自身免疫性肝炎发病机制研究现状
Research Status on the Pathogenesis of Autoimmune Hepatitis
DOI: 10.12677/ACM.2023.13102339, PDF, HTML, XML, 下载: 266  浏览: 413 
作者: 赵 瑜:青海大学附属医院普外一科,青海 西宁
关键词: 自身免疫性肝炎发病机制遗传因素环境因素Autoimmune Hepatitis Pathogenesis Genetic Factors Environmental Factors
摘要: 自身免疫性肝炎(Autoimmune hepatitis, AIH)是一种由免疫系统异常为特点的以肝细胞受损为主的肝脏疾病,其病因学和发病机制还不明确。常以高γ球蛋白血症、特异性自身抗体的存在和肝脏组织学的典型异常为特征。该疾病可影响任何年龄的个体,不分性别和种族。近年来AIH的发病原因研究越来越受关注,本文针对AIH的发病机制及分期病理诊断作简要综述。
Abstract: Autoimmune hepatitis (AIH) is a liver disease characterized by abnormal immune system and mainly liver cell damage, and its etiology and pathogenesis are not clear. It is often characterized by hyper γ globulinaemia, the presence of specific autoantibodies, and typical abnormalities in liver histology. The disease can affect individuals of any age, regardless of gender or race. In recent years, the pathogenesis of AIH has attracted more and more attention, and this article briefly reviews the pathogenesis and staged pathological diagnosis of AIH.
文章引用:赵瑜. 自身免疫性肝炎发病机制研究现状[J]. 临床医学进展, 2023, 13(10): 16715-16722. https://doi.org/10.12677/ACM.2023.13102339

1. 引言

自身免疫性肝炎(Autoimmune hepatitis, AIH)是一种由免疫系统异常为特点的以肝细胞受损为主的肝脏疾病。AIH的病因及发病机制还不明确,没有特异性体征,因此诊断是基于临床、生物学、免疫学和组织学发现的组合,高γ球蛋白血症、特异性自身抗体的存在和肝脏组织学的典型异常特征为AIH的重要特征。该疾病可影响任何年龄的个体,不分性别和种族。AIH可以表现为急性、急性慢性和慢性肝炎,临床上三分之一的患者在诊断时已经发展为肝硬化 [1] ;近年来,随着AIH的发病率在逐年增加,人们对AIH的发病机制及诊断技术研究越来越受关注,自身免疫性肝炎(AIH)一经确诊需尽快启动个体化免疫抑制治疗以防止进展为纤维化、肝硬化,乃至终末期肝病。本文拟对AIH的发病机制及分期、病理特征作简要综述。

2. AIH的发病机制

AIH的病因及发病机制还不明确,常认为与遗传因素、免疫因素、环境诱发因素及性别激素等密切相关。

2.1. 遗传因素

在遗传因素中,自身免疫性肝病的遗传易感性主要是由6号染色体上的人类白细胞抗原(HLA)区域的基因多态性决定的 [2] 。HLA是表达在多种细胞表面的蛋白质,参与T细胞的抗原识别。从生理学上讲,HLA分子会在T细胞受体上形成一个嵌入短抗原肽的沟槽。编码HLA蛋白的基因位于6号染色体的短臂上,具有高度多态性,这确保了不同的个体能够识别并对各种不同的抗原多肽作出反应。HLA等位基因频率存在地域和种族差异,与AIH相关的HLA差异反映了这一点,以抗核(ANA)和/或平滑肌抗体(SMA)为特征的1型AIH (AIH-1)易感性与MHC II类人类白细胞抗原(HLA) DRB1等位基因有关,如DRB1* 04在日本、中国、韩国和中国台湾,成人AIH-1患者中,而DRB1* 03在亚洲人群中非常罕见,因此可能解释了东亚不同的AIH表型,其特征在于发病较晚和病情较轻 [3] [4] [5] [6] [7] 。以抗肝肾微粒体(LKM)和/或抗肝细胞质1型(LC-1)抗体为特征的 [8] AIH 2型(AIH-2)遗传数据极少,目前认为与DRB1* 0701、DRB1* 0301和DRB1* 0201存在关联 [9] 。

