阴道微生物与HPV持续感染的相关研究进展
Research Progress on the Relationship between Vaginal Microbiota and Persistent HPV Infection
DOI: 10.12677/ACM.2023.13102340, PDF, HTML, XML, 下载: 188  浏览: 346  科研立项经费支持
作者: 朱昱哲, 王梦媛, 张 颖:西安医学院研究生工作部,陕西 西安;陈丽宏*, 李 玢:陕西省人民医院妇科,陕西 西安
关键词: 阴道微生物人乳头瘤病毒感染乳杆菌Vaginal Microbiota Human Papillomavirus Infection Lactobacillus
摘要: 阴道微生物群在女性生殖道的健康中起着关键作用,阴道微生物群失调可引起多种生殖道疾病。宫颈癌是常见的女性恶性肿瘤,持续人乳头瘤病毒感染(HPV)是导致宫颈上皮内瘤变和宫颈癌的高危因素。不同研究表明,阴道微生物多样性增加,乳杆菌丰度降低与HPV持续感染可能起协同作用。这为疾病的治疗提供了新的思路,深入研究阴道微生物在HPV持续感染中的作用机制,有助于个体化诊疗的发展。
Abstract: The vaginal microbiota plays a crucial role in the health of the female reproductive tract, and vagi-nal microbiota disorders can cause various reproductive tract diseases. Cervical cancer is a common malignant tumor in women, and persistent human papillomavirus infection (HPV) is a high-risk factor for cervical intraepithelial neoplasia and cervical cancer. Different studies have shown that an increase in vaginal microbial diversity, a decrease in lactobacillus abundance, and sustained HPV infection may have a synergistic effect. This provides new ideas for the treatment of diseases, and in-depth research on the mechanism of vaginal microbiota in persistent HPV infection is helpful for the development of personalized diagnosis and treatment.
文章引用:朱昱哲, 王梦媛, 张颖, 陈丽宏, 李玢. 阴道微生物与HPV持续感染的相关研究进展[J]. 临床医学进展, 2023, 13(10): 16723-16730. https://doi.org/10.12677/ACM.2023.13102340

1. 引言

人乳头瘤病毒(human papilloma virus, HPV)感染是最常见的性传播疾病,据相关统计,超过80%的性活跃期女性一生中至少感染过一次HPV,超过90%的感染是短暂的,在6~18个月会被免疫系统消除 [1] 。在少数女性中,病毒的持续感染对宫颈上皮内瘤变(cervical intraepithelial neoplasis, CIN)或宫颈癌的发展产生重要影响 [2] 。然而,持续性感染的原因和进展为宫颈癌的原因仍知之甚少。因此,揭示HPV持续感染的形成机制是诊治宫颈癌前病变和宫颈癌的关键部分。有新的证据表明,阴道微生物在病毒持续感染和后续宫颈病变的发生、进展中发挥着重要的作用 [3] ,但具体机制尚不清楚,现就阴道微生物与HPV持续感染相关性的研究进展予以综述。

2. 阴道微生物群概述

阴道微生态是一个动态平衡系统,包括阴道内解剖结构、阴道微生物群、宿主内分泌系统以及阴道局部免疫系统等,它的稳定是女性生殖道抵御病原体入侵的重要防线,而阴道微生态是以阴道微生物群为中心,它们在体内外环境中相互协调、相互适应、共同保持阴道微生态平衡的过程。

