Diels-Alder反应合成萘环及其衍生物的研究进展
Advances in the Synthesis of Naphthalene Rings and Their Derivatives by Diels-Alder Reaction
DOI: 10.12677/JOCR.2023.114017, PDF, HTML, XML, 下载: 141  浏览: 593 
作者: 杨胜文:浙江师范大学,化学与材料科学学院,浙江 金华
关键词: Diels–Alder反应萘环萘环衍生物化学区域选择性Diels-Alder Reaction Naphthalene Ring Naphthalene Ring Derivatives Chemical Region Selectivity
摘要: Diels-Alder反应是合成化学中的一类重要反应类型,Diels-Alder环加成反应广泛应用于取代萘和萘醌的合成。通常,不对称的二烯和亲二烯化合物可能形成一个以上的环加合物,但在某些情况下,有很好的区域化学控制。本文将对这类Diels-Alder反应进行分析和总结。这其中复杂前体的合成可能是促进区域选择性的必要条件。通过文献调研,我们发现通过Diels-Alder反应合成萘环及其衍生物,主要有三种方式:1) 醌对二烯的Diels-Alder加成,2) 邻苯碳醌参与的Diels-Alder加成,3) 苯的Diels-Alder加成。该类反应将成为合成萘环及其衍生物和C-C键形成的重要方法。
Abstract: Diels-Alder reaction is an important type of reaction in synthetic chemistry. Diels-Alder cycloaddition reaction is widely used in the synthesis of substituted naphthalene and naphthoquinone. Typically, asymmetric dienes and dienophile compounds may form more than one cyclic admixture, but in some cases, there is good regional chemical control. This paper will analyze and summarize these Diels-Alder reactions. The synthesis of these complex precursors may be necessary to promote regional selectivity. Through literature investigation, we found that there are three main ways to synthesize naphthalene rings and their derivatives by Diels-Alder reaction: 1) Diels-Alder addition of quinone to diene, 2) Diels–Alder addition of o-quinodimethanes, and 3) Diels–Alder addition of benzynes. This kind of reaction will be an important method for the synthesis of naphthalene rings and their derivatives and the formation of C-C bonds.
文章引用:杨胜文. Diels-Alder反应合成萘环及其衍生物的研究进展[J]. 有机化学研究, 2023, 11(4): 171-181. https://doi.org/10.12677/JOCR.2023.114017

1. 引言

Diels-Alder反应,是共轭双烯与取代烯烃反应生成取代环己烯的一种环加成反应,是有机合成领域中非常重要的一类碳碳键构建的手段,被广泛应用于取代萘和萘的衍生物的合成当中。多取代萘是一类非常重要的双环化合物,具有广泛的生物活性,具有肝炎抑制剂 [1] [2] ,抗病毒 [3] [4] [5] ,抗菌 [6] [7] [8] ,抗艾滋病毒 [9] ,抗癌 [10] [11] ,抗炎 [12] ,抗疟疾 [13] 等特性,广泛存在于许多天然和合成产品当中 [14] - [17] ,在结构化学和合成化学中具有着重要的作用。目前有许多合成萘环衍生物的方法,如过渡金属催化的C-H活化 [18] 、环化 [19] 、Diels-Alder反应 [20] 、Claisen重排 [21] 、热解反应 [22] ,和化学还原 [23] 等等。但是,由于区域化学控制的问题,用传统的芳香亲电取代反应合成多取代萘往往并不简单。但在某些情况下,使用Diels-Alder环加成反应合成多取代萘,有很好的区域化学控制,这其中复杂前体的合成可能是促进区域选择性的必要条件。本文将重点介绍Diels-Alder反应合成萘环及其衍生物的例子。

2. Diels-Alder反应合成萘环及其衍生物

2.1. 醌对二烯的Diels-Alder加成

1984年,Brassard [24] 等人,用已知的二烯1和2,6-二氯-1,4-苯醌通过Diels-Alder反应,在硅胶存在的条件下进行芳构化,最后通过甲基化,以74%的总收率选择性地制备氯萘醌2 (图1式1)。

在此基础上,1998年,Bringmann [25] 及其同事以2,6-二溴-1,4-苯醌为原料合成了溴醌3 (图1式2),将这种方法应用于合成一类抗HIV的活性天然产物之中。

