循环肿瘤细胞检测在临床癌症的应用进展
Advances in Circulating Tumor Cell Assays for Clinical Cancer Applications
DOI: 10.12677/ACM.2023.13122681, PDF, HTML, XML, 下载: 276  浏览: 435 
作者: 张宁伟, 任 宾*:青海大学附属医院肝胆胰外科,青海 西宁
关键词: 循环肿瘤细胞癌症液体活检肿瘤诊断Circulating Tumor Cells Cancer Liquid Biopsy Tumor Diagnosis
摘要: 随着精准医学的发展,液体活检技术开始在临床上广泛应用。循环肿瘤细胞(CTC)是从原发性肿瘤脱离进入外周血液循环的肿瘤细胞,经过一系列迁移、黏附和聚集后形成新的转移。CTC的检测和分析作为一种新型的无创性诊断工具,可以用于协助临床上肿瘤的诊断和治疗效果监测,并且可以预测肿瘤的复发等。本文就CTC的生物学特性、目前临床常用的检测方法以及在不同实体瘤临床中的应用价值展开综述。
Abstract: With the development of precision medicine, liquid biopsy technology is beginning to be widely used in clinical practice. Circulating tumor cells (CTC) are tumor cells detached from primary tu-mors into the peripheral blood circulation, and form new metastases after a series of migration, adhesion, and aggregation. As a novel noninvasive diagnostic tool, the detection and analysis of CTC can be used to assist in the diagnosis of tumors in the clinic and monitoring of the treatment effect, and it can also predict the recurrence of tumors and so on. In this article, we review the biological characteristics of CTC, the current commonly used clinical detection methods, and the application value in different solid tumors.
文章引用:张宁伟, 任宾. 循环肿瘤细胞检测在临床癌症的应用进展[J]. 临床医学进展, 2023, 13(12): 19062-19071. https://doi.org/10.12677/ACM.2023.13122681

1. 背景

在全球范围内,癌症是危害人类健康的最严重的恶性疾病之一 [1] 。相关临床研究表明,大多数患者在确诊时已经进入癌症晚期或者伴有肿瘤转移,无法达到根本治愈,这是癌症患者死亡的主要原因 [2] 。目前临床上常用于诊断癌症的血清肿瘤标记物,如癌胚抗原(CEA) [3] 、甲胎蛋白(AFP) [4] 和癌症抗原-125 (CA-125) [5] 等,因其有时在健康人的血液中意外升高,准确性和有效性并不能令人满意。最具临床相关性的癌症生物标志物仍然是肿瘤组织活检,经过组织学和基因组特征来确定癌症类型及分期 [6] 。然而在肿瘤发展过程中,癌细胞会获得连续的表观遗传改变,引起肿瘤的进化,从而加快增殖速度和侵袭性 [7] 。所以组织活检并不能及时反映肿瘤在发展或转移过程中表现出的动态变化。如今随着精准医学的新兴和发展,液体活检作为一种非侵入性的方法,可以在同一个体中重复取样以检测癌症,并评估治疗反应和/或监测疾病进展。本文就循环肿瘤细胞的生物学特征、检测方法以及在实体肿瘤中的应用进展做出综述。

2. CTC的生物学特征

循环肿瘤细胞(Circulating tumor cells, CTC)是从实体瘤脱落进入血液中的癌细胞,通过循环系统传播到其它器官后形成新的转移灶 [8] 。一般来说,主动进入循环的CTC一般具有上皮–间充质转化(Epithelial-mesenchymal transition, EMT)特性,表现为上皮性肿瘤细胞向成纤维细胞形态的表型变化,伴随着上皮粘附分子(如E-钙粘蛋白)表达的减少和间充质分子(如波形蛋白)表达的增加,从而促进基底膜和细胞外基质的破坏,而非EMT介导的血管侵袭是由外力触发或被动渗透的中心体扩增,同时伴有细胞间粘附的缺失 [9] 。然而,进入循环后的CTC需要经历动态的聚集和分解过程,只有1~2.4 h的半衰期 [9] 。由于缺乏必需的细胞外基质蛋白,在血液循环中悬浮的CTC将诱导程序性细胞死亡过程,称为失巢凋亡 [10] 。最后只有少量CTC可以存活并产生转移,通常数百万个白细胞中约有1个CTC [11] 。

3. CTC的检测方法

由于CTC和血细胞之间的相似性以及自身的异质性,不同类型的CTC在表面生物标志物的表达上存在显著差异 [12] 。因此提高CTC富集和表征技术,对深入了解肿瘤细胞从原发肿瘤中释放、在循环中移动,甚至在疾病发展和治疗过程中在分子水平上的表型变化是非常必要的。

3.1. 基于免疫选择的分离技术

CellSearch®是首个通过美国食品药品监督管理局(FDA)验证且被批准用于CTC计数的检测系统,可用于评估前列腺癌、结直肠癌和转移性乳腺癌患者的预后 [13] 。该系统使用与磁珠结合的上皮细胞粘附分子(EpCAM)抗体,用于对表达EpCAM+上皮细胞的免疫磁性捕获。大多数肿瘤如结直肠癌和肝细胞癌等都起源于上皮细胞,所以CellSearch®系统具有相当高的EpCAM阳性CTC检出率 [14] [15] 。然而,包括EpCAM在内的上皮标志物可能在EMT过程中下调,从而产生异质性表达甚至不表达 [12] 。不过有研究通过使用上皮和间质性癌症标记物以及依赖标记物的检测方法来解决了这一难题。例如,在癌症中使用由靶向EpCAM和N-钙粘蛋白的双抗体界面组成的荧光磁性纳米颗粒(F-MNPs)有助于高效分离和快速鉴定CTC [16] 。流式细胞术(FCM)方便、快速地筛选和分离不同荧光标记的靶向CTC,被认为是检测CTC的重要方法之一 [17] 。Hu等人 [17] 采用免疫磁性颗粒结合抗细胞角蛋白(CK)抗体富集血液中的CTC,继而采用多参数流式细胞术进行分析,其高通量可以检测到更多的CTC,保存肿瘤细胞的完整性并允许进一步表征其分子特征。最近的研究 [18] 基于传统的人字形芯片(HB-Chip)设计,联合四面体DNA框架(TDF)和杂交链式反应(HCR)构建的高效微流体系统,实现了与CTC多价结合并提高了捕获效率,在肿瘤液体活检中具有广阔的应用前景。

