完全阐明;然而,由于肿瘤成纤维细胞主要来源于局部可用的 [44] 正常成纤维细胞,一种可能性是将转移细胞接种到解剖位置存在于该分子亚型的肿瘤中可能使其更容易接受放大放疗诱导的DNA损伤的药物治疗,如PARP抑制剂。

3) 在个体肿瘤放射治疗中考虑肿瘤内T细胞

对于表型被排除的肿瘤,经常有人提出辐射可以吸引T细胞到肿瘤上,将对免疫治疗无效的“冷”肿瘤变成可以用免疫治疗治疗的“热”肿瘤,但这还没有得到确凿的证明。临床前研究令人信服地表明,辐射可以增加T细胞对肿瘤的渗透。根据临床证据的缺乏,在T细胞水平较低但可检测到的肿瘤中,辐射可能会吸引更多的T细胞,而在完全缺乏T细胞的肿瘤中,辐射可能不会产生同样的效果。我们发现,如果肿瘤是在次给药之前建立的,用S1P1抑制剂337-FTY720阻断T细胞的渗透不会影响放射反应,但如果在植入时开始给药,多次照射无效。这表明,预先存在的T细胞在某些条件下足以介导放射治疗的局部细胞毒性效应,而不像一些免疫疗法那样,需要新的渗透的T细胞。

5. 结论

放疗联合免疫治疗是治疗转移性非小细胞肺癌患者的一种很有前途的治疗方案。尽管出现了早期的临床证据,但放疗和免疫治疗相结合的最佳策略仍有待进一步研究,以确定最有效的策略。本文就免疫检查点抑制剂提高IV期非小细胞肺癌患者的存活率、放疗联合免疫疗法治疗转移性NSCLC的临床疗效、如何使放疗联合免疫治疗更有效等方面进行了综述。它进一步将持久的局部控制定义为在2年内至少85%,同时认识到在放疗结合系统治疗提供下床后可接受局部控制的可能性。正如欧洲和欧洲/美国的共识建议所暗示的那样,更多的努力应该针对如何有效地结合放疗和免疫治疗进行高质量的临床研究,这将提供见解并最终改善晚期非小细胞肺癌患者的护理。

参考文献

[1] Ganti, A.K., Klein, A.B., Cotarla, I., Seal, B. and Chou, E. (2021) Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients with Non-Small Cell Lung Cancer in the US. JAMA Oncology, 7, 1824-1832.
https://doi.org/10.1001/jamaoncol.2021.4932
[2] Hellmann, M.D., Paz-Ares, L., Bernabe Caro, R., Zurawski, B., Kim, S.-W., Carcereny Costa, E., et al. (2019) Nivolumab plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 381, 2020-2031.
https://doi.org/10.1056/NEJMoa1910231
[3] Nestle, U., Adebahr, S., Kaier, K., Gkika, E., Schimek-Jasch, T., Hechtner, M., et al. (2020) Quality of Life after Pulmonary Stereo-tactic Fractionated Radiotherapy (SBRT): Results of the Phase II STRIPE Trial. Radiotherapy and Oncology, 148, 82-88.
https://doi.org/10.1016/j.radonc.2020.03.018
[4] Chi, A. and Nguyen, N.P. (2022) Rationale for Combing Stere-otactic Body Radiation Therapy with Immune Checkpoint Inhibitors in Medically Inoperable Early-Stage Non-Small Cell Lung Cancer. Cancers, 14, Article 3144.
https://doi.org/10.3390/cancers14133144
[5] Plá, M., Beltrán, D.D. and Albiach, E.F. (2021) Immune Check-points Inhibitors and SRS/SBRT Synergy in Metastatic Non-Small-Cell Lung Cancer and Melanoma: A Systematic Re-view. International Journal of Molecular Sciences, 22, Article 11621.
https://doi.org/10.3390/ijms222111621
[6] Abdulhaleem, M., et al. (2022) Local Control Outcomes for Combina-tion of Stereotactic Radiosurgery and Immunotherapy for Non-Small Cell Lung Cancer Brain Metastases. Journal of Neuro-Oncology, 157, 101-107.
https://doi.org/10.1007/s11060-022-03951-7
[7] Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D.R., Steins, M., Ready, N.E., et al. (2015) Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 373, 1627-1639.
https://doi.org/10.1056/NEJMoa1507643
[8] Brahmer, J., Reckamp, K.L., Baas, P., Crinò, L., Eberhardt, W.E.E., Poddubskaya, E., et al. (2015) Nivolumab versus Docetaxel in Advanced Squamous-Cell Non-Small-Cell Lung Cancer. The New England Journal of Medicine, 373, 123-135.