2.1. 阴道微生物群正常组成与分布

相比于人体其他解剖部位丰富多样化的微生物群落,阴道虽然是一个具有开放性生理特征的结构,但维护女性生殖道健康的细菌群落多样性较低,主要以乳杆菌为主 [4] ,以卷曲乳杆菌,加氏乳杆菌,惰性乳杆菌和詹氏乳杆菌这四类占主要地位 [5] 。这些乳杆菌通过产生乳酸来创造酸性环境(pH < 4.5),分泌细菌素、过氧化氢等抗菌物质来抑制病原微生物定植生长以及激活免疫系统等维持阴道微环境的稳态,发挥关键性保护作用 [6] 。Ravel及其同事的一项开创性研究发现,通过16s rRNA测序技术对396名不同种族的育龄期女性的阴道样本进行分析,可以将阴道微生物群落分为5大类主要群落状态类型(Community state types, CSTs),群落分布的变化在不同种族的女性中尤为显著。CSTs I、II、III和V分别以卷曲乳杆菌、加氏乳杆菌、惰性乳杆菌和詹氏乳杆菌为优势菌,群落物种多样性较低,主要分布在白人与亚洲人。健康黑人和西班牙裔的阴道pH值比白人和亚洲人更高,以缺乏乳杆菌的CST IV型更为常见,群落物种多样性较强,其中富含与细菌性阴道病(bacterial vaginosis, BV)密切相关的厌氧菌种,包括加德纳菌属、阿托伯菌属等 [7] 。Di Paola等人进一步将CST IV型分为CST IV-AV和CST IV-BV型,并发现CST IV型是HPV持续感染最具代表性的群落 [8] 。

2.2. 影响阴道微生物群组成的因素

阴道菌群的组成受许多内源性和外源性因素的影响,种族是目前已知的重要内在因素 [7] ,世界各地健康女性的阴道微生物群存在显著差异,但其所在地区的种族不同可以解释这一现象 [9] 。性激素对阴道微生物群的改变也有巨大的影响,已有研究证明阴道菌群的波动性和稳定性与月经周期中雌、孕激素的周期性分泌有关,雌激素刺激阴道上皮产生分泌大量糖原,促进乳杆菌生长,然后糖原被发酵降解产生乳酸,因此,在雌激素达到高峰时阴道菌群最稳定 [10] [11] 。已知的其他环境因素包括吸烟和性生活史 [12] 。而使用激素类避孕药对阴道菌群的影响还存在争议,一项研究发现,使用左炔诺孕酮宫内缓释系统(LNG-IUS)的女性,阴道微生物种更加多样化 [11] ,但这种改变是放置后暂时出现的,在1~5年后会恢复放置前水平 [13] 。一项纵向研究发现使用复方口服避孕药(COC)的白人女性,更有可能获得稳定的以乳杆菌为主的阴道微生物群,但还需要更大规模的前瞻性试验来验证COC对其他种族女性阴道微生物群的影响 [14] 。

3. 阴道微生物群类和HPV感染的关系

阴道微生态平衡的关键是以乳杆菌为主导的阴道微生物群,同时也是抵御HPV等性传播感染的第一道防线,微生物组成的改变可能与HPV的感染和持续状态密切相关。2020年的一项研究纳入了健康(n = 68)、感染HPV (n = 78)、出现低级别鳞状上皮内病变(n = 51)、出现高级别鳞状上皮内病变并被诊断为宫颈癌(n = 9)的女性,从受试者收集的阴道拭子的16S核糖体RNA测序分析表明,HPV持续感染增加了阴道微生物的丰富性和多样性 [15] 。

Bortman等 [16] 的研究表明,阴道菌群高度多样化、乳酸杆菌缺乏(CST IV型)的女性更易受到HPV持续感染,并且其HPV基因分型长期呈阳性,还提出以加氏乳杆菌为主的CST II型可能与急性HPV感染的快速清除有关。Yichan Zhang等 [17] 发现HPV感染者的阴道微生物多样性明显高于健康人群,其中CST III型和CST IV-BV型的比例增加,并发现缺乏以加氏乳杆菌为主的CST II型,这提示与其他国家女性相比,中国女性清除HPV感染的能力可能较弱,同之前的研究一致,加氏乳杆菌可能是维持宫颈健康的潜在保护因素。证明某些微生物群可能会增加女性获得短暂性和持续性HPV感染的机会,但要探究宿主、微生物群与癌变的复杂关系,还缺乏更多的纵向研究来帮助,如果可以建立因果关系,操纵阴道菌群从致病性转变为保护性,将开辟新的临床治疗策略。