另一方面,细胞毒性T淋巴细胞相关蛋白4 (CTLA-4)是在自身免疫性疾病中广泛研究的非HLA易感基因,可能是AIH的第二个易感等位基因,其主要在调节性T细胞和常规T细胞的表面上表达,并且通过下调共刺激受体CD 28的配体可用性来抑制自身反应性T细胞应答以引发抑制信号。CTLA-4基因多态性在许多研究中被证实影响原发性胆汁性胆管炎(PBC)和1型AIH的发病风险。有研究 [10] 指出,CTLA-4等位基因和AG基因型会增加PBC和1型AIH的发病风险。

此外,巨噬细胞移动抑制因子多态性-173CC/GC基因型可能是AIH患者疾病严重程度的标志 [11] 。等位基因SH2B3 T和PTPN22 A也被发现与AIH显著相关 [12] 。还有研究 [13] 认为GATA-2突变与AIH之间存在单基因关联。在伊朗人群中,Yousefi等 [14] 对AIH与IL-4基因多态性进行了关联研究,结果表明位置−590处的IL-4C等位基因和CC基因型以及位置−33处的TT基因型在AIH患者中显示出较高频率。遗传易感性受免疫相关基因中多个单核苷酸多态性的影响,关于TGFβ和IL-10遗传变异与AIH相关的报道很少,最近研究 [15] 发现,伊朗人群中IL-10-1082/−819和TGFβ+869/+915基因型与单倍型与AIH之间有显著的相关性。也与AIH的发生相关,但确切机制尚需进一步研究。

2.2. 免疫因素

AIH的发病与自身免疫耐异常相关,肝脏作为人体的重要的免疫器官,其在产生针对嗜肝性病原体的有效免疫应答的同时,也维持对自身和外源抗原的局部和全身免疫耐受性 [16] 。肝脏有几种常规的抗原提呈细胞(APCs),如树突状细胞、B细胞和巨噬细胞(Kupffer细胞),以及非常规的APCs,包括肝窦内皮细胞、肝星状细胞和肝细胞。肝脏APC在共刺激存在下,通过标准(直接呈递和交叉呈递)和替代机制(交叉敷料和MHC II类敷料),将自身抗原呈递给初始T细胞,导致免疫应答的启动和扩增或诱导免疫耐受 [17] ,越来越多的证据表明自身反应性T细胞和调节性T细胞的功能障碍起关键作用 [18] 。其导致肝损伤和炎症。当这种平衡被破坏时,免疫耐受性丧失,发展自身免疫性肝病,如自身免疫性肝炎(AIH) [16] [17] 。此外,肽–主要组织相容性复合物(MHC)通过胞啃和细胞外囊泡(EV)的细胞间转移可以赋予任何细胞APC特征,尽管具有不同的结果。在通过肝APC呈递自身抗原时,多种免疫细胞如Th0-、Th1-和Th2-CD4+T细胞、Th17细胞、细胞毒性CD8+T细胞、调节性T细胞(Treg),自然杀手细胞(NK)细胞和B细胞,沿着包括干扰素在内的细胞因子的释放。IFN-γ、TGF-β、IL-10、IL-21、IL-2及自身抗体可导致自身免疫性肝损伤。

自身反应性B细胞通常被认为是自身抗体的来源,也参与AIH的发生发展。B淋巴细胞可以作为抗原呈递细胞(APC)驱动自身免疫。在缺乏其他APC的情况下,CD4+T细胞和滤泡辅助性T细胞(Tfh)的活化可由B细胞启动。据报道,B细胞衍生的细胞因子对AIH具有双重作用 [19] 。一方面,促炎细胞因子如I型干扰素、肿瘤坏死因子-a (TNF-a)和白介素(IL) 6直接或间接地促成疾病进展。另一方面,B细胞还可以分泌IL-10和转化生长因子-β (TGF-β)以诱导产生Tfh和IL-10的T细胞 [20] 。此外,具有特异性免疫球蛋白G (IgG)的高丙种球蛋白血症是AIH的另一特征性诊断标志,其已被证明与疾病活动性相关 [21] [22] 。