Figure 1. Naphthoquinone is synthesized from benzoquinone and diene

图1. 苯醌和二烯合成萘醌

1999年,Suzuki及其同事 [26] 利用Brassard二烯4合成了一种蒽醌。该小组利用Diels-Alder反应和随后的消除步骤实现了这一过程(如图2所示)。

Figure 2. Brassard-diene synthesizes an anthraquinone

图2. Brassard二烯合成蒽醌

多年来,深入的研究已经导致了各种各样的二烯的制备,特别是双键中有一个是内环的环二烯(内外环二烯)对于构建多环结构具有重要价值。双氧化1,3-丁二烯很重要,两个氧取代基之间的协同作用增加了与亲二烯试剂的反应活性,而且加合物很容易选择性地转化为烯酮和芳香化合。Diels-Alder反应与这种缺电子的亲二烯试剂反应,会区域选择性地合成多种感兴趣的多环结构 [27] 。如图3所示,运用容易制备的一种内外环二烯5与苯醌反应,原位保护后可以高收率的得到取代萘6。尽管它们具有很高的合成潜力,但内外环二烯在Diels-Alder反应中的应用仍然十分有限。

Figure 3. Naphthalene is synthesized by the reaction of cyclodiene and benzoquinone

图3. 内外环二烯与苯醌反应合成萘

2.2. 邻苯碳醌参与的Diels-Alder加成反应

多取代萘环通常很难通过传统的亲电芳香取代反应制备,因为区域化学控制可能存在问题。因此,对已知的制备多取代萘环的新方法或改进是有用的。1996年Andersen和Maddaford [28] 发现苯并环丁烯7在加热后,会重排生成邻苯碳醌8中间体。该中间体与亲双烯体会发生Diels-Alder反应,消除甲醇,最终得到萘的产物9,且收率很好(如图4所示)。这种新开发的方法具有很好的普适性,且耐受多种官能团。

Figure 4. Naphthalene is synthesized by Diels-Alder reaction between benzocyclobutene and dienophile

图4. 苯并环丁烯与亲双烯体发生Diels-Alder反应合成萘

1996年Charlton等人 [29] 发现用羟基缩醛和醋酸反应,会形成瞬态异苯并呋喃10前体,用乙炔捕获这种异苯并呋喃前体,可以用于萘的制备(如图5所示)。通过DFT计算,他们发现当芳基萘键的旋转受到阻碍时,相对较高的旋转势垒会产生可分离的不同的旋转对映体,从而产生完全不同的药理学性质,具有很好的立体选择性。

Figure 5. Synthesis of naphthalene by transient isobenzofuran intermediates captured by acetylene

图5. 乙炔捕获瞬态异苯并呋喃中间体合成萘

2000年,Cava及其同事 [30] 在对不稳定的苯并碲酚化合物的研究中发现,其与N-甲基马来酰亚胺会很容易的发生Diels-Alder反应,形成的Diels-Alder加合物中间体11不稳定,会很轻易的脱掉碲化氢,最后以中等收率得到N-甲基萘酰胺(如图6所示),通过锂化试剂和亲电试剂的处理实现了苯并碲酚环的官能化。

Figure 6. Naphthalene is synthesized by Diels-Alder reaction with N-methylmaleimide and Benzotellurol

图6. 苯并碲酚化合物与N-甲基马来酰亚胺发生Diels-Alder反应合成萘

2000年Willems和他的同事 [31] 发现,苯并氧杂硫-3-氧化物12在苯中回流,会形成瞬态邻苯碳醌中间体13和二氧化硫气体。中间体经加热后与3-氯-3-环丁烯-1,2-二酮发生Diels-Alder反应,最后通过芳构化,两步法得到取代萘。如图7所示。该方法相较于水解法和热解法合成萘环的一个显著的特点是,任何阶段都不需要进行色谱分析,并且制备简单。

Figure 7. Benzooxi-3-oxide two-step synthesis of naphthalene

图7. 苯并氧杂硫-3-氧化物两步法合成萘

2001年,Ruzziconi及其同事 [32] 在研究硝酸铈铵(CAN)促进碳–碳键形成的反应背景下,发现了一种能够构建多环化合物的通用方法。他们使用CAN促进的易于获得的烯醇硅醚14与乙烯基乙醚15进行氧化加成,得到了氟化萘16,实现了一种新的亲电芳香环化策略(如图8所示),该方法反应条件温和,室温下就能反应。