4. 阴道微生物物种与HPV感染的关系

近年来大量研究表明,HPV持续感染和清除与一些特定菌种有关。乳酸菌通过产生乳酸、过氧化氢、细菌素及生物表面活性物质等维护正常的阴道微环境,抵抗外来病原体的入侵。相比于HPV阴性者,HPV感染者阴道内加德纳菌、沙眼衣原体、解脲支原体、梭形杆菌等物种增多,表明这些特定物种与HPV感染有关,相关物种在HPV持续感染过程中的作用机制需要进一步探讨研究。

4.1. 乳杆菌与HPV的关系

4.1.1. 阴道pH、乳酸与过氧化氢

乳杆菌主要通过分解糖原产生乳酸,将阴道pH维持在3.8~4.5,防止机会性病原体定植并保持低浓度的短链脂肪酸(SCFA)。有研究发现,从围绝经期开始阴道pH值随着年龄增长而升高,HPV持续感染的风险同样呈上升 [18] 。以乳酸菌为主的阴道菌群中,由于乳酸浓度较高,SCFA维持在较低水平,而阴道SCFA增加伴随乳酸减少是微生态失调的标志 [19] 。Sabirina等人对细菌培养物的上清液进行的SCFAs分析图谱显示乳杆菌产生的促炎乙酸量极低 [20] ,反之有研究发现,它产生了更高的具有抗炎活性的丁酸和戊酸。乳酸在阴道内以D-乳酸和L-乳酸这两种同分异构体形式存在,体外实验发现,D-乳酸可以下调MMP-8,抑制细胞外基质分解,从而阻止外来病原体入侵 [19] 。还有研究发现,其混合物可诱导抗炎细胞因子IL-1RA,同时抑制促炎细胞因子IL-6、IL-8、TNF-a、RANTES及MIP-3α [21] 。乳杆菌产生的乳酸以及由此维护的pH值也促进了阴道上皮屏障的完整性,抑制了其他厌氧菌和病原体的定植。

4.1.2. 细菌素与生物表面活性物质

除了乳酸外,还可以通过乳杆菌分泌的细菌素竞争性抑制病原体定植。细菌素是由细菌合成的一种多肽,通常具有狭窄的活性谱,仅抑制与其密切相关物种的菌株。他们具有细胞毒性和刺激细胞裂解引起的抗肿瘤特性。有研究发现,一种细菌素抑制了BV相关的病原体生长 [22] 。除了细菌素外,人们开始关注一些乳杆菌产生的生物表面活剂(BS),BS可以改变表面张力,具有抗粘附、防止生物膜形成和抗菌作用 [23] ,Foschi等人研究发现,从卷曲乳杆菌BC1中分离的BS能够在短暂的接触中杀死淋病奈瑟菌 [24] 。生物膜形成有利于HPV持续存在,上述细菌素和BS也可能阻断病毒浸润 [25] 。目前尚不能确定其与HPV持续感染的相关机制,仍需要进一步的基础研究来了解。

4.2. 加德纳菌与HPV的关系

加德纳菌被反复发现与HPV持续感染相关 [26] ,以加德纳菌为代表的厌氧菌增多是导致育龄期妇女发生BV的主要原因。阴道加德纳菌常见于CST IV型,存在于部分健康黑人女性和西班牙裔女性中 [7] 。大量研究表明BV是HPV持续感染的独立危险因素 [27] 。一项横向研究表明,HPV感染患者中加德纳菌的含量更高 [28] 。在一项对青春期女孩初潮前阴道微生物群的前瞻性研究中发现,虽然乳杆菌占据主导地位,但加德纳菌在阴道菌群数量中位于第四 [29] ,这个研究表明它可以存在于健康的青春期女孩阴道微生物群中,众所周知,未发育成熟的青少年宫颈比起老年女性宫颈,更容易受到HPV感染,这与宫颈鳞状上皮转化率成正相关 [10] ,因此,合理地推断,阴道内加德纳菌的水平升高,在此期间可能提高HPV的易感性。加德纳菌对HPV持续感染的致病机制需要更进一步深入研究。