最新研究发现,TSPAN1参与了多种生物学功能,包括细胞增殖、粘附和迀移 [23] 。可能与胰腺癌和卵巢癌的不良预后有关 [24] [25] 。已有实验证明TSPAN1在AIH患者肝脏中的表达显著升高,并且与疾病严重程度呈正相关,并通过共聚焦染色进一步证实了在AIH中大多数TSPAN1+细胞呈现CD19阳性,同时TSPAN1+ B细胞具有更强的呈递抗原和分泌细胞因子的能力,通过CXCR 3-CXCL 10相互作用可能涉及TSPAN1+ B细胞对肝脏的趋化性。

AIH的发病机制是复杂的。越来越多的证据表明,分子模拟和增强的自身抗原呈递有助于触发自身免疫反应,导致自身反应性淋巴细胞的活化。

“分子模拟”是外来抗原与自身抗原共享序列或结构相似性从而导致自身免疫的过程。在这种情况下,免疫系统可能被诱导针对类似自身抗原的免疫应答的外来抗原混淆 [26] 。据报道,病毒感染是AIH的风险因素,并且AIH的几种小鼠模型证明分子模拟是破坏肝脏中细胞耐受性的先决条件 [27] [28] [29] 。在慢性B肝炎病毒(HBV)和丙型肝炎病毒(HCV)感染期间,约50%的患者由于宿主平滑肌/核组分与HCV抗原之间的交叉反应性免疫反应而产生自身抗体,例如ANA和SMA [30] [31] 。此外,10%的慢性HCV患者报告抗LKM-1自身抗体阳性。该阳性是由于HCV多蛋白和细胞色素P450 2D 6 (CYP 2D 6) (抗LKM-1抗体的靶标)之间的高度氨基酸序列同源性 [32] [33] 。

2.3. 环境因素

许多触发因素被提出,包括病毒、肠道微生物、外源性和药物,但没有一个被最终证明参与AIH的发病机制。主要的假设是,在有遗传易感性的个体中,当他们暴露于环境触发器时,主要通过T淋巴细胞的分子拟态或非特异性激活机制,AIH的发展。导致免疫调节网络失调和自身反应性T细胞的出现和/或基因表达 [34] 的改变。

2.3.1. 病毒及病原体感染

病原体感染的诱发影响,如嗜肝病毒(HAV、HBV、HCV等)、麻疹病毒、水痘–带状疱疹病毒、巨细胞病毒、EB病毒与AIH的发生有关 [35] 。甲型、丙型和戊型肝炎病毒诱发AIH的机制与外源抗原表位与肝脏抗原之间的分子模拟和交叉反应有密切关系,最早Vento等 [36] 在一组AIH患者一级亲属中描述了AIH的发展与抑制诱导T淋巴细胞特异性控制对肝细胞表面无唾液酸糖蛋白受体(ASGPR)抗原的免疫反应的预先存在的缺陷有关。之后,许多病例报告支持HAV作为潜在AIH触发因素的作用 [37] [38] 。许多研究发现,HCV感染和AIH关联与HCV序列与细胞色素P450 2D6 (CYP2D6, AIH-2中抗lkm 1的主要目标自身抗原)之间的特异性体液或T细胞表位交叉反应 [39] 机制有关。此外,HBV、HDV和HEV也被认为是AIH的诱发因素。同时,另一种病毒候选物EBV在几个病例报告 [40] [41] [42] 和13名患者的临床随访 [43] 中与包括AIH-1在内的各种自身免疫性疾病的发展相关。

有研究表明细菌与寄生虫对AIH可能存在潜在的联系。抗可溶性肝抗原/肝胰抗原抗体与立克次体的某段氨基酸序列具有显著的序列相似性,它可能通过分子模拟启动CD4T淋巴细胞介导的自身免疫反应;同时Christen等 [44] 通过分析1例AIH女性患者的病例资料,认为AIH特征性表现是由于利士曼原虫引起组织破坏释放自身抗原而导致的。