Figure 8. Electrophilic aromatic cyclization of enol silyl ether and vinyl ether to synthesize naphthalene rings

图8. 烯醇硅醚与乙烯基乙醚的亲电芳香环化合成萘环

2.3. 苯的Diels-Alder加成

1971年,Fields课题组 [23] 开发了一种简单方便的合成2-萘酚的合成方法,他们发现偶氮蒽盐17在反向Diels-Alder条件下可以与乙烯酮缩醛18反应,形成的环加合物19可作为取代萘酚的关键中间体,随后使用PtO2对吡啶进行氢化,水解剩余的缩醛,进一步热解消除吡啶,最后得到多取代萘酚,如图9所示。

Figure 9. The Diels-Alder reaction synthesizes 2-naphthol

图9. Diels-Alder反应合成2-萘酚

近几十年来,向呋喃中添加苯的报道相当广泛 [33] [34] 。我们用这些方法可以进行一些区域化学控制,如图10所示。在这些情况下,只会形成一个Diels-Alder环加成产物,化学区域控制良好。

1986年Best和Wege [35] 开发了一种通过分子内Diels-Alder环加成反应合成萘环的方法。他们使用重氮化的苯甲酸衍生物作为苯的前体,在含有环氧丙烯的1,2-二氯乙烷中热裂解得到Diels-Alder反应的加合物,产率为74%,加合物再通过催化还原和随后的水消除,最终会形成萘的衍生物。该方法通过采用分子内Diels-Alder环加成反应克服了化学区域选择性问题,其中使用更复杂的底物能够确保形成所需的区域异构体(如图11所示),具有很大的发展潜力。

1999年,Priest及其同事 [36] 在最初尝试用各种取代的呋喃与苯的环加成反应合成萘酚失败后,将重点放在了苯环化路线上。他们将2,4-二溴苯甲醚暴露于异丙基环己胺锂(LICA)中,并与随后的烯酸锂反

Figure 10. Diels-Alder reaction of benzene and furan synthesizes naphthalene rings

图10. 苯和呋喃的Diels-Alder反应合成萘环

Figure 11. Intramolecular Diels-Alder ring addition reaction to synthesize naphthalene rings

图11. 分子内Diels-Alder环加成反应合成萘环

应,会得到区域异构体22和23的混合物,比例约为5:1。这过程中并未观察到苯的同分异构体产生的产物,表明在反应过程中只生成了苯21这一种中间体(图12),反应具有很好的区域选择性。

Figure 12. Synthesis of naphthalene by benzene cyclization

图12. 苯环化法合成萘

2000年,Pascal及其同事 [37] 描述了利用空间位阻来合成萘的例子。该方法通过大位阻的环戊二烯酮20和3,4,5,6-四苯基苯甲酸(通过芳烃)一步合成了萘环,收率为83% (如图13所示)。通过分子力学计算表明,苯基对位之间的两个碳原子键可以使这些分子舒适地嵌套在一起,并使萘环和苯环之间形成一个中心空腔,由于连接太短,不允许两种萘相互摆动。

Figure 13. Naphthalene rings are synthesized using cyclopentadienone with large steric hindrance

图13. 利用大位阻的环戊二烯酮合成萘环

2000年Yudin及其同事 [38] 用苯和3-甲氧基噻吩作为亲二烯体,实现了前体萘的合成。该反应首先在−15℃下,用正丁基锂处理氯五氟苯的己烷溶液得到四氟苯炔,然后与3-甲氧基噻吩进行Diels-Alder反应,最后在温和的条件下采用原位挤压法制备得到了2-甲氧基5,6,7,8-四氟萘,产率为52%。如图14所示。

Figure 14. Naphthalene was prepared by in-situ extrusion of chloropentafluorobenzene and 3-methoxythiophene