4.3. 沙眼衣原体、解脲支原体与HPV的关系

沙眼衣原体、解脲支原体是女性感染率最高的两种生殖道病原体。一些学者认为,沙眼衣原体与HPV之间存在互惠互利的关系,一方面,沙眼衣原体激活Ras-Raf-MEK-ERK致癌途径,并产生ROS,抵抗细胞凋亡,降低感染细胞中p53抑癌基因的表达,甚至促进宿主DNA损伤,导致基因组的不稳定,增加突变频率,还可能通过减少抗原提呈细胞的数量和减少细胞介导的免疫导致HPV逃避免疫反应,帮助HPV进入宫颈上皮基底层的宿主细胞,从而导致HPV持续感染 [30] ;另一方面,HPV破坏黏膜免疫屏障,促进沙眼衣原体的传播和定植 [31] 。

2016年,Drago等人提出解脲支原体感染可能是引起HPV持续感染导致宫颈病变的催化剂 [32] ,并在5年后的一项研究中证实了这一观点 [33] ,近年来,有研究同样发现解脲支原体感染是HPV持续感染的高危因素 [34] ,并且不同亚型间的HPV感染率存在明显差异,其中的致病机制和相关性还有待进一步基础研究 [35] 。因此,临床中,在对女性进行宫颈癌筛查的同时应注意下生殖道感染的筛查,还可以通过对高危人群检测这类病原体,并给予对症治疗,降低疾病发生风险。

4.4. 梭形杆菌(Sneathia)与HPV的关系

Sneathia是一种与不良生殖和围产期结局有关的新型病原体。它属于革兰氏阴性厌氧杆菌,包括两个物种(羊膜链球菌和血红链球菌)。Sneathia常出现在患有BV的女性阴道中 [36] 。几项研究表明,在HPV持续感染及宫颈病变的女性阴道内均富含Sneathia [19] [37] [38] [39] ,提示它可能是HPV持续存在和宫颈病变发展的特异微生物标志物。已有研究证实它的丰度与E6/E7mRNA的产生呈正相关 [40] ,有研究发现,Sneathia通过粘附在宫颈上皮表面,产生和释放细胞毒素CptA,导致粘附部位的上皮细胞膜出现穿孔,引起局部细胞膜损伤,发挥细胞毒作用 [41] ,这可能导致HPV持续感染,相关机制尚需进一步研究来证实。

5. 阴道微生物治疗

一项meta分析提示阴道微生态失调与HPV持续感染之间存在因果关系 [27] 。特定菌群增加、乳杆菌数降低在HPV持续感染中发挥重要作用,因此补充阴道乳杆菌、调节阴道微生物平衡可能是去除HPV持续感染和宫颈病变的辅助治疗手段。口服乳杆菌和阴道给药有望预防和治愈BV和外阴阴道念珠菌病(VVC) [42] 。一项研究表明,长期口服脆弱杆菌M247的患者HPV清除率高于随访组(60.5% vs 41.3%) [43] 。最近Pino等人通过一项体内研究证实,鼠李糖杆菌可以恢复BV患者正常阴道微生物群 [44] 。

另有体外实验表明,卷曲乳杆菌和詹氏乳杆菌产生的上清液处理Caski细胞,发现可以抑制细胞增殖,下调HPV E6/E7癌基因、CDK2的表达,并上调P21,起到抗肿瘤作用 [45] ,这可能提供了一种新的治疗方法,还需要进一步的研究来证实其在人体内的有效性。还有研究发现,加氏乳杆菌和卷曲乳杆菌均显著抑制SiHa细胞中的E6/E7mRNA的产生,提示其除了预防HPV感染之外,还可能控制病毒复制和基因整合 [46] 。一项前瞻性队列研究同样证实卷曲乳杆菌可降低HPV持续感染的发生率 [47] 。同前所述,加氏乳杆菌与HPV感染的快速清除有关 [17] ,且已证明该细菌对正常宫颈细胞无细胞毒作用且不依赖酸性环境 [48] ,这表明其作用机制更为复杂。目前,对阴道细菌已有较深入了解,在此基础上,还应进一步明确阴道微生物对HPV持续感染的作用机制,研发新的益生菌制剂及治疗药物,重建稳定健康的阴道微生态系统来解决病毒持续感染。

