辅助生殖技术子代围产期及远期健康风险
Perinatal and Long-Term Health Risks of Offspring with Assisted Reproductive Technology
DOI: 10.12677/ACM.2023.13112577, PDF, HTML, XML, 下载: 179  浏览: 225 
作者: 吴佳欣*:青海大学医学院,青海 西宁;曾湘晖#:青海省人民医院生殖中心,青海 西宁
关键词: 辅助生殖技术体外受精子代健康Assisted Reproductive Technology In Vitro Fertilization Health of Offspring
摘要: 随着ART治疗不孕症的运用,人们对ART技术和子代健康更加关注,也是近年来生殖医学重点研究的内容。近期的研究表明辅助生殖技术是相对安全的,ART子代和自然妊娠子代的健康状况相似;然而当前研究多集中于ART子代围产期结局,对其成年后的远期影响的研究较少,故对近年来相关文献进行分析,对ART子代围产期结局和远期健康风险的研究进行综述。
Abstract: With the application of ART in the treatment of infertility, people are paying more attention to ART technology and offspring health, which has also been a key research topic in reproductive medicine in recent years. Recent studies have shown that assisted reproductive technology is relatively safe, and the health status of ART offspring and natural pregnancy offspring is similar; however, current research mainly focuses on the perinatal outcomes of ART offspring, and there is little research on their long-term impact in adulthood. Therefore, an analysis of relevant literature in recent years is conducted to review the research on the perinatal outcomes and long-term health risks of ART off-spring.
文章引用:吴佳欣, 曾湘晖. 辅助生殖技术子代围产期及远期健康风险[J]. 临床医学进展, 2023, 13(11): 18353-18358. https://doi.org/10.12677/ACM.2023.13112577

1. 引言

辅助生殖技术(Assisted reproductive technologies, ART)指采用医疗辅助手段(促排卵药物、经阴道取卵、体外授精等)将人类配子早期发育转移至体外进行,再将胚胎移植到子宫里继续发育,使不育夫妇成功妊娠的技术。主要包括体外受精–胚胎移植(IVF-ET)技术,卵质内单精子注射–胚胎移植技术(ICSI-ET)、冻融胚胎移植技术(FET)、未成熟卵母细胞体外成熟(IVM)等,随着ART治疗不孕症的运用、发展以及更多的儿童出生,人们对ART技术和子代健康更加关注。本文就ART子代围产期和远期健康风险的研究进行综述。

2. ART子代围产期不良结局

2.1. 早产与出生体重

据研究报道,ART技术可增加了子代的早产和低出生体重风险。Hoorsan等人通过30项主要针对ART儿童和自然受孕(SC)的儿童进行meta分析,表明ART受孕的婴儿早产(胎龄 < 37周)和低出生体重的风险明显增加 [1] ,而且多数研究认为早产、低出生体重与ART后多胎妊娠相关,但随着单胚胎移植的普及化,研究发现,IVF/ICSI单胎妊娠也增加早产、低出生体重的几率 [2] ,综合来看,ART可能增加了子代早产和低出生体重的风险,除此之外,高龄妊娠和吸烟等也是导致早产的危险因素 [3] 。而冷冻或解冻胚胎移植可能会降低早产及低出生体重的风险,可能与其更接近于自然妊娠中的激素水平和避免了雌二醇和VEGF水平升高对胎盘造成潜在不良影响 [4] [5] 。另外,不孕症本身似乎也是低出生体重儿童的风险之一。未来的研究不仅应该根据年龄,还要根据不孕患者相关妇产科病史以及其他内外科合并症去匹配患者,以减少数据中的混杂因素。