3.2. 基于物理特性的分离技术

CTC与血细胞除了存在生物学差异外,在物理特性上也存在显著差异。在相同条件下,五种肿瘤细胞系(MCF-7、Hep3B、HepG2、LNCaP和HeLa)的显微镜下横截面积明显大于正常白细胞面积 [12] ,所以基于CTC尺寸等物理特性的分离技术也逐渐在临床上显露头角。肿瘤细胞大小分离技术(ISET)根据肿瘤细胞的体积而使用过滤技术来分离和鉴定CTC [19] ,通过这种方式同时分离出经历EMT的EpCAMCTC。该技术的另一优点是富集的CTC未被修饰,可以直接进行分子表征分析。根据Warburg效应 [20] ,癌细胞通过糖酵解产生能量的过程中,乳酸盐的不稳定跨膜运动带走了阳离子,从而使癌细胞表面产生区别于正常血细胞的负电荷。所以使用磁性带正电纳米粒子与癌细胞膜相结合,可以分离出不同直径且不依赖细胞膜EpCAM表达的CTC [21] 。不过该方法对粒子–细胞结合的培养介质要求较高,且可能对细胞造成损伤,影响进一步分析。根据微流控芯片技术开发的Parsortix系统,根据细胞大小和变形能力建立特定的微流控通道,允许小尺寸细胞通过,而阻挡CTC等大尺寸细胞,能更有效的分析不同表型的CTC [22] 。Liu等 [23] 将过滤概念纳入了传统的确定性横向置换(DLD)结构,设计的级联DLD微柱阵列芯片,展现出较高的分离效率、细胞纯度和细胞存活率。此外,Sonoda等人 [24] 使用不同尺寸的微滤器以及抗Epcam抗体标记系统来分离循环肿瘤细胞团(CTM, Circulating Tumor Microemboli),结果显示,在使用不同尺寸的过滤器时可有效区分单个CTC和CTM。在此原理基础上,Ning等人 [25] 开发了CTC活检系统,采用过滤膜技术提高了CTM的检出率,弥补了传统分离技术对CTM的检测缺陷。

3.3. 基于生物和物理结合的分离技术

总之,基于免疫选择和物理特性的CTC分离方法各有其优势。前者有更强的选择特异性,但依赖于外源性生物标记,容易影响肿瘤细胞活性;而后者分离效率更高,也更容易产生假阳性结果。因此有研究尝试结合CTC的生物和物理特性进行分离。Chen等 [26] 开发的侧向过滤器阵列微流体技术(LFAM)的芯片,结合了不同尺寸的孔筛原理和修饰了EpCAM抗体的过滤器,使得在高通量的情况下仍可以保持较高的CTC捕获率。Nasiri等 [27] 开发的混合装置由不对称蛇形惯性通道、惯性聚焦通道和磁性细胞分离装置组成,前两者用于快速清除红细胞和大部分白细胞,增加CTC分离效率,而后者将CTC与抗体和纳米颗粒偶联则解决与CTC大小相似白细胞的分离限制,流速为1000 µL/min时,可达到95%的回收率和93%的分离纯度。另外,一些光谱检测技术也在CTC检测中广泛应用。Reza等 [28] 基于表面增强拉曼光谱的微流控装置,可以动态筛选单个CTC和鉴定其表面蛋白的生物标志物的异质表达,进一步阐述肿瘤细胞在蛋白表达水平上的关键信息,促进了在单细胞水平上对癌症异质性的理解。

4. CTC检测在恶性实体肿瘤的临床应用

最新的证据表明,CTC通过循环系统扩散是一种发生在肿瘤增殖早期的生物学行为 [29] ,因此CTC检测不仅可以辅助癌症患者的早期诊断,同时可以帮助其临床治疗指导及预测预后。

4.1. CTC检测在肝细胞癌中的应用

肝细胞癌(Hepatocellular carcinoma, HCC)是全球第六大常见的恶性肿瘤,也是癌症相关死亡的第四大原因 [30] 。虽然癌症早期可以进行手术根治性切除,但晚期发生血管侵犯或转移的患者预后较差,所以早期发现对HCC的治疗具有重要意义。相关研究基于CellSearch系统检测捕获HCC患者血液中的CTC,结果表明,EpCAM+CTC的存在与血管侵犯、AFP显著升高、分期更晚、复发率更高和总生存期更短相关 [31] 。也有研究 [32] 表明CTC检测或许可以作为乙肝或肝硬化患者发展肝癌的早期诊断工具,但需要进一步研究验证。Cui等人 [33] 发现,CTC检测诊断HCC的总敏感性和特异性分别为60%和95%,表明CTC可作为HCC患者诊断的有效指标。不过也有研究表明CTC检测或许不适合独立作为HCC的诊断工具,同时检测CTC和AFP可能会提高HCC患者的诊断准确性 [34] 。Mezaye等人 [35] 构建的HCC-CTC评分可用于丙肝病毒(HCV)相关的HCC早期诊断,并有助于补充AFP阴性HCC患者的诊断信息。