6. 小结

阴道微生物组在女性阴道中HPV的获得和持续性中发挥重要作用,这还需要进一步的纵向研究来证明。HPV感染者与健康女性的阴道微生物组成存在差异,乳杆菌缺乏、多种厌氧菌增加的阴道微环境可能会导致HPV感染与持续状态及宫颈病变的发生。因此,恢复阴道微生物平衡可能是预防和消除HPV感染、防止宫颈病变产生和进展的有效治疗手段。寻找潜在微生物标志物将有助于临床对高危患者进行尽早筛查,未来可能用作评估HPV感染进展的预测因子,以达到个体化治疗的目的。如果证实一种菌群在HPV持续感染及后续宫颈病变的发展相关,可以通过检测这类菌群,识别高危人群,通过治疗降低致病菌的数量,减少疾病发生。

基金项目

陕西省自然科学基础研究计划(项目编号:2023-JC-YB-655);陕西省重点研发计划(2022ZDLSF02-06)。

NOTES

*通讯作者。

参考文献

[1] Elfgren, K., Kalantari, M., Moberger, B., et al. (2000) A Population-Based Five-Year Follow-Up Study of Cervical Hu-man Papillomavirus Infection. American Journal of Obstetrics and Gynecology, 183, 561-567.
https://doi.org/10.1067/mob.2000.106749
[2] Choi, S., Ismail, A., Pappas-Gogos, G., et al. (2023) HPV and Cervical Cancer: A Review of Epidemiology and Screening Uptake in the UK. Pathogens, Pathogens, 12, Article 298.
https://doi.org/10.3390/pathogens12020298
[3] Kyrgiou, M. and Moscicki, A.-B. (2022) Vaginal Microbiome and Cervical Cancer. Seminars in Cancer Biology, 86, 189-198.
https://doi.org/10.1016/j.semcancer.2022.03.005
[4] Witkin, S.S. and Linhares, I.M. (2023) The Medium Is the Message: Defining a “Normal” Vaginal Microbiome in Healthy Reproductive-Age Women. Reproductive Sciences, 30, 722-727.
https://doi.org/10.1007/s43032-022-01067-x
[5] Saraf, V.S., Sheikh, S.A., Ahmad, A., et al. (2021) Vaginal Microbiome: Normalcy vs Dysbiosis. Archives of Microbiology, 203, 3793-3802.
https://doi.org/10.1007/s00203-021-02414-3
[6] Yang, X., Da, M., Zhang, W., et al. (2018) Role of Lactobacillus in Cervical Cancer. Cancer Management and Research, 10, 1219-1229.
https://doi.org/10.2147/CMAR.S165228
[7] Ravel, J., Gajer, P., Abdo, Z., et al. (2011) Vaginal Microbiome of Reproductive-Age Women. Biological Sciences, 108, 4680-4687.
https://doi.org/10.1073/pnas.1002611107
[8] Di Paola, M., Sani, C., Clemente, A.M., et al. (2017) Characterization of Cervico-Vaginal Microbiota in Women Developing Persistent High-Risk Human Papillomavirus Infection. Scientific Reports, 7, Article No. 10200.
https://doi.org/10.1038/s41598-017-09842-6
[9] Chopra, C., Bhushan, I., et al. (2022) Vaginal Microbiome: Considerations for Reproductive Health. Future Microbiology, 17.
https://doi.org/10.2217/fmb-2022-0112
[10] Trifanescu, O.G., Trifanescu, R.A., Mitrica, R.I., et al. (2023) The Female Reproductive Tract Microbiome and Cancerogenesis: A Review Story of Bacteria, Hormones, and Disease. Di-agnostics, 13, Article 877.
https://doi.org/10.3390/diagnostics13050877
[11] Song, S.D., Acharya, K.D., Zhu, J.E., et al. (2020) Daily Vagi-nal Microbiota Fluctuations Associated with Natural Hormonal Cycle, Contraceptives, Diet, and Exercise. mSphere, 5, e00593.
https://doi.org/10.1128/mSphere.00593-20
[12] Chee, W.J.Y., Chew, S.Y. and Than, L.T.L. (2020) Vagi-nal Microbiota and the Potential of Lactobacillus Derivatives in Maintaining Vaginal Health. Microbial Cell Factories, 19, Article No. 203.
https://doi.org/10.1186/s12934-020-01464-4
[13] Donders, G.G.G., Bellen, G., Ruban, K., et al. (2018) Short- and Long-Term Influence of the Levonorgestrel-Releasing Intrauterine System (Mirena®) on Vaginal Microbiota and Can-dida. Journal of Medical Microbiology, 67, 308-313.