图14. 氯五氟苯和3-甲氧基噻吩原位挤压法制备萘

2004年,Marti及其同事 [39] 发现了一条合成萘酚的有趣途径。他们通过苯炔(由苯的衍生物24产生)和呋喃之间的Diels-Alder反应,获得了一种环氧烯基底物,后者在钯的催化作用下开环,得到1,2-二氢-1-萘酚25,反应条件温和。此外,在促进1,2-二氢-1-萘酚转化为2-取代-1萘酚26的过程中,他们发现利用温和氧化条件(IBX,乙酸乙酯),反应效果是最佳的(如图15所示)。

除了以上传统的Diels-Alder反应合成萘环的方法外,2019年马 [40] 课题组开发了一种通过电化学合成萘衍生物的策略。他们在温和的条件下通过苯乙烯电解[4 + 2]环化–重排–芳构化合成出了官能化的萘衍生物(如图16所示)。该反应的典型特点是可扩展性好,不含高价底物、氧化剂和金属,在构建多环芳香族化合物方面具有重要的合成价值。该反应代表了一步即可构建多取代萘嵌段的强大途径。

近期光烯化Diels-Alder (PEDA)反应也得到了广泛的报道研究。2021年高栓虎课题组 [41] 使用串联的钛酸四异丙酯促进的Diels-Alder (PEDA)反应和芳构化策略,开发了一种温和高效的合成萘和萘酚的骨架方法。他们从光烯醇化的邻甲苯醛衍生二烯开始,使用空间位阻的环己烯酮和环戊烯酮构建了多种具有生物活性的萘酚及其多环衍生物(如图17所示)。

Figure 15. Phenylyne and furan undergo Diels-Alder reaction to synthesize naphthalene rings

图15. 苯炔与呋喃发生Diels-Alder反应合成萘环

Figure 16. Electrochemical synthesis of naphthalene derivatives

图16. 电化学法合成萘衍生物

Figure 17. Ti(Oi-Pr)4-promoted PEDA reaction synthesizes naphthalene rings

图17. 钛酸四异丙酯促进的Diels-Alder反应合成萘环

3. 总结

在过去的半个世纪里,Diels-Alder环加成反应被广泛应用于取代萘和萘环衍生物的制备。由于区域化学控制的重要问题,用传统的亲电芳取代法合成多取代萘往往并不简单,目前主要采用重排和缩合来绕过这个问题。除此之外,我们认为,未来开发获取萘环及其衍生物的合成方法应侧重于避免使用限制性反应底物和复杂的合成方案。对上述问题的改进将为各种萘环衍生物的合成开辟出一条新的、更有效的合成路线。