https://doi.org/10.1056/NEJMoa1504627
[9] Borghaei, H., Gettinger, S., Vokes, E.E., Chow, L.Q.M., Burgio, M.A., de Castro Carpeno, J., et al. (2021) Five-Year Outcomes from the Randomized, Phase III Trials CheckMate 017 and 057: Nivolumab versus Docetaxel in Previously Treated Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 39, 723-733.
https://doi.org/10.1200/JCO.20.01605
[10] Wu, Y.-L., Lu, S., Cheng, Y., Zhou, C., Wang, J., Mok, T., et al. (2019) Nivolumab versus Docetaxel in a Predominantly Chinese Patient Population with Previously Treated Advanced NSCLC: CheckMate 078 Randomized Phase III Clinical Trial. Journal of Thoracic Oncology, 14, 867-875.
https://doi.org/10.1016/j.jtho.2019.01.006
[11] Paz-Ares, L., Ciuleanu, T.-E., Cobo, M., Schenker, M., Zurawski, B., Menezes, J., et al. (2021) First-Line Nivolumab plus Ipilimumab Combined with Two Cycles of Chemotherapy in Patients with Non-Small-Cell Lung Cancer (CheckMate 9LA): An International, Randomised, Open-Label, Phase 3 Trial. The Lancet Oncology, 22, 198-211.
https://doi.org/10.1016/S1470-2045(20)30641-0
[12] Brahmer, J.R., Lee, J.-S., Ciuleanu, T.-E., Bernabe Caro, R., Nishio, M., Urban, L., et al. (2023) Five-Year Survival Outcomes with Nivolumab plus Ipilimumab versus Chemother-apy as First-Line Treatment for Metastatic Non-Small-Cell Lung Cancer in CheckMate 227. Journal of Clinical Oncology, 41, 1200-1212.
https://doi.org/10.1200/JCO.22.01503
[13] Rittmeyer, A., Barlesi, F., Waterkamp, D., Park, K., Ciardiello, F., von Pawel, J., et al. (2017) Atezolizumab versus Docetaxel in Patients with Previously Treated Non-Small-Cell Lung Cancer (OAK): A Phase 3, Open-Label, Multicentre Randomised Controlled Trial. The Lancet, 389, 255-265.
https://doi.org/10.1016/S0140-6736(16)32517-X
[14] Jassem, J., de Marinis, F., Giaccone, G., Vergnenegre, A., Barrios, C.H., Morise, M., et al. (2021) Updated Overall Survival Analysis from IMpower110: Ate-zolizumab versus Platinum-Based Chemotherapy in Treatment-Naive Programmed Death-Ligand 1-Selected NSCLC. Journal of Thoracic Oncology, 16, 1872-1882.
https://doi.org/10.1016/j.jtho.2021.06.019
[15] Socinski, M.A., et al. (2023) Association of Immune-Related Ad-verse Events with Efficacy of Atezolizumab in Patients with Non-Small Cell Lung Cancer: Pooled Analyses of the Phase 3 IMpower130, IMpower132, and IMpower150 Randomized Clinical Trials. JAMA Oncology, 9, 527-535.
https://doi.org/10.1001/jamaoncol.2022.7711
[16] Socinski, M.A., Nishio, M., Jotte, R.M., Cappuzzo, F., Orlandi, F., Stroyakovskiy, D., et al. (2021) IMpower150 Final Overall Survival Analyses for Atezolizumab plus Bevacizumab and Chemotherapy in First-Line Metastatic Nonsquamous NSCLC. Journal of Thoracic Oncology, 16, 1909-1924.
https://doi.org/10.1016/j.jtho.2021.07.009
[17] Yang, Y., Sun, J., Wang, Z., Fang, J., Yu, Q., Han, B., et al. (2021) Updated Overall Survival Data and Predictive Biomarkers of Sintilimab plus Pemetrexed and Platinum as First-Line Treatment for Locally Advanced or Metastatic Nonsquamous NSCLC in the Phase 3 ORIENT-11 Study. Journal of Thoracic Oncology 16, 2109-2120.
https://doi.org/10.1016/j.jtho.2021.07.015
[18] Zhou, C., Wu, L., Fan, Y., Wang, Z., Liu, L., Chen, G., et al. (2021) Sintilimab plus Platinum and Gemcitabine as First-Line Treatment for Advanced or Metastatic Squamous NSCLC: Re-sults from a Randomized, Double-Blind, Phase 3 Trial (ORIENT-12). Journal of Thoracic Oncology, 16, 1501-1511.
https://doi.org/10.1016/j.jtho.2021.04.011
[19] Zhou, .F, Qiao, M. and Zhou, C. (2021) The Cutting-Edge Progress of Immune-Checkpoint Blockade in Lung Cancer. Cellular & Molecular Immunology, 18, 279-293.