目前对CTC阳性的定义尚未统一标准,但值得肯定的是,检测到的CTC数值越多,患者的预后就越差。此外,HCC患者CTC阳性组较阴性组的预后更差,而且治疗后CTC的持续存在可显著增加HCC复发的风险 [33] 。既往的研究指出,Nanog基因作为转录调节因子在一些癌症干细胞中高表达,在HCC化学耐药性和自我更新中发挥重要作用 [36] 。Lei等人 [37] 通过多种RNA原位杂交技术检测CTC中Nanog+基因的表达,并发现Nanog+CTC高表达与HCC患者术后早期复发和较差的预后相关。最近的研究 [38] 基于CTC的转录组学分析方法构建的HCC-CTC mRNA评分系统,可以有效评估高风险和低风险HCC患者并预测预后,为代替肿瘤组织活检,无创监测疾病状态或评估治疗反应的重复分子表征提供了新思路。

4.2. CTC检测在结直肠癌中的应用

目前临床上结直肠癌(Colorectal cancer, CRC)的诊断主要基于侵入性结肠镜、计算机断层结直肠成像或柔性乙状结肠镜检查等,用于可疑病变的活检,但因其侵入性和较高的并发症风险而未被常规使用 [39] 。因此确定高敏感性和特异性的非侵入性工具,可以帮助其早期检测诊断和治疗监测。既往的研究报道了CTC在结直肠癌中进行早期诊断、预后和治疗监测方面的临床应用 [40] 。Yang等人的研究指出,CRC组织分化程度和解剖位置差异可能会影响CTC计数。肿瘤低分化的患者CTC计数更高,而对于CRC解剖位置的CTC计数,不同研究的结论存在差异 [41] [42] 。叶酸受体阳性CTC分析(FR-CTC)作为一种独立于肿瘤上皮标志物且灵敏度高的CTC检测方法,在相关癌症中显示出良好的诊断效果 [43] [44] 。Yan等人 [42] 利用FR-CTC分析富集CRC患者血液中的CTC,采取不同的截断值不仅展现出较高的诊断效率,而且可以有效区分早晚期CRC患者,为临床采用不同的治疗方式提供了参考依据。

另一方面,有研究利用CTC及其相关的生物标志物评估CRC患者预后。Bidard等人 [45] 的研究发现,可切除肝转移CRC患者基线和随访时的高CTC与较短的OS显著相关。Pan等人 [46] 的一项前瞻性研究结果指出,结肠癌和直肠癌的TNM分期与CTC阳性率呈正相关,且CTC计数与肿瘤的解剖位置和浸润深度有关。由于EMT在肿瘤转移的生物学进展中发挥着重要作用,所以CTC的EMT表型可能影响癌症的预后。相关研究 [47] 发现,与其它亚型相比,间质型CTC的存在与较差的病理状态和肿瘤转移显著相关,且预后明显更差。因此,CTC可能是预测晚期结直肠癌生存预后的有用肿瘤标志物。

4.3. CTC检测在乳腺癌中的应用

乳腺癌(Breast cancer, BC)作为最常见的恶性肿瘤之一,被认为是女性癌症死亡的第二大原因 [48] [49] ,虽然AJCC第8版已将CTC作为BC患者的预后预测因素,但对其诊断价值相关研究正在探索 [50] 。Jin等人 [50] 发现,CTC计数不仅可以区分BC患者、乳房良性疾病和健康患者,同时与癌症的临床病理状态密切相关。较高的CTC计数可能意味着更大的肿瘤直径、较晚的分期和淋巴结转移。该结论在Shao的研究 [51] 中得到证实,同时研究还指出,CTC检测对BC的诊断特异性高于影像学,或许可以作为BC患者的替代筛查手段。Jin等人 [49] 的研究纳入了2014例患者,评估了CTC检测诊断BC的敏感性为69%,特异性为93%,表明CTC检测在BC诊断方面具有较高的临床应用价值。也有研究 [48] 通过标记CK特异性抗体来进一步提高CTC检测的敏感性和特异性,可以作为BC患者不同疾病阶段的独立检测标志物,但对早期BC患者诊断能力尚有欠缺。

癌症指南中已表明CTC可作为BC患者的预后因素,预测患者的生存结局,即CTC计数越多,PFS和OS就越短 [50] 。但癌症发展过程中存在肿瘤细胞活化的潜在变化,可以通过CTC检测分析对BC患者进行纵向治疗反应的实时监测以及早期发现肿瘤复发 [52] [53] 。研究发现 [54] ,基线和治疗期间持续CTC阳性的BC患者PFS和OS均降低,治疗后CTC计数下降的患者发生疾病进展的几率较小。而在辅助放疗过程中CTC计数的增加与肿瘤局部复发或远处转移的风险增加密切相关 [52] [53] ,表明CTC计数或许可以作为评估治疗效果的标准,较高的CTC计数意味着预后更差。另外,原发肿瘤或转移部位的HER2状态匹配程度可达到67%或77%,提示研究CTC HER2表达或许可以指导临床HER2靶向治疗 [55] 。Wang等人 [56] 的研究对肿瘤组织HER2阴性而CTC上HER2 (cHER2)阳性表达的患者进行抗HER2靶向治疗。结果显示,高危cHER2患者治疗后PFS得到明显改善。Deutsch等人 [57] 检查了264名转移性乳腺癌患者在接受新的姑息性全身治疗4周前后的CTC状态。研究结果显示,HER2靶向治疗似乎可降低转移性乳腺癌患者的总体CTC计数。