参考文献

参考文献

[1] Ho, L.K., Don, M.J., Chen, H.C., Yeh, S.F. and Chen, J.M. (1996) Inhibition of Hepatitis B Surface Antigen Secretion on Human Hepatoma Cells. Components from Rubia cordifolia. Journal of Natural Products, 59, 330-333.
https://doi.org/10.1021/np960200h
[2] Ward, D.N., Talley, D.C., Tavag, M., Menji, S., Schaughency, P., Baier, A. and Smith, P.J. (2014) UK-1 and Structural Analogs Are Potent Inhibitors of Hepatitis C Virus Replication. Bioorganic & Medicinal Chemistry Letters, 24, 609-612.
https://doi.org/10.1016/j.bmcl.2013.12.012
[3] Mohan Naidu, K.R., Krishna, B.S., Kumar, M.A., Arulselvan, P., Khalivulla, S.I. and Lasekan. O. (2012) Design, Synthesis and Antiviral Potential of 14-Aryl/Heteroaryl-14H-dibenzo[a,j]xanthenes Using an Efficient Polymer-Supported Catalyst. Molecules, 17, 7543-7555.
https://doi.org/10.3390/molecules17067543
[4] Abou-Elmagd, W.S.I. and Hashem, A.I. (2013) Synthesis of 1-Amidoalkyl-2-Naphthols and Oxazine Derivatives with Study of Their Antibacterial and Antiviral Activities. Medicinal Chemistry Research, 22, 2005-2013.
https://doi.org/10.1007/s00044-012-0205-9
[5] Shushni, M.A.M., Mentel, R., Lindequist, U. and Jansen, R. (2013) Balticols A-F, New Naphthalenone Derivatives with Antiviral Activity, From an Ascomycetous Fungus. Chemistry & Biodiversity, 6, 127-137.
https://doi.org/10.1002/cbdv.200800150
[6] Baichwal, R.S., Baichwal, M.R. and Khorana, M.L. (1958) Antibacterial and Antifungal Properties of β-Naphthol Derivatives V. Journal of the American Pharmaceutical Association, 47, 537-541.
https://doi.org/10.1002/jps.3030470802
[7] Sahu, P.K., Sahu, P.K., Thavaselvam, D., Alafeefy, A.M. and Agarwal, D.D. (2015) Synthesis and Evaluation of Antimicrobial Activity of 2-Aminobenzothiazolomethyl Naphthol Derivatives. Medicinal Chemistry Research, 24, 725-736.
https://doi.org/10.1007/s00044-014-1150-6
[8] Amand, S., Vallet, M., Guedon, L., Genta-Jouve, G., Wien, F., Mann, S., Dupont, J., Prado, S. and Nay, B. (2017) A Reactive Eremophilane and Its Antibacterial 2(1H)-Naphthalenone Rearrangement Product, Witnesses of a Microbial Chemical Warfare. Organic Letters, 19, 4038-4041.
https://doi.org/10.1021/acs.orglett.7b01788
[9] Bringmann, G., Steinert, C., Feineis, D., Mudogo, V., Betzin, J. and Scheller, C. (2016) HIV-Inhibitory Michellamine-Type Dimeric Naphthylisoquinoline Alkaloids from the Central African Liana Ancistrocladus congolensis. Phytochemistry, 128, 71-81.
https://doi.org/10.1016/j.phytochem.2016.04.005
[10] Das, B., Reddy, C.R., Kashanna, J., Mamidyala, S.K. and Kumar, C.G. (2012) Multicomponent One-Pot Synthesis of 2-Naphthol Derivatives and Evaluation of Their Anticancer Activity. Medicinal Chemistry Research, 21, 3321-3325.
https://doi.org/10.1007/s00044-011-9884-x
[11] Baram, N.I. and Ismailov, A.I. (1993) Biological Activity of Gossypol and Its Derivatives. Chemistry of Natural Compounds, 29, 275-287.
https://doi.org/10.1007/BF00630521
[12] Youm, J., Lee, H., Choi, Y. and Yoon, J. (2018) DW2008S and Its Major Constituents from Justicia procumbens Exert Anti-Asthmatic Effect via Multitargeting Activity. Journal of Cellular and Molecular Medicine, 22, 2680-2691.
https://doi.org/10.1111/jcmm.13550
[13] Hallock, Y.F., Manfredi, K.P., Blunt, J.W., Cardellina, J.H., Schäffer, M., Gulden, K.P., Bringmann, G., Lee, A.Y., Clardy, J., François, G. and Boyd, M.R. (1994) Korupensamines A-D, Novel Antimalarial Alkaloids from Ancistrocladus Korupensis. The Journal of Organic Chemistry, 59, 6349-6355.
https://doi.org/10.1021/jo00100a042