https://doi.org/10.1038/s41423-020-00577-5
[20] MacManus, M. and Hegi-Johnson, F. (2022) Overcoming Im-munotherapy Resistance in NSCLC. The Lancet Oncology, 23, 191-193.
https://doi.org/10.1016/S1470-2045(21)00711-7
[21] Barbari, C., et al., (2020) Immunotherapies and Combination Strategies for Immuno-Oncology. International Journal of Molecular Sciences, 21, Article 5009.
https://doi.org/10.3390/ijms21145009
[22] Wu, G., Baine, M.J., Zhao, N., Li, S., Li, X. and Lin, C. (2019) Lym-phocyte-Sparing Effect of Stereotactic Body Radiation Therapy Compared to Conventional Fractionated Radiation Ther-apy in Patients with Locally Advanced Pancreatic Cancer. BMC Cancer, 19, Article No. 977.
https://doi.org/10.1186/s12885-019-6220-1
[23] Chen, D., Verma, V., Patel, R.R., Barsoumian, H.B., Cortez, M.A. and Welsh, J.W. (2020) Absolute Lymphocyte Count Predicts Abscopal Responses and Outcomes in Patients Receiving Combined Immunotherapy and Radiation Therapy: Analysis of 3 Phase 1/2 Trials. International Journal of Radiation Oncology, Biology, Physics, 108, 196-203.
https://doi.org/10.1016/j.ijrobp.2020.01.032
[24] Theelen, W.S.M.E., Chen, D., Verma, V., Hobbs, B.P., Peulen, H.M.U., Aerts, J.G.J.V., et al. (2021) Pembrolizumab with or without Radiotherapy for Metastatic Non-Small-Cell Lung Cancer: A Pooled Analysis of Two Randomised Trials. The Lancet Respiratory Medicine, 9, 467-475.
https://doi.org/10.1016/S2213-2600(20)30391-X
[25] Schoenfeld, J.D., Giobbie-Hurder, A., Ranasinghe, S., Kao, K.Z., Lako, A., Tsuji, J., et al. (2022) Durvalumab plus Tremelimumab Alone or in Combination with Low-Dose or Hypofractionated Radiotherapy in Metastatic Non-Small- Cell Lung Cancer Refractory to Previous PD(L)-1 Therapy: An Open-Label, Multicentre, Randomised, Phase 2 Trial. The Lancet Oncology, 23, 279-291.
https://doi.org/10.1016/S1470-2045(21)00658-6
[26] Bestvina, C.M., Pointer, K.B., Karrison, T., Al-Hallaq, H., Hoffman, P.C., Jelinek, M.J., et al. (2022) A Phase 1 Trial of Concurrent or Sequential Ipilimumab, Nivolumab, and Stereotactic Body Radiotherapy in Patients with Stage IV NSCLC Study. Journal of Thoracic Oncology, 17, 130-140.
https://doi.org/10.1016/j.jtho.2021.08.019
[27] Welsh, J., Menon, H., Chen, D., Verma, V., Tang, C., Altan, M., et al. (2020) Pembrolizumab with or without Radiation Therapy for Metastatic Non-Small Cell Lung Cancer: A Random-ized Phase I/II Trial. The Journal for ImmunoTherapy of Cancer, 8, e001001.
https://doi.org/10.1136/jitc-2020-001001
[28] Menon, H., Chen, D., Ramapriyan, R., Verma, V., Barsoumian, H.B., Cushman, T.R., et al. (2019) Influence of Low- Dose Radiation on Abscopal Responses in Patients Receiving High-Dose Radiation and Immunotherapy. The Journal for ImmunoTherapy of Cancer, 7, 237.
https://doi.org/10.1186/s40425-019-0718-6
[29] Yin, L., Xue, J., Li, R., Zhou, L., Deng, L., Chen, L., et al. (2020) Effect of Low-Dose Radiation Therapy on Abscopal Responses to Hypofractionated Radiation Therapy and Anti-PD1 in Mice and Patients with Non-Small Cell Lung Cancer. International Journal of Radiation Oncology, Biology, Physics, 108, 212-224.
https://doi.org/10.1016/j.ijrobp.2020.05.002
[30] Westcott, P.M.K., et al. (2023) Mismatch Repair Deficiency Is Not Sufficient to Elicit Tumor Immunogenicity. Nature Genetics, 55, 1686-1695.
https://doi.org/10.1038/s41588-023-01499-4
[31] Dovedi, S.J., Adlard, A.L., Lipowska-Bhalla, G., McKenna, C., Jones, S., Cheadle, E.J., et al. (2014) Acquired Resistance to Fractionated Radiotherapy Can Be Overcome by Concurrent PD-L1 Blockade. Cancer Research, 74, 5458- 5468.