https://doi.org/10.1099/jmm.0.000657
[14] Tuddenham, S., Gajer, P., Burke, A.E., et al. (2023) Lactobacil-lus-Dominance and Rapid Stabilization of Vaginal Microbiota in Combined oral Contraceptive Pill Users Examined through a Longitudinal Cohort Study with Frequent Vaginal Sampling over Two Years. EBioMedicine, 87, Article 104407.
https://doi.org/10.1016/j.ebiom.2022.104407
[15] Chen, Y., Qiu, X., Wang, W., et al. (2020) Human Pap-illomavirus Infection and Cervical Intraepithelial Neoplasia Progression Are Associated with Increased Vaginal Micro-biome Diversity in a Chinese Cohort. BMC Infectious Diseases, 20, Article No. 629.
https://doi.org/10.1186/s12879-020-05324-9
[16] Brotman, R.M., Shardell, M.D., Gajer, P., et al. (2014) Interplay between the Temporal Dynamics of the Vaginal Microbiota and Human Papillomavirus Detection. The Journal of Infec-tious Diseases, 210, 1723-1733.
https://doi.org/10.1093/infdis/jiu330
[17] Zhang, Y., Xu, X., Yu, L., et al. (2022) Vaginal Microbiota Changes Caused by HPV Infection in Chinese Women. Frontiers in Cellular and Infection Microbiology, 12, Article 814668.
https://doi.org/10.3389/fcimb.2022.814668
[18] Teng, P. and Hao, M. (2020) A Population-Based Study of Age-Related Associations between Vaginal pH and the Development of Cervical Intraepithelial Neoplasia. Cancer Medi-cine, 9, 1890-1902.
https://doi.org/10.1002/cam4.2845
[19] Wei, W., Xie, L.-Z., Xia, Q., et al. (2022) The Role of Vaginal Microecol-ogy in the Cervical Cancer. The Journal of Obstetrics and Gynaecology Research, 48, 2237-2254.
https://doi.org/10.1111/jog.15359
[20] Nicolò, S., Tanturli, M., Mattiuz, G., et al. (2021) Vaginal Lactobacilli and Vaginal Dysbiosis-Associated Bacteria Differently Affect Cervical Epithelial and Immune Homeostasis and Anti-Viral Defenses. International Journal of Molecular Sciences, 22, Article 6487.
https://doi.org/10.3390/ijms22126487
[21] Zhu, B., Tao, Z., Edupuganti, L., et al. (2022) Roles of the Microbiota of the Female Reproductive Tract in Gynecological and Reproductive Health. Microbiology and Molecular Biology Re-views, 86, e0018121.
https://doi.org/10.1128/mmbr.00181-21
[22] Maldonado-Barragán, A., Caballero-Guerrero, B., Martín, V., et al. (2016) Purification and Genetic Characterization of Gassericin E, a Novel Co-Culture Inducible Bacteriocin from Lacto-bacillus gasseri EV1461 Isolated from the Vagina of a Healthy Woman. BMC Microbiology, 16, Article No. 37.
https://doi.org/10.1186/s12866-016-0663-1
[23] Perez, R.H., Zendo, T. and Sonomoto, K. (2022) Multiple Bacte-riocin Production in Lactic Acid Bacteria. Journal of Bioscience and Bioengineering, 134, 277-287.
https://doi.org/10.1016/j.jbiosc.2022.07.007
[24] Das, S. and Konwar, B.K. (2023) Prophylactic Application of Vaginal Lactic Acid Bacteria against Urogenital Pathogens and Its Prospective Use in Sanitary Suppositories. Interna-tional Microbiology.
https://doi.org/10.1007/s10123-023-00376-8
[25] Zhou, Z.-W., Long, H.-Z., Cheng, Y., et al. (2021) From Micro-biome to Inflammation: The Key Drivers of Cervical Cancer. Frontiers in Microbiology, 12, Article 767931.