[14] Wang, Z., Li, M.Y., Mi, C., Wang, K.S., Ma, J. and Jin, X. (2017) Mollugin Has an Anti-Cancer Therapeutic Effect by Inhibiting TNF-α-Induced NF-κB Activation. International Journal of Molecular Sciences, 18, Article 1619.
https://doi.org/10.3390/ijms18081619
[15] Seephonkai, P., Pyne, S.G., Willis, A.C. and Lie, W. (2013) Bioactive Compounds from the Roots of Strophioblachia fimbricalyx. Journal of Natural Products, 76, 1358-1364.
https://doi.org/10.1021/np400268d
[16] Takeya, T., Doi, H., Ogata, T., Okamoto, I. and Kotani, E. (2004) Aerobic Oxidative Dimerization of 1-Naphthols to 2,2’-Binaphthoquinones Mediated by SnCl4 and Its Application to Natural Product Synthesis. Tetrahedron, 60, 9049-9060.
https://doi.org/10.1016/j.tet.2004.07.073
[17] Kozlowski, M.C., Dugan, E.C., DiVirgilio, E.S., Maksimenka, K. and Bringmann, G. (2007) Asymmetric Total Synthesis of Nigerone and Ent-Nigerone: Enantioselective Oxidative Biaryl Coupling of Highly Hindered Naphthols. Advanced Synthesis & Catalysis, 349, 583-594.
https://doi.org/10.1002/adsc.200600570
[18] Peng, S., Wang, L. and Wang, J. (2013) Direct Access to Highly Substituted 1-Naphthols through Palladium-Catalyzed Oxidative Annulation of Benzoylacetates and Internal Alkynes. Chemistry—A European Journal, 19, 13322-13327.
https://doi.org/10.1002/chem.201302740
[19] Cai, J., Wang, Z.K., Zhang, Y.H., Yao, F., Hu, X.D. and Liu, W.B. (2020) Synthesis of Polysubstituted 2-Naphthols by Palladium-Catalyzed Intramolecular Arylation/Aromatization Cascade. Advanced Synthesis & Catalysis, 362, 1303-1308.
https://doi.org/10.1002/adsc.201901573
[20] Connors, R., Tran, E. and Durst, T. (1996) Acyl Cyanides as Carbonyl Heterodienophiles: Application to the Synthesis of Naphthols, Isoquinolones, and Isocoumarins. Canadian Journal of Chemistry, 74, 221-226.
https://doi.org/10.1139/v96-024
[21] Huang, K.S. and Wang, E.C. (2001) A Novel Synthesis of Substituted Naphthalenes via Claisen Rearrangement and RCM Reaction. Tetrahedron Letters, 42, 6155-6157.
https://doi.org/10.1016/S0040-4039(01)01231-X
[22] Brown, R.F.C. and McMullen, G.L. (1974) Methyleneketenes and Methylenecarbenes. II. A New Phenolic Ring Synthesis: 2-Naphthol from O-Tolualdehyde. Australian Journal of Chemistry, 27, 2385-2391.
https://doi.org/10.1071/CH9742385
[23] Fields, D.L. (1971) Novel Synthesis of 2-Naphthols; Phenanthrols, Anthracenes, and Other Polycyclic Aromatic Products. The Journal of Organic Chemistry, 36, 3002-3005.
https://doi.org/10.1021/jo00819a020
[24] Savard, J. and Brassard, P. (1984) Reactions of Ketene Acetals-14 the Use of Simple Mixed Vinylketene Acetals in the Annulation of Quinones. Tetrahedron, 40, 3455-3464.
https://doi.org/10.1016/S0040-4020(01)91496-6
[25] Bringmann, G, Götz, R., Keller, P.A., Walter, R., Boyd, M.R., Lang, F., Garcia, A., Walsh, J.J., Tellitu, I., Bhaskar, K.V. and Kelly, T.R. (1998) A Convergent Total Synthesis of the Michellamines. The Journal of Organic Chemistry, 63, 1090-1097.
https://doi.org/10.1021/jo971495m
[26] Kitamura, M., Ohmori, K., Kawase, T. and Suzuki, K. (1999) From Axial Chirality to Central Chiralities: Pinacol Cyclization of 2,2’-Biaryldicarbaldehyde to Trans-9,10-Dihydrophenanthrene-9,10-Diol. Angewandte Chemie International Edition, 38, 1229-1232.
https://doi.org/10.1002/(SICI)1521-3773(19990503)38:9<1226::AID-ANIE1226>3.0.CO;2-T
[27] Sestelo, J.P., Real, M.M., Mouriño, A. and Sarandeses, L.A. (1999) Synthesis of Polycyclic Structures by Diels-Alder Reaction Using Inner-Outer-Ring 1,3-bis[Trimethylsilyloxy]Dienes. Tetrahedron Letters, 40, 985-988.