2.2. 出生缺陷

关于ART婴儿的出生缺陷风险一直存在许多争议,已经有大型的meta分析表明,与SC相比,单胎和接受多次ART治疗的子代出生缺陷风险增加了30%~40% [6] [7] 。澳大利亚的一项研究比较了出生缺陷的发生率,IVF婴儿和ICSI婴儿的出生缺陷率分别为8.6%和9.0%,约是SC婴儿出生缺陷率的2倍。其中包括301名ICSI妊娠婴儿、837名IVF妊娠婴儿和4000名SC婴儿的心血管、肌肉骨骼和泌尿生殖系统出生缺陷 [8] 。但随后的澳大利亚对308,974例分娩(包括6163例辅助受孕)研究表明,在控制父母相关混杂因素后,IVF与出生缺陷的相关性消失,但ICSI与出生缺陷之间仍然存在关联。在这项研究中父母因素也被发现是出生缺陷的一个危险因素,包括母亲年龄、合并疾病、怀孕期间吸烟等。另外有研究表明 [9] ,即使没有ART治疗,不孕症也是增加出生缺陷的独立危险因素 [10] ,因此,关于ART是否增加了出生缺陷的风险,或者不孕症诊断本身是出生缺陷的危险因素,一直存在着相互矛盾的证据。

3. ART子代远期健康风险

3.1. 神经发育

大脑的发育可能受到胚胎激素和物理环境的影响,多数学者进行了体外受精与神经发育障碍之间的研究。通过对ART后出生的2岁儿童与SC同龄儿童的认知、运动和语言发展间的比较,在调整混杂因素后,发现两组之间没有差异 [11] [12] 。脑瘫(CP)是一种重要的神经发育障碍,一项大样本数据的队列研究,其中ART儿童(n = 5680)和SC儿童(n = 11,360),发现研究人群中ART儿童的双胎妊娠、低出生体重和早产可能是CP发病率较高的原因 [13] 。在一项专门针对ART早产儿的研究中,ART和SC早产儿之间的CP发生率相似,同样另一项回顾性病例对照研究也表明,15个月大的ICSI妊娠儿童发生神经发育迟缓的风险没有增加 [14] [15] 。这相互矛盾的数据表明,需要更多的研究去确定ART与脑瘫之间是否真的存在关联。自闭症和自闭症谱系障碍(ASD)也是现在研究的热点,美国疾病控制中心报告称,从2002年到2010年,ASD的发病率增加了123%,2014年的发病率为1/68 [16] 。有研究表明ICSI与自闭症有关,例如一项回顾性队列研究调查1997~2006年在加州出生ART儿童(n = 42,383),研究表明,与传统的IVF相比,ICSI儿童在出生后5年内自闭症的发病率更高,而当父母有不明原因的不孕(单胎)或输卵管因素不孕(多胎)时,与其他类型的不孕因素相比,自闭症发病率更低 [17] 。不孕症本身就可能导致后代神经发育障碍的发展,而高龄父亲的精子DNA甲基化的改变也与其相关。

3.2. 心血管功能和代谢

如前所述,与SC儿童相比,ART儿童在出生时更易患有LBW,有研究报道这些LBW婴儿在晚年发生代谢异常的风险增加 [18] [19] [20] 。关于ART后代的心血管和代谢风险的文献多数是在meta分析中总结的,研究发现ART后出生的儿童心脏代谢风险,主要包括葡萄糖代谢改变、血压升高和心脏舒张功能不佳 [21] [22] [23] [24] 。此外,还有研究发现,ART后出生的儿童其体脂组成发生了改变 [25] [26] 。一项对1984年至2015年期间在丹麦、芬兰、挪威和瑞典出生单胎的队列研究显示,调整混杂因素后,ART治疗和SC治疗后出生的儿童发生心血管疾病或2型糖尿病的风险相似,ART治疗后出生的儿童中发生肥胖的风险略有增加 [27] 。另外一项关于1型糖尿病的研究显示,ART治疗后与SC治疗出生的儿童患1型糖尿病的风险相似,但FET后出生的儿童中1型糖尿病发病率较高,其机制可能与FET后出生体重率较高相关 [28] [29] ,也有其他meta分析显示,ART儿童和SC儿童的体重指数(BMI)、低密度脂蛋白、胆固醇和空腹胰岛素水平也不存在差异。现在大多数ART儿童处于出生后的头30年,其长期发病率和死亡率的数据有限,但有限的数据表明ART儿童出现血压升高和代谢状况的风险可能会增加,使进一步监测这些疾病变得非常重要。