4.4. CTC检测在肺癌中的应用

肺癌作为全球癌症相关死亡的主要原因,Ia期的5年生存率为85%,而IV期仅有6% [58] 。如今随着液体活检的发展,对提高肺癌患者的早期诊断和个性化治疗提供了新的参考 [59] 。Li等人 [43] 的研究纳入354例肺结节患者进行CTC检测的诊断价值评估。结果显示,术前进行CTC检测能有效区分单发肺结节的良恶性,但对多发肺结节的鉴别能力有限。Duan [60] 等人还发现,CTC检测在早期肺癌的诊断敏感性和特异性为53%和90%,表明CTC可以作为肺癌早期诊断的生物标志物。不过Marquette等人的 [61] 一项多中心队列研究指出,ISET分离CTC的灵敏度较低,对预测肺癌或肺外癌的发展能力有限,使得CTC检测在NSCLC患者筛查的实用性受到质疑。

手术是早期非小细胞肺癌(NSCLC)患者的首选治疗方法,但其较高的术后复发率和死亡率仍不可避免,所以有必要采取更敏感的预后因素来改善风险分层 [62] 。相关研究发现,癌症早期的进展往往伴随着血液中的CTC计数增加,术后CTC计数的增加也与癌症早期复发密切相关 [62] 。最近的研究 [63] 发现,即使采用不同的检测方法,CTC阳性都可能是NSCLC患者术后复发风险增加的危险因素,并且与较差的OS和DFS相关。另外,CTC计数也可用于监测NSCLC患者治疗反应,识别治疗获益更大的患者,从而早期发现复发或进展。Frick等 [64] 的研究发现,早期NSCLC患者较高的基线CTC (≥5个)和接受立体定向放疗(SBRT)后CTC持续阳性与局部复发和远处转移密切相关。Pailler等人 [65] 的研究发现,单细胞水平的CTC测序可以作为间变性淋巴瘤激酶(ALK)重排的NSCLC患者耐药的评估工具,为临床发现肿瘤异质性和化疗耐药提供了新的指导。

4.5. CTC检测在其它恶性肿瘤诊断中的应用

CTC检测在临床癌症中应用广泛,但检测方法尚未完全成熟,所以目前主要应用于有恶性肿瘤高风险的个体筛查诊断。相关研究发现,CTC检测可作为区分胰腺癌(pancreatic cancer, PC)和胰腺良性疾病的有效手段 [44] [66] 。当CA19-9呈现假阳性或假阴性结果时,CTC可以作为区分胰腺肿瘤与胰腺良性疾病的替代选择 [66] 。然而,CTC检测单独作为PC的诊断价值可能不如CA19-9,二者联合的诊断效率高于两种标志物单独使用 [44] 。Cheng等人 [67] 的研究结果发现,CTC检测可帮助区分早期胃癌(EGC)与良性疾病患者,促进了EGC的早期诊断,并对胃癌前病变患者提前进行干预治疗提供了理论依据。Yang等人 [68] 一项前瞻性研究结果表明,CTC检测诊断前列腺癌(CaP)的敏感性和特异性均高于前列腺特异性抗原(PSA),即使在4~10 ng/mL的低PSA水平,CTC联合PSA诊断CaP的曲线下面积也高于FDA批准的FPSA/TPSA。这些研究表明了CTC在临床相关癌症的早期发现和诊断的潜力,为临床个体化精准医疗提供了新的指导工具。

此外,相关研究也验证了CTC检测在广泛预测肿瘤预后的临床价值。Wang等人 [69] 发现,与CTC阴性的PDAC患者相比,CTC阳性组患者PFS和OS明显降低。同时术前较高的CTC计数或术后CTC计数增加可能代表术前存在尚未检测到的转移性疾病 [70] 。Li等人 [71] 研究指出,CTC阳性率与胃癌患者较短的OS和PFS相关。与CTC阴性患者相比,CTC阳性患者TNM分期更晚,肿瘤分化较差,且更易发生远处转移。一般来说,CTM检测通常提示预后不良,不同疾病阶段的GC患者CTM检出率不同,可能有助于提高临床分期的准确性 [25] 。也有研究 [72] 对卵巢癌患者进行CTC检测并行Fish染色发现,除CTC计数外,间充质CTC百分比 ≥ 0.3的卵巢癌患者复发率较<0.1的患者高2.1倍。Di等人 [73] 也发现,无论采用何种治疗方式,高CTC计数都可能是mCRPC患者预后不良的危险因素。因此,将CTC检测与癌症患者病理状态相结合,持续动态监测CTC水平,对分析患者治疗效果和预后评价提供了重要工具。

5. 结论与展望

CTC通常是从原发病灶脱落并进入外周血的肿瘤细胞,有可能形成新的转移灶。CTC的检测分析作为新型的“液体活检”技术,丰富了肿瘤的临床、遗传和生物学信息,对癌症的诊断、预后和治疗具有重要意义。目前,CTC分离检测技术尚未完全成熟,CTC计数单独作为临床恶性肿瘤的诊断和预后预测因子仍有不足之处,联合血清肿瘤标志物及影像学检查对实体肿瘤进行临床诊治是未来进一步探索的方向。此外,针对各种CTC检测方法的快速发展,建立严格的标准化质量控制体系,有助于实现不同方法之间的对比分析,从而使分析结果更加全面和准确,促进CTC分析在临床诊断中的应用。另一个研究方向是根据CTC不同的分子表型进行单细胞基因组学和转录组学等功能分析,以便获取更准确的肿瘤信息,发现肿瘤的动态变化,为癌症的复发、转移和耐药机制研究提供更准确的依据和指导。