https://doi.org/10.1158/0008-5472.CAN-14-1258
[32] Twyman-Saint, V.C., Rech, A.J., Maity, A., Rengan, R., Pauken, K.E., Stelekati, E., et al. (2015) Radiation and Dual Checkpoint Blockade Activate Non-Redundant Immune Mechanisms in Cancer. Nature, 520, 373-377.
https://doi.org/10.1038/nature14292
[33] Anscher, M.S., Arora, S., Weinstock, C., Amatya, A., Bandaru, P., Tang, C., et al. (2022) Association of Radiation Therapy with Risk of Adverse Events in Patients Receiving Immunotherapy: A Pooled Analysis of Trials in the US Food and Drug Administration Database. JAMA Oncology, 8, 232-240.
https://doi.org/10.1001/jamaoncol.2021.6439
[34] Maher, V.E., Fernandes, L.L., Weinstock, C., Tang, S., Agarwal, S., Brave, M., et al. (2019) Analysis of the Association between Adverse Events and Outcome in Patients Receiving a Programmed Death Protein 1 or Programmed Death Ligand 1 Antibody. Journal of Clinical Oncology, 37, 2730-2737.
https://doi.org/10.1200/JCO.19.00318
[35] Weichselbaum, R.R. (2018) The 46th David A. Karnofsky Memorial Award Lecture: Oligometastasis—From Conception to Treatment. Journal of Clinical Oncology, 36, 3240-3250.
https://doi.org/10.1200/JCO.18.00847
[36] Brooks, E.D. and Chang, J.Y. (2019) Time to Abandon Single-Site Ir-radiation for Inducing Abscopal Effects. Nature Reviews Clinical Oncology, 16, 123-135.
https://doi.org/10.1038/s41571-018-0119-7
[37] Pitroda, S.P., Khodarev, N.N., Huang, L., Uppal, A., Wightman, S.C., Ganai, S., et al. (2018) Integrated Molecular Subtyping Defines a Curable Oligometastatic State in Colorectal Liver Metastasis. Nature Communications, 9, Article No. 1793.
https://doi.org/10.1038/s41467-018-04278-6
[38] Hegde, P.S., Karanikas, V. and Evers, S. (2016) The Where, the When, and the How of Immune Monitoring for Cancer Immu-notherapies in the Era of Checkpoint Inhibition. Clinical Cancer Research, 22, 1865-1874.
https://doi.org/10.1158/1078-0432.CCR-15-1507
[39] Mariathasan, S., Turley, S.J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., et al. (2018) TGFβ Attenuates Tumour Response to PD-L1 Blockade by Contributing to Exclusion of T Cells. Nature, 554, 544-548.
https://doi.org/10.1038/nature25501
[40] Salmon, H., Franciszkiewicz, K., Damotte, D., Dieu-Nosjean, M.C., Va-lidire, P., Trautmann, A., et al. (2012) Matrix Architecture Defines the Preferential Localization and Migration of T Cells into the Stroma of Human Lung Tumors. Journal of Clinical Investigation, 122, 899-910.
https://doi.org/10.1172/JCI45817
[41] Ene-Obong, A., Clear, A.J., Watt, J., Wang, J., Fatah, R., Riches, J.C., et al. (2013) Activated Pancreatic Stellate Cells Sequester CD8+ T Cells to Reduce Their Infiltration of the Juxtatumoral Com-partment of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 145, 1121-1132.
https://doi.org/10.1053/j.gastro.2013.07.025
[42] Arina, A., Idel, C., Hyjek, E.M., Alegre, M.L., Wang, Y., Bin-dokas, V.P., et al. (2016) Tumor-Associated Fibroblasts Predominantly Come from Local and Not Circulating Precursors. Proceedings of the National Academy of Sciences of the United States of America, 113, 7551-7556.
https://doi.org/10.1073/pnas.1600363113
[43] Dominguez, C.X., Muller, S., Keerthivasan, S., Koeppen, H., Hung, J., Gierke, S., et al. (2019) Single-Cell RNA Sequencing Reveals Stromal Evolution into LRRC15+ Myofibroblasts as a Determinant of Patient Response to Cancer Immunotherapy. Cancer Discovery, 10, 232-253.
https://doi.org/10.1158/2159-8290.CD-19-0644
[44] Yost, K.E., Satpathy, A.T., Wells, D.K., Qi, Y., Wang, C., Kageyama, R., et al. (2019) Clonal Replacement of Tumor-Specific T Cells Following PD-1 Blockade. Nature Medicine, 25, 1251-5799.
https://doi.org/10.1038/s41591-019-0522-3