3.3. 恶性肿瘤

儿童发生癌症的情况较罕见,关于ART治疗是否会增加儿童癌症的风险,依然是人们所关注的话题,大多数早期的研究表明,ART与癌症风险的增加无关。一项来自四个北欧国家的大型队列研究,包括91,796名ART儿童(单胎与多胎)和358,419名SC儿童,得出ART儿童总体没有增加癌症发病率 [30] 。但另外一项美国的大型队列研究中,通过对275,686名体外受精儿童和2,266,847名SC儿童随访4.5和4.7年发现,儿童癌症的总体发病率没有增加,但ART儿童中肝癌和胚胎性肿瘤的发病率有所增加 [31] 。最近一项基于北欧登记的大型队列研究显示,没有发现ART治疗后出生的儿童患儿童癌症的总体风险增加 [32] 。然而观察到FET后出生儿童患癌风险高于鲜胚移植,其机制尚不清楚,但我们已知FET单胎的出生体重增加,而这可能与儿童癌症的高风险有关。总而言之,尽管一些研究显示某些癌症类型的风险增加,但多数研究显示ART治疗后出生的儿童整体患癌风险没有增加。

3.4. 生殖功能

2016年来自布鲁塞尔的研究人员发表了第一个关于ART治疗后代生殖结果的研究,对54名因父亲严重不育通过ICSI出生青年男性的研究中发现,与SC出生青年男性相比,ICSI组的精子浓度和低精子总数低于平均水平,此外,在父亲和儿子的精子总数之间可能存在负相关 [33] ,关于澳大利亚维多利亚州的一项队列研究显示,接受IVF/ICSI治疗的男性和未接受ART治疗的男性之间,其严重少精子症患病率没有差异,且IVF/ICSI组的精子浓度、总精子数和总运动计数与对照组相似 [34] ,总之,目前发表的关于ART治疗后代生殖健康的有限数据表明,ICSI雄性后代的精子数量可能低于正常水平。