利益冲突声明

所有作者均声明不存在利益冲突。

作者贡献声明

张宁伟负责资料分析、撰写论文;任宾负责拟定写作思路,指导撰写文章并最后定稿。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Klein, C.A. (2020) Cancer Progression and the Invisible Phase of Meta-static Colonization. Nature Reviews Cancer, 20, 681-694.
https://doi.org/10.1038/s41568-020-00300-6
[3] Lakemeyer, L., Sander, S., Wittau, M., et al. (2021) Diagnostic and Prognostic Value of CEA and CA19-9 in Colorectal Cancer. Diseases, 9, Article No. 21.
https://doi.org/10.3390/diseases9010021
[4] Luo, P., Wu, S., Yu, Y., et al. (2020) Current Status and Perspective Biomarkers in AFP Negative HCC: Towards Screening for and Diagnosing Hepatocellular Carcinoma at an Earlier Stage. Pathology and Oncology Research, 26, 599-603.
https://doi.org/10.1007/s12253-019-00585-5
[5] Zhang, M., Cheng, S., Jin, Y., et al. (2021) Roles of CA125 in Diagnosis, Prediction, and Oncogenesis of Ovarian Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1875, Article ID: 188503.
https://doi.org/10.1016/j.bbcan.2021.188503
[6] O’Shea, A.S. (2022) Clinical Staging of Ovarian Cancer. Meth-ods in Molecular Biology, 2424, 3-10.
https://doi.org/10.1007/978-1-0716-1956-8_1
[7] Li, C., Holman, J.B., Shi, Z., et al. (2023) On-Chip Modeling of Tumor Evolution: Advances, Challenges and Opportunities. Materials Today Bio, 21, Article ID: 100724.
https://doi.org/10.1016/j.mtbio.2023.100724
[8] Shen, C., Rawal, S., Brown, R., et al. (2023) Automatic Detec-tion of Circulating Tumor Cells and Cancer Associated Fibroblasts Using Deep Learning. Scientific Reports, 13, Article No. 5708.
https://doi.org/10.1038/s41598-023-32955-0
[9] Shaik, M.R., Sagar, P.R., Shaik, N.A., et al. (2023) Liquid Bi-opsy in Hepatocellular Carcinoma: The Significance of Circulating Tumor Cells in Diagnosis, Prognosis, and Treatment Monitoring. International Journal of Molecular Sciences, 24, Article No. 10644.
https://doi.org/10.3390/ijms241310644
[10] Han, H.J., Sung, J.Y., Kim, S.H., et al. (2021) Fibronectin Regulates Anoikis Resistance via Cell Aggregate Formation. Cancer Letters, 508, 59-72.
https://doi.org/10.1016/j.canlet.2021.03.011
[11] Alemzadeh, E., Allahqoli, L., Dehghan, H., et al. (2023) Circulat-ing Tumor Cells and Circulating Tumor DNA in Breast Cancer Diagnosis and Monitoring. Oncology Research, 31, 667-675.
https://doi.org/10.32604/or.2023.028406
[12] Ju, S., Chen, C., Zhang, J., et al. (2022) Detection of Cir-culating Tumor Cells: Opportunities and Challenges. Biomarker Research, 10, Article No. 58.
https://doi.org/10.1186/s40364-022-00403-2
[13] Rushton, A.J., Nteliopoulos, G., Shaw, J.A., et al. (2021) A Re-view of Circulating Tumour Cell Enrichment Technologies. Cancers (Basel), 13, Article No. 970.
https://doi.org/10.3390/cancers13050970
[14] Marcuello, M., Vymetalkova, V., Neves, R.P.L., et al. (2019) Cir-culating Biomarkers for Early Detection and Clinical Management of Colorectal Cancer. Molecular Aspects of Medicine, 69, 107-122.
https://doi.org/10.1016/j.mam.2019.06.002
[15] Xia, W., Li, H., Li, Y., et al. (2021) In Vivo Coinstantaneous Iden-tification of Hepatocellular Carcinoma Circulating Tumor Cells by Dual-Targeting Magnetic-Fluorescent Nanobeads. Nano Letters, 21, 634-641.
https://doi.org/10.1021/acs.nanolett.0c04180
[16] Wang, Z., Sun, N., Liu, H., et al. (2019) High-Efficiency Isola-tion and Rapid Identification of Heterogeneous Circulating Tumor Cells (CTCs) Using Dual-Antibody-Modified Fluo-rescent-Magnetic Nanoparticles. ACS Applied Materials & Interfaces, 11, 39586-39593.
https://doi.org/10.1021/acsami.9b14051
[17] Hu, L., Chen, X., Chen, M., et al. (2021) Enrichment and Detection of Circulating Tumor Cells by Immunomagnetic Beads and Flow Cytometry. Biotechnology Letters, 43, 25-34.
https://doi.org/10.1007/s10529-020-03007-8
[18] Wang, C., Xu, Y., Li, S., et al. (2022) Designer Tetrahedral DNA Framework-Based Microfluidic Technology for Multivalent Capture and Release of Circulating Tumor Cells. Ma-terials Today Bio, 16, Article ID: 100346.
https://doi.org/10.1016/j.mtbio.2022.100346
[19] Tamminga, M., Andree, K.C., Hiltermann, T.J.N., et al. (2020) Detection of Circulating Tumor Cells in the Diagnostic Leukapheresis Product of Non-Small-Cell Lung Cancer Patients Comparing CellSearch® and ISET. Cancers (Basel), 12, Article No. 896.
https://doi.org/10.3390/cancers12040896
[20] Deng, Z., Wu, S., Wang, Y., et al. (2022) Circulating Tumor Cell Isolation for Cancer Diagnosis and Prognosis. EBioMedicine, 83, Article ID: 104237.
https://doi.org/10.1016/j.ebiom.2022.104237