https://doi.org/10.1016/S0040-4039(98)02463-0
[28] Andersen, N.G., Maddaford, S.P. and Keay, B.A. (1996) Synthesis of Functionalized Naphthalenes from Substituted 1-Methoxybenzocyclobutenes. The Journal of Organic Chemistry, 61, 2885-2887.
https://doi.org/10.1021/jo951978v
[29] Charlton, J.L., Oleschuk, C.J. and Chee, G.L. (1996) Hindered Rotation in Arylnaphthalene Lignans. The Journal of Organic Chemistry, 61, 3452-3457.
https://doi.org/10.1021/jo952048e
[30] Huang, Z., Lakshmikantham, M.V., Lyon, M. and Cava, M.P. (2000) Synthesis and Isolation of Some Benzo[c]tellurophenes. The Journal of Organic Chemistry, 65, 5413-5415.
https://doi.org/10.1021/jo0001030
[31] Schmidt, A.H., Kircher, G. and Willems, M. (2000) General Synthetic Entry to Linearly-Fused Dihydrobenzocyclobutene-1,2-Diones and Benzocyclobutene-1,2-Diones via Annulation of 1,2-Bis(Methylene)Carbocycles with 3-Chloro- 3-Cyclobutene-1,2-Dione1. The Journal of Organic Chemistry, 65, 2379-2385.
https://doi.org/10.1021/jo9915877
[32] Gourve`s, J.P., Ruzziconi, R. and Vilarroig, L. (2001) Oxidative Coupling of O-Silyl and O-Alkyl Enethers:  Application of the Novel Annulation Sequence to the Synthesis of Fluorinated Naphthaldehydes and Naphthyl Ketones. The Journal of Organic Chemistry, 66, 617-619.
https://doi.org/10.1021/jo001006+
[33] Giles, R.G.F., Hughes, A.B. and Sargent, M.V. (1991) Regioselectivity in the Reactions of Methoxydehydrobenzenes with Furans. Part 2. 2-Methoxyfuran and Methoxydehydrobenzenes. Journal of the Chemical Society, Perkin Transactions 1, 6, 1581-1587.
https://doi.org/10.1039/p19910001581
[34] Buttery, J.H. and Wege, D. (1998) Some Transformations of Adducts of 3,6-Dimethoxy-4,5-Methylenedioxy-1,2- Didehydrobenzene and Furans. An Approach to the 5,8-Dimethoxy-6,7-Methylenedioxynaphtho[2,3-c]Furan-4,9- Dione Ring System of Ventilone A. Australian Journal of Chemistry, 51, 409-419.
https://doi.org/10.1071/C97209
[35] Best, W.M. and Wege, D. (1986) Intramolecular Diels-Alder Additions of Benzynes to Furans. Exploratory Studies. Australian Journal of Chemistry, 39, 635-645.
https://doi.org/10.1071/CH9860635
[36] Hoye, T.R., Chen, M., Hoang, B., Mi, L. and Priest, O.P. (1999) Total Synthesis of Michellamines A-C, Korupensamines A-D, and Ancistrobrevine B. The Journal of Organic Chemistry, 64, 7184-7201.
https://doi.org/10.1021/jo9908187
[37] Pascal Jr., R.A., Barnett, L., Qiao, X. and Ho, D.M. (2000) Giant Cyclophanes Built from Polyphenyl Aromatic Substructures. The Journal of Organic Chemistry, 65, 7711-7717.
https://doi.org/10.1021/jo000236l
[38] Yudin, A.K., Martyn, L.J.P., Pandiaraju, S., Zheng, J. and Lough, A. (2000) F8BINOL, An Electronically Perturbed Version of BINOL with Remarkable Configurational Stability. Organic Letters, 2, 41-44.
https://doi.org/10.1021/ol991244v
[39] Chen, C.L. and Martin, S.F. (2004) Facile Synthesis of 2-Substituted 1, 2-Dihydro-1-naphthols and 2-Substituted 1-Naphthols. Organic Letters, 6, 3581-3584.
https://doi.org/10.1021/ol048517t
[40] Ma, Y., Lv, J., Liu, C., Yao, X., Yan, G., Yu, W. and Ye, J. (2019) Electrochemical [4+2] Annulation-Rearrangement- Aromatization of Styrenes: Synthesis of Naphthalene Derivatives. Angewandte Chemie International Edition, 58, 6756-6760.
https://doi.org/10.1002/anie.201902315
[41] Lu, X.L., Yang, B., He, H. and Gao, S. (2021) Synthesis of Polycyclic Naphthols and Naphthalenes via Tandem Ti(Oi-Pr)4-Promoted Photoenolization Diels-Alder Reaction and Aromatization. Organic Chemistry Frontiers, 8, 1143-1148.
https://doi.org/10.1039/D0QO01346C