4. 总结与讨论

鉴于目前进行的ART助孕子代短期及长期结果的相关研究,表明ART是一种相对安全的治疗不孕症的方法,能为许多不孕症患者带来一个健康的孩子,但ART治疗的同时也伴随着风险,因此临床医生和研究人员有责任对试管婴儿进行长期随访研究。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Hoorsan, H., Mirmiran, P., Chaichian, S., et al. (2017) Congenital Malformations in Infants of Mothers Undergoing As-sisted Reproductive Technologies: A Systematic Review and Meta-Analysis Study. Journal of Preventive Medicine and Public Health, 50, 347-360.
https://doi.org/10.3961/jpmph.16.122
[2] Qin, J.B., Sheng, X.Q., Wu, D., et al. (2017) Worldwide Prevalence of Adverse Pregnancy Outcomes among Singleton Pregnancies after in Vitro Fertiliza-tion/Intracytoplasmic Sperm Injection: A Systematic Review and Meta-Analysis. Archives of Gynecology and Obstetrics, 295, 285-301.
https://doi.org/10.1007/s00404-016-4250-3
[3] Basso, O. and Baird, D.D. (2003) Infertility and Preterm Delivery, Birthweight, and Caesarean Section: A Study within the Danish National Birth Cohort. Human Re-production, 18, 2478-2484.
https://doi.org/10.1093/humrep/deg444
[4] Wennerholm, U.B., Henningsen, A.K.A., Romundstad, L.B., et al. (2013) Perinatal Outcomes of Children Born after Frozen-Thawed Embryo Transfer: A Nordic Cohort Study from the CoNARTaS Group. Human Reproduction, 28, 2545-2553.
https://doi.org/10.1093/humrep/det272
[5] Zhao, J., Xu, B., Zhang, Q. and Li, Y.P. (2016) Which One Has a Bet-ter Obstetric and Perinatal Outcome in Singleton Pregnancy, IVF/ICSI or FET? A Systematic Review and Meta-Analysis. Reproductive Biology and Endocrinology, 14, Article No. 51.
https://doi.org/10.1186/s12958-016-0188-3
[6] Hansen, M. and Bower, C. (2014) The Impact of Assisted Re-productive Technologies on Intra-Uterine Growth and Birth Defects in Singletons. Seminars in Fetal and Neonatal Med-icine, 19, 228-233.
https://doi.org/10.1016/j.siny.2014.03.002
[7] Hansen, M., Kurinczuk, J.J., Milne, E., et al. (2013) Assisted Re-productive Technology and Birth Defects: A Systematic Review and Meta-Analysis. Human Reproduction Update, 19, 330-353.
https://doi.org/10.1093/humupd/dmt006
[8] Hansen, M., Kurinczuk, J.J., Bower, C. and Webb, S. (2002) The Risk of Major Birth Defects after Intracytoplasmic Sperm Injection and in Vitro Fertilization. The New England Journal of Medicine, 346, 725-730.
https://doi.org/10.1056/NEJMoa010035
[9] Davies, M.J., Moore, V.M., Willson, K.J., et al. (2012) Reproductive Technologies and the Risk of Birth Defects. The New England Journal of Medicine, 366, 1803-1813.
https://doi.org/10.1056/NEJMoa1008095
[10] Levi Setti, P.E., Moioli, M., Smeraldi, A., et al. (2016) Obstetric Outcome and Incidence of Congenital Anomalies in 2351 IVF/ICSI Babies. Journal of Assisted Reproduction and Ge-netics, 33, 711-717.
https://doi.org/10.1007/s10815-016-0714-4
[11] Bay, B., Mortensen, E.L. and Kesmodel, U.S. (2013) Assisted Reproduction and Child Neurodevelopmental Outcomes: A Systematic Review. Fertility and Sterility, 100, 844-853.
https://doi.org/10.1016/j.fertnstert.2013.05.034
[12] Hart, R. and Norman, R.J. (2013) The Longer-Term Health Outcomes for Children Born as a Result of IVF Treatment. Part II—Mental Health and Development Outcomes. Human Reproduction Update, 19, 244-250.
https://doi.org/10.1093/humupd/dmt002
[13] Strömberg, B., Dahlquist, G., Ericson, A., et al. (2002) Neurological Sequelae in Children Born after in-Vitro Fertilisation: A Population-Based Study. The Lancet, 359, 461-465.
https://doi.org/10.1016/S0140-6736(02)07674-2
[14] Ramoğlu, M., Kavuncuoğlu, S., Aldemir, E., Yarar, C. and Eras, Z. (2016) Neurodevelopment of Preterm Infants Born after in Vitro Fertilization and Spontaneous Multiple Preg-nancy. Pediatrics International, 58, 1284-1290.
https://doi.org/10.1111/ped.13012
[15] Sutcliffe, A.G., Saunders, K., McLachlan, R., et al. (2003) A Retrospective Case-Control Study of Developmental and Other Outcomes in a Cohort of Australian Children Conceived by Intracyto-plasmic Sperm Injection Compared with a Similar Group in the United Kingdom. Fertility and Sterility, 79, 512-516.
https://doi.org/10.1016/S0015-0282(02)04701-5
[16] Christensen, D.L., et al. (2016) Prevalence and Characteris-tics of Autism Spectrum Disorder among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. Surveillance Summaries, 65, 1-23.
https://doi.org/10.15585/mmwr.ss6503a1