[21] Wu, S., Gu, L., Qin, J., et al. (2020) Rapid Label-Free Isolation of Circulating Tumor Cells from Patients’ Peripheral Blood Using Electrically Charged FeO Nanoparticles. ACS Applied Materials & Interfaces, 12, 4193-4203.
https://doi.org/10.1021/acsami.9b16385
[22] Acheampong, E., Abed, A., Morici, M., et al. (2022) Evaluation of PD-L1 Expression on Circulating Tumour Cells in Small-Cell Lung Cancer. Translational Lung Cancer Research, 11, 440-451.
https://doi.org/10.21037/tlcr-21-819
[23] Liu, Z., Huang, Y., Liang, W., et al. (2021) Cascaded Filter De-terministic Lateral Displacement Microchips for Isolation and Molecular Analysis of Circulating Tumor Cells and Fusion Cells. Lab on a Chip, 21, 2881-2891.
https://doi.org/10.1039/D1LC00360G
[24] Sonoda, T., Yanagitani, N., Suga, K., et al. (2020) A Novel System to Detect Circulating Tumor Cells Using Two Different Size-Selective Microfilters. Anticancer Research, 40, 5577-5582.
https://doi.org/10.21873/anticanres.14570
[25] Ning, D., Cui, K., Liu, M., et al. (2021) Comparison of Cell Search and Circulating Tumor Cells (CTC)-Biopsy Systems in Detecting Peripheral Blood Circulating Tumor Cells in Patients with Gastric Cancer. Medical Science Monitor, 27, e926565.
https://doi.org/10.12659/MSM.926565
[26] Chen, K., Dopico, P., Varillas, J., et al. (2019) Integration of Lateral Filter Arrays with Immunoaffinity for Circulating-Tumor-Cell Isolation. Angewandte Chemie International Edition in English, 58, 7606-7610.
https://doi.org/10.1002/anie.201901412
[27] Nasiri, R., Shamloo, A. and Akbari, J. (2021) Design of a Hybrid In-ertial and Magnetophoretic Microfluidic Device for CTCs Separation from Blood. Micromachines (Basel), 12, Article No. 877.
https://doi.org/10.3390/mi12080877
[28] Reza, K.K., Dey, S., Wuethrich, A., et al. (2021) In Situ Single Cell Proteomics Reveals Circulating Tumor Cell Heterogeneity during Treatment. ACS Nano, 15, 11231-11243.
https://doi.org/10.1021/acsnano.0c10008
[29] Nikanjam, M., Kato, S. and Kurzrock, R. (2022) Liquid Biopsy: Current Technology and Clinical Applications. Journal of Hematology & Oncology, 15, Article No. 131.
https://doi.org/10.1186/s13045-022-01351-y
[30] Rashed, W.M., Kandeil, M.A.M., Mahmoud, M.O., et al. (2020) Hepatocellular Carcinoma (HCC) in Egypt: A Comprehensive Overview. Journal of the Egyptian National Cancer Insti-tute, 32, Article No. 5.
https://doi.org/10.1186/s43046-020-0016-x
[31] Ahn, J.C., Teng, P.C., Chen, P.J., et al. (2021) Detection of Cir-culating Tumor Cells and Their Implications as a Biomarker for Diagnosis, Prognostication, and Therapeutic Monitoring in Hepatocellular Carcinoma. Hepatology, 73, 422-436.
https://doi.org/10.1002/hep.31165
[32] Qi, L.N., Xiang, B.D., Wu, F.X., et al. (2018) Circulating Tumor Cells Undergoing EMT Provide a Metric for Diagnosis and Prognosis of Patients with Hepatocellular Carcinoma. Cancer Re-search, 78, 4731-4744.
https://doi.org/10.1158/0008-5472.CAN-17-2459
[33] Cui, K., Ou, Y., Shen, Y., et al. (2020) Clinical Value of Circulating Tumor Cells for the Diagnosis and Prognosis of Hepatocellular Carcinoma (HCC): A Systematic Review and Meta-Analysis. Medicine (Baltimore), 99, e22242.
https://doi.org/10.1097/MD.0000000000022242
[34] Chen, V.L., Xu, D., Wicha, M.S., et al. (2020) Utility of Liquid Biopsy Analysis in Detection of Hepatocellular Carcinoma, Determination of Prognosis, and Disease Monitoring: A Systematic Review. Clinical Gastroenterology and Hepatology, 18, 2879-2902.e9.
https://doi.org/10.1016/j.cgh.2020.04.019
[35] El-Mezayen, H.A., El-Kassas, M., El-Taweel, F.M., et al. (2022) Diagnostic Performance of Circulating Tumor Cells for Predicting of Hepatocellular Carcinoma in Hepatitis C Vi-rus-High Risk Patients: Role of Liquid Biopsy. Asian Pacific Journal of Cancer Prevention, 23, 2541-2549.
https://doi.org/10.31557/APJCP.2022.23.7.2541
[36] Cao, J., Zhao, M., Liu, J., et al. (2019) RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics, 9, 811-828.
https://doi.org/10.7150/thno.29271
[37] Lei, Y., Wang, X., Sun, H., et al. (2021) Association of Preoperative NANOG-Positive Circulating Tumor Cell Levels with Recurrence of Hepatocellular Carcinoma. Frontiers in Oncology, 11, Article ID: 601668.
https://doi.org/10.3389/fonc.2021.601668
[38] Lee, Y.T., Sun, N., Kim, M., et al. (2022) Circulating Tumor Cell-Based Messenger RNA Scoring System for Prognostication of Hepatocellular Carcinoma: Translating Tissue-Based Messenger RNA Profiling Into a Noninvasive Setting. Liver Transplantation, 28, 200-214.
https://doi.org/10.1002/lt.26337