https://doi.org/10.3389/fmicb.2021.767931
[26] Norenhag, J., Du, J., Olovsson, M., Verstraelen, H., Engstrand, L., Brusselaers, N., et al. (2020) The Vaginal Microbiota, Human Papillomavirus and Cervical Dysplasia: A Systematic Re-view and Network Meta-Analysis. International Journal of Gynecology & Obstetrics, 127, 171-180.
https://doi.org/10.1111/1471-0528.15854
[27] Martins, B.C.T., Guimarães, R.A., Alves, R.R.F., et al. (2023) Bac-terial Vaginosis and Cervical Human Papillomavirus Infection in Young and Adult Women: A Systematic Review and Meta-Analysis. Revista De Saude Publica, 56, 113.
https://doi.org/10.11606/s1518-8787.2022056004412
[28] Cheng, L., Norenhag, J., Hu, Y.O.O., et al. (2020) Vaginal Microbiota and Human Papillomavirus Infection among Young Swedish Women. NPJ Biofilms Microbiomes, 6, Article No. 39.
https://doi.org/10.1038/s41522-020-00146-8
[29] Hickey, R.J., Zhou, X., Settles, M.L., et al. (2015) Vaginal Microbiota of Adolescent Girls Prior to the Onset of Menarche Resemble Those of Reproductive-Age Women. mBio, 6, e00097.
https://doi.org/10.1128/mBio.00097-15
[30] Yang, X., Siddique, A., Khan, A.A., et al. (2021) Chlamydia Trachomatis Infection: Their Potential Implication in the Etiology of Cervical Cancer. Journal of Cancer, 12, 4891-4900.
https://doi.org/10.7150/jca.58582
[31] Gargiulo Isacco, C., Balzanelli, M.G., Garzone, S., et al. (2023) Alterations of Vaginal Microbiota and Chlamydia Trachomatis as Crucial Co-Causative Factors in Cervical Cancer Gene-sis Procured by HPV. Microorganisms, 11, Article No. 662.
https://doi.org/10.3390/microorganisms11030662
[32] Drago, F., Herzum, A., Ciccarese, G., et al. (2016) Ureaplasma Parvum as a Possible Enhancer Agent of HPV-Induced Cervical Intraepithelial Neoplasia: Preliminary Re-sults. Journal of Medical Virology, 88, 2023-2024.
https://doi.org/10.1002/jmv.24583
[33] Ciccarese, G., Herzum, A., Pastorino, A., et al. (2021) Prevalence of Geni-tal HPV Infection in STI and Healthy Populations and Risk Factors for Viral Persistence. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 40, 885-888.
https://doi.org/10.1007/s10096-020-04073-6
[34] Xie, L., Li, Q., Dong, X., et al. (2021) Investigation of The As-sociation between Ten Pathogens Causing Sexually Transmitted Diseases and High-Risk Human Papilloma virus Infec-tion in Shanghai. Molecular and Clinical Oncology, 15, Article No. 132.
https://doi.org/10.3892/mco.2021.2294
[35] Disi, A., Hui, B., Zhang, D., et al. (2023) Association between Human Papillomavirus Infection and Common Sexually Transmitted Infections, and the Clinical Significance of Different Myco-plasma Subtypes. Frontiers in Cellular and Infection Microbiology, 13, Article 1145215.
https://doi.org/10.3389/fcimb.2023.1145215
[36] Theis, K.R., Florova, V., Romero, R., et al. (2021) Sneathia: An Emerging Pathogen in Female Reproductive Disease and Adverse Perinatal Outcomes. Critical Reviews in Microbiology, 47, 517-542.
https://doi.org/10.1080/1040841X.2021.1905606