[17] Kissin, D.M., Zhang, Y., Boulet, S.L., et al. (2015) Association of Assisted Reproductive Technology (ART) Treatment and Parental Infertility Diagnosis with Autism in ART-Conceived Children. Human Reproduction, 30, 454-465.
https://doi.org/10.1093/humrep/deu338
[18] Jaquet, D., Gaboriau, A., Czernichow, P., et al. (2000) Insulin Re-sistance Early in Adulthood in Subjects Born with Intrauterine Growth Retardation. The Journal of Clinical Endocrinol-ogy & Metabolism, 85, 1401-1406.
https://doi.org/10.1210/jc.85.4.1401
[19] Arends, N.J.T., Boonstra, V.H., Duivenvoorden, H.J., et al. (2005) Re-duced Insulin Sensitivity and the Presence of Cardiovascular Risk Factors in Short Prepubertal Children Born Small for Gestational Age (SGA). Clinical Endocrinology, 62, 44-50.
https://doi.org/10.1111/j.1365-2265.2004.02171.x
[20] Ravelli, G.P., Stein, Z.A. and Susser, M.W. (1976) Obesity in Young Men after Famine Exposure in Utero and Early Infancy. The New England Journal of Medicine, 295, 349-353.
https://doi.org/10.1056/NEJM197608122950701
[21] Ceelen, M., van Weissenbruch, M.M., Vermeiden, J.P.W., et al. (2008) Cardiometabolic Differences in Children Born after in Vitro Fertilization: Follow-Up Study. The Journal of Clinical Endocrinology & Metabolism, 93, 1682-1688.
https://doi.org/10.1210/jc.2007-2432
[22] Chen, M., Wu, L., Zhao, J., et al. (2014) Altered Glucose Metabolism in Mouse and Humans Conceived by IVF. Diabetes, 63, 3189-3198.
https://doi.org/10.2337/db14-0103
[23] Sakka, S.D., Loutradis, D., Kanaka-Gantenbein, C., et al. (2010) Absence of Insulin Resistance and Low-Grade Inflammation Despite Early Metabolic Syndrome Manifestations in Children Born after in Vitro Fertilization. Fertility and Sterility, 94, 1693-1699.
https://doi.org/10.1016/j.fertnstert.2009.09.049
[24] Zhou, J., Liu, H., Gu, H., et al. (2014) Association of Cardiac Development with Assisted Reproductive Technology in Childhood: A Prospective Single-Blind Pilot Study. Cellular Physiology and Biochemistry, 34, 988-1000.
https://doi.org/10.1159/000366315
[25] Ceelen, M., van Weissenbruch, M.M., Roos, J.C., et al. (2007) Body Composition in Children and Adolescents Born after in Vitro Fertilization or Spontaneous Conception. The Journal of Clinical Endocrinology & Metabolism, 92, 3417-3423.
https://doi.org/10.1210/jc.2006-2896
[26] Belva, F., Painter, R., Bonduelle, M., et al. (2012) Are ICSI Adolescents at Risk for Increased Adiposity? Human Reproduction, 27, 257-264.
https://doi.org/10.1093/humrep/der375
[27] Norrman, E., Petzold, M., Gissler, M., et al. (2021) Cardio-vascular Disease, Obesity, and Type 2 Diabetes in Children Born after Assisted Reproductive Technology: A Popula-tion-Based Cohort Study. PLOS Medicine, 18, e1003723.
https://doi.org/10.1371/journal.pmed.1003723
[28] Norrman, E., Petzold, M., Clausen, T.D., et al. (2020) Type 1 Diabetes in Children Born after Assisted Reproductive Technology: A Register-Based National Cohort Study. Human Reproduction, 35, 221-231.
https://doi.org/10.1093/humrep/dez227
[29] Magnusson, Å., Laivuori, H., Loft, A., et al. (2021) The Association between High Birth Weight and Long-Term Outcomes—Implications for Assisted Reproductive Technologies: A Sys-tematic Review and Meta-Analysis. Frontiers in Pediatrics, 9, Article 675775.
https://doi.org/10.3389/fped.2021.675775
[30] Sundh, K.J., Henningsen, A.K.A., Källen, K., et al. (2014) Cancer in Children and Young Adults Born after Assisted Reproductive Technology: A Nordic Cohort Study from the Commit-tee of Nordic ART and Safety (CoNARTaS). Human Reproduction, 29, 2050-2057.
https://doi.org/10.1093/humrep/deu143
[31] Spector, L.G., Brown, M.B., Wantman, E., et al. (2019) Association of in Vitro Fertilization with Childhood Cancer in the United States. JAMA Pediatrics, 173, e190392-e190392.
https://doi.org/10.1001/jamapediatrics.2019.0392
[32] Sargisian, N., Lannering, B., Petzold, M., et al. (2022) Can-cer in Children Born after Frozen-Thawed Embryo Transfer: A Cohort Study. PLOS Medicine, 19, e1004078.
https://doi.org/10.1371/journal.pmed.1004078
[33] Belva, F., Bonduelle, M., Roelants, M., et al. (2016) Semen Quality of Young Adult ICSI Offspring: The First Results. Human Reproduction, 31, 2811-2820.
https://doi.org/10.1093/humrep/dew245
[34] Catford, S.R., Halliday, J., Lewis, S., et al. (2022) Reproductive Function in Men Conceived with in Vitro Fertilization and Intracytoplasmic Sperm Injection. Fertility and Sterility, 117, 727-737.
https://doi.org/10.1016/j.fertnstert.2021.12.026