[39] Raza, A., Khan, A.Q., Inchakalody, V.P., et al. (2022) Dynamic Liquid Bi-opsy Components as Predictive and Prognostic Biomarkers in Colorectal Cancer. Journal of Experimental & Clinical Cancer Research, 41, Article No. 99.
https://doi.org/10.1186/s13046-022-02318-0
[40] Mirza, S., Bhadresha, K., Mughal, M.J., et al. (2023) Liquid Bi-opsy Approaches and Immunotherapy in Colorectal Cancer for Precision Medicine: Are We There Yet. Frontiers in On-cology, 12, Article ID: 1023565.
https://doi.org/10.3389/fonc.2022.1023565
[41] Yang, C., Zhuang, W., Hu, Y., et al. (2018) Clinical Significance of Peripheral Circulating Tumor Cell Counts in Colorectal Polyps and Non-Metastatic Colorectal Cancer. World Journal of Surgical Oncology, 16, Article No. 13.
https://doi.org/10.1186/s12957-017-1305-2
[42] Yan, S., Guo, W., Liu, Y., et al. (2022) The Role of Folate Re-ceptor-Positive Circulating Tumor Cell Analysis in the Diagnosis of Colorectal Cancer: A Retrospective Cohort Study. International Journal of Clinical Oncology, 27, 538-544.
https://doi.org/10.1007/s10147-021-02097-2
[43] Li, Z., Cai, J., Zhao, Y., et al. (2022) Folate Receptor-Positive Circulating Tumor Cells in the Preoperative Diagnosis of Inde-terminate Pulmonary Nodules. Journal of Clinical Laboratory Analysis, 36, e24654.
https://doi.org/10.1002/jcla.24654
[44] Cheng, H., He, W., Yang, J., et al. (2020) Ligand-Targeted Polymerase Chain Reaction for the Detection of Folate Receptor-Positive Circulating Tumour Cells as a Potential Diagnostic Bi-omarker for Pancreatic Cancer. Cell Proliferation, 53, e12880.
https://doi.org/10.1111/cpr.12880
[45] Bidard, F.C., Kiavue, N., Ychou, M., et al. (2019) Circulating Tumor Cells and Circulating Tumor DNA Detection in Potentially Re-sectable Metastatic Colorectal Cancer: A Prospective Ancillary Study to the Unicancer Prodige-14 Trial. Cells, 8, Article No. 516.
https://doi.org/10.3390/cells8060516
[46] Pan, R.J., Hong, H.J., Sun, J., et al. (2021) Detection and Clinical Value of Circulating Tumor Cells as an Assisted Prognostic Marker in Colorectal Cancer Patients. Cancer Man-agement and Research, 13, 4567-4578.
https://doi.org/10.2147/CMAR.S300554
[47] Zhong, Y., Ma, T., Qiao, T., et al. (2021) Role of Phenotypes of Circulating Tumor Cells in the Diagnosis and Treatment of Colorectal Cancer. Cancer Management and Research, 13, 7077-7085.
https://doi.org/10.2147/CMAR.S316544
[48] Karimi, N., Oloomi, M. and Orafa, Z. (2020) Circulating Tumor Cells Detection in Patients with Early Breast Cancer Using MACS Immunomagnetic Flow Cytometry. Avicenna Journal of Medical Biotechnology, 12, 148-156.
[49] Jin, T., Chen, Y., Chen, Q.Y., et al. (2023) Circulating Tumor Cells in Pe-ripheral Blood as a Diagnostic Biomarker of Breast Cancer: A Meta-Analysis. Frontiers in Oncology, 13, Article ID: 1103146.
https://doi.org/10.3389/fonc.2023.1103146
[50] Jin, L., Zhao, W., Zhang, J., et al. (2020) Evaluation of the Diag-nostic Value of Circulating Tumor Cells with CytoSorter® CTC Capture System in Patients with Breast Cancer. Cancer Medicine, 9, 1638-1647.
https://doi.org/10.1002/cam4.2825
[51] Shao, X., Jin, X., Chen, Z., et al. (2022) A Comprehensive Comparison of Circulating Tumor Cells and Breast Imaging Modalities as Screening Tools for Breast Cancer in Chinese Women. Fron-tiers in Oncology, 12, Article ID: 890248.
https://doi.org/10.3389/fonc.2022.890248
[52] Mäurer, M., Pachmann, K., Wendt, T., et al. (2021) Prospective Monitoring of Circulating Epithelial Tumor Cells (CETC) Reveals Changes in Gene Expression during Adjuvant Radio-therapy of Breast Cancer Patients. Current Oncology, 28, 3507-3524.
https://doi.org/10.3390/curroncol28050302
[53] Mäurer, M., Schott, D., Pizon, M., et al. (2022) Increased Circu-lating Epithelial Tumor Cells (CETC/CTC) over the Course of Adjuvant Radiotherapy Is a Predictor of Less Favorable Outcome in Patients with Early-Stage Breast Cancer. Current Oncology, 30, 261-273.
https://doi.org/10.3390/curroncol30010021
[54] Lisencu, L.A., Trancă, S., Bonci, E.A., et al. (2022) The Role of Circulating Tumor Cells in the Prognosis of Metastatic Triple-Negative Breast Cancers: A Systematic Review of the Lit-erature. Biomedicines, 10, Article No. 769.
https://doi.org/10.3390/biomedicines10040769
[55] Stefanovic, S., Deutsch, T.M., Riethdorf, S., et al. (2020) The Lack of Evidence for an Association between Cancer Biomarker Conversion Patterns and CTC-Status in Patients with Metastatic Breast Cancer. International Journal of Molecular Sciences, 21, Article No. 2161.