[37] Onywera, H., Williamson, A.-L., Mbulawa, Z.Z.A., et al. (2019) The Cervical Microbiota in Reproductive-Age South African Women with and without Human Papillomavirus Infection. Papillomavirus Research (Amsterdam, Netherlands), 7, 154-163.
https://doi.org/10.1016/j.pvr.2019.04.006
[38] Zhou, Y., Wang, L., Pei, F., et al. (2019) Patients with LR-HPV In-fection Have a Distinct Vaginal Microbiota in Comparison with Healthy Controls. Frontiers in Cellular and Infection Microbiology, 9, Article No. 294.
https://doi.org/10.3389/fcimb.2019.00294
[39] Chen, Y., Hong, Z., Wang, W., et al. (2019) Association between the Vaginal Microbiome and High-Risk Human Papillomavirus Infection in Pregnant Chinese Women. BMC Infectious Diseases, 19, Article No. 677.
https://doi.org/10.1186/s12879-019-4279-6
[40] Liu, H., Liang, H., Li, D., et al. (2022) Association of Cervical Dysbacteriosis, HPV Oncogene Expression, and Cervical Lesion Progression. Microbiology Spectrum, Microbiology Spectrum, 10, e00151.
https://doi.org/10.1128/spectrum.00151-22
[41] Gentile, G.L., Rupert, A.S., Carrasco, L.I., et al. (2020) Identifica-tion of a Cytopathogenic Toxin from Sneathia amnii. Journal of Bacteriology, 202, e00162.
https://doi.org/10.1128/JB.00162-20
[42] van de Wijgert, J. and Verwijs, M.C. (2020) Lactobacilli-Containing Vaginal Probiotics to Cure or Prevent Bacterial or Fungal Vaginal Dysbiosis: A Systematic Review and Recommenda-tions for Future Trial Designs. BJOG: An International Journal of Obstetrics and Gynaecology, 127, 287-299.
https://doi.org/10.1111/1471-0528.15870
[43] Dellino, M., Cascardi, E., Laganà, A.S., et al. (2022) Lactobacillus Crispatus M247 Oral Administration: Is It Really an Effective Strategy in the Management of Papillomavirus-Infected Women? Infectious Agents and Cancer, 17, Article No. 53.
https://doi.org/10.1186/s13027-022-00465-9
[44] Pino, A., Rapisarda, A.M.C., Vitale, S.G., et al. (2021) A Clinical Pilot Study on the Effect of the Probiotic Lacticaseibacillus Rhamnosus TOM 22.8 Strain in Women with Vaginal Dysbiosis. Scientific Reports, 11, Article No. 2592.
https://doi.org/10.1038/s41598-021-81931-z
[45] Wang, K.-D., Xu, D.-J., Wang, B.-Y., et al. (2018) Inhibitory Effect of Vaginal Lactobacillus Supernatants on Cervical Cancer Cells. Probiotics and Antimicrobial Proteins, 10, 236-242.
https://doi.org/10.1007/s12602-017-9339-x
[46] Nicolò, S., et al. (2023) Bacterial Species from Vaginal Microbiota Differently Affect the Production of the E6 and E7 Oncoproteins and of p53 and p-Rb Oncosuppressors in HPV16-Infected Cells. International Journal of Molecular Sciences, 24, Article 7173.
https://doi.org/10.3390/ijms24087173
[47] Carter, K.A., Srinivasan, S., Fiedler, T.L., et al. (2021) Vaginal Bacteria and Risk of Incident and Persistent Infection with High-Risk Subtypes of Human Papillomavirus: A Cohort Study among Kenyan Women. Sexually Transmitted Diseases, 48, 499-507.
https://doi.org/10.1097/OLQ.0000000000001343
[48] Riaz Rajoka, M.S., Zhao, H., Lu, Y., et al. (2018) Anti-cancer Potential Against Cervix Cancer (HeLa) Cell Line of Probiotic Lactobacillus Casei and Lactobacillus Paracasei Strains Isolated from Human Breast Milk. Food & Function, 9, 2705-2715.
https://doi.org/10.1039/C8FO00547H