https://doi.org/10.3390/ijms21062161
[56] Wang, C., Mu, Z., Ye, Z., et al. (2020) Prognostic Value of HER2 Sta-tus on Circulating Tumor Cells in Advanced-Stage Breast Cancer Patients with HER2-Negative Tumors. Breast Cancer Research and Treatment, 181, 679-689.
https://doi.org/10.1007/s10549-020-05662-x
[57] Deutsch, T.M., Riethdorf, S., Fremd, C., et al. (2020) HER2-Targeted Therapy Influences CTC Status in Metastatic Breast Cancer. Breast Cancer Research and Treatment, 182, 127-136.
https://doi.org/10.1007/s10549-020-05687-2
[58] Liang, W., Chen, Z., Li, C., et al. (2021) Accurate Diagnosis of Pulmonary Nodules Using a Noninvasive DNA Methylation Test. Journal of Clinical Investigation, 131, e145973.
https://doi.org/10.1172/JCI145973
[59] Xu, C., Xu, X., Shao, W., et al. (2023) CTCs Detection and Whole-Exome Sequencing Might Be Used to Differentiate Benign and Malignant Pulmonary Nodules. Chinese Journal of Lung Cancer, 26, 449-460.
[60] Duan, G.C., Zhang, X.P., Wang, H.E., et al. (2020) Circulating Tumor Cells as a Screening and Diagnostic Marker for Early-Stage Non-Small Cell Lung Cancer. OncoTargets and Therapy, 13, 1931-1939.
https://doi.org/10.2147/OTT.S241956
[61] Marquette, C.H., Boutros, J., Benzaquen, J., et al. (2020) Circulating Tumour Cells as a Potential Biomarker for Lung Cancer Screening: A Prospective Cohort Study. The Lancet Respiratory Medicine, 8, 709-716.
[62] Wu, C.Y., Lee, C.L., Wu, C.F., et al. (2020) Circulating Tumor Cells as a Tool of Minimal Residual Disease Can Predict Lung Cancer Recurrence: A Longitudinal, Prospective Trial. Diagnostics (Basel), 10, Arti-cle No. 144.
https://doi.org/10.3390/diagnostics10030144
[63] Wankhede, D., Grover, S. and Hofman, P. (2022) Circulating Tumor Cells as a Predictive Biomarker in Resectable Lung Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel), 14, Article No. 6112.
https://doi.org/10.3390/cancers14246112
[64] Frick, M.A., Feigenberg, S.J., Jean-Baptiste, S.R., et al. (2020) Cir-culating Tumor Cells Are Associated with Recurrent Disease in Patients with Early-Stage Non-Small Cell Lung Cancer Treated with Stereotactic Body Radiotherapy. Clinical Cancer Research, 26, 2372-2380.
https://doi.org/10.1158/1078-0432.CCR-19-2158
[65] Pailler, E., Faugeroux, V., Oulhen, M., et al. (2019) Ac-quired Resistance Mutations to ALK Inhibitors Identified by Single Circulating Tumor Cell Sequencing in ALK-Rearranged Non-Small-Cell Lung Cancer. Clinical Cancer Research, 25, 6671-6682.
https://doi.org/10.1158/1078-0432.CCR-19-1176
[66] Chen, J., Wang, H., Zhou, L., et al. (2022) A Combination of Circulating Tumor Cells and CA199 Improves the Diagnosis of Pancreatic Cancer. Journal of Clinical Laboratory Analysis, 36, e24341.
https://doi.org/10.1002/jcla.24341
[67] Cheng, R., Peng, Y., Sun, X., et al. (2023) Circulat-ing Tumor Cells as Diagnostic Markers of Early Gastric Cancer and Gastric Precancerous Lesions. Oncology, 101, 512-519.
https://doi.org/10.1159/000531323
[68] Yang, Z., Bai, H., Hu, L., et al. (2022) Improving the Diagnosis of Prostate Cancer by Telomerase-Positive Circulating Tumor Cells: A Prospective Pilot Study. EClinicalMedicine, 43, Article ID: 101161.
https://doi.org/10.1016/j.eclinm.2021.101161
[69] Wang, Y., Yu, X., Hartmann, D., et al. (2020) Circulating Tu-mor Cells in Peripheral Blood of Pancreatic Cancer Patients and Their Prognostic Role: A Systematic Review and Me-ta-Analysis. HPB (Oxford), 22, 660-669.
https://doi.org/10.1016/j.hpb.2019.11.003
[70] Zhang, Y., Wang, F., Ning, N., et al. (2015) Patterns of Circulating Tumor Cells Identified by CEP8, CK and CD45 in Pancreatic Cancer. International Journal of Cancer, 136, 1228-1233.
https://doi.org/10.1002/ijc.29070
[71] Li, Z., Song, M., Han, S., et al. (2022) The Prognostic Role of Circulating Tumor Cells in Gastric Cancer: A Meta-Analysis. Frontiers in Oncology, 12, Article ID: 963091.
https://doi.org/10.3389/fonc.2022.963091
[72] Yang, J., Ma, J., Jin, Y., et al. (2021) Development and Validation for Prognostic Nomogram of Epithelial Ovarian Cancer Recurrence Based on Circulating Tumor Cells and Epitheli-al-Mesenchymal Transition. Scientific Reports, 11, Article No. 6540.
https://doi.org/10.1038/s41598-021-86122-4
[73] Di Lorenzo, G., Zappavigna, S., Crocetto, F., et al. (2021) As-sessment of Total, PTEN, and AR-V7 Circulating Tumor Cell Count by Flow Cytometry in Patients with Metastatic Cas-tration-Resistant Prostate Cancer Receiving Enzalutamide. Clinical Genitourinary Cancer, 19, e286-e298.
https://doi.org/10.1016/j.clgc.2021.03.021