2.3.2. 肠道微生物

越来越多的证据表明,肠道菌群是影响AIH的重要环境因素。肝脏的血液供应多来自于内脏循环,有害肠道细菌的增加可以激活炎症途径,破坏肠道屏障,导致肠道细菌转移,细菌脂多糖进入血液循环,肠道通透性增加,肠道微生物群的细菌和细菌产物的改变可能会导致肝脏损伤 [45] [46] 。Benedetta Terziroli Beretta [47] 等研究发现用编码人CYP 2D 6/FTCD (AIH-2中靶向的自身抗原)的融合蛋白的DNA质粒免疫在非肥胖糖尿病(NOD)背景下的HLA-DR 3转基因小鼠模型上诱导AIH,不仅免疫接种的HLA-DR 3阳性小鼠确实发生了重现AIH的慢性肝损伤,而且与HLA-DR 3阴性小鼠相比,发展AIH的小鼠显示其微生物群的多样性减少。此外,近年来合成菌的研究越来越热门,合成益生菌是益生菌和益生元的混合物,可以更充分地调节有益菌,从而带来显著的益处 [48] 。已有报道研究15种益生菌的化合物在AIH的鼠模型中降低肝脏炎症、血清转氨酶水平、Th1和Th17细胞,并增加调节性T细胞的数量,同时保护肠屏障完整性,阻断脂多糖(LPS)易位,抑制Toll样受体4/核因子kB (TLR4/NF-kB)通路活化以及肝脏和回肠中炎性细胞因子的产生 [49] ,新的实验数据表明 [50] ,一种新的合成菌作用在AIH小鼠模型中,逆转了肠道生态失调,如有益细菌(如利肯氏菌和阿利斯氏菌)的增加和潜在有害细菌(如埃希氏菌–志贺氏菌)和携带脂多糖(LPS)的革兰氏阴性细菌水平的减少。这种合成菌通过增加有益菌和减少携带脂多糖(LPS)的革兰氏阴性菌来逆转肠道生态失调,逆转了肠道屏障的完整性,其机制可能与通过抑制肝脏TLR4/NF-kB/NLRP3/焦亡信号通路调节肠道菌群组成和肠道屏障功能有关。因此,合成菌通过改变肠道微生物的表型,对AIH引起的某些微生物群的增加具有恢复作用,能够减轻肝脏炎症和焦亡,改善肝损伤和肝功能,包括炎症损伤、代谢、免疫反应和致病功能。由此说明肠道微生物菌群参与了AIH的发病,调节肠道微生物稳态将是一种潜在的AIH治疗剂。

2.3.3. 药物与酒精

药物性诱导的AIH (DIAIH)是AIH中的一个重要类型,据研究,呋喃妥因和米诺环素与AIH诱导相关 [51] 。其他药物和草药,如羟苯沙丁、奥硝唑、甲基多巴、双氯芬酸、干扰素、阿托伐他汀、高效抗逆转录病毒治疗和生物制剂如英夫利昔单抗、那他珠单抗和阿达木单抗,偶尔也有报告可诱导AIH [51] [52] [53] [54] 。目前认为,DIAIH的发生与性别、年龄、药物剂量、遗传多态性及药物本身等危险因素相关 [55] ,这些药物在肝脏中的活性代谢产物与CYP2A6等结合而被免疫系统识别为新抗原,从而诱发自身免疫反应有关,但具体的发病机制仍待进一步的探讨研究。此外,复方中药制剂如黑升麻类、大柴胡汤、石蚕属植物等也有DIAIH的相关报道 [56] 。另一方面,酒精可能是肝脏自身免疫的另一个潜在触发因素。酒精代谢产物(如乙醛和丙二醛)可诱导人类和动物模型中自身抗体的产生 [57] [58] 。

2.3.4. 维生素D

维生素D具有免疫调节、抗炎、抗氧化、抗纤维化等作用,先天性免疫和获得性免疫细胞的表面均有维生素D受体的表达。研究报道维生素D受体的BsmⅠ和TaqⅠ基因多态性与自身免疫性肝病有关,FokⅠ基因多态性与AIH有关。除基因因素外,一方面维生素D可以通过MAPK通路参与AIH发生,维生素D通过与脂多糖的协同作用使单核细胞和巨噬细胞产生细胞因子增加而上调MAPK通路;另一方面维生素D刺激IFNγ分泌和提高活性氧产生来发挥免疫调节作用 [59] ;同时维生素D缺乏与AIH的组织学严重程度、晚期肝纤维化有关,因此维生素D类似物可以作为AIH的干预剂。

2.4. 性别与激素

与大多数自身免疫性疾病一样,AIH的特点是女性占多数(男女比例:3~4/l)。鉴于许多参与免疫耐受的基因都位于x染色体上 [60] ,x染色体的异常可以部分解释这种优势。在女性PBC患者中,有报道称B细胞和T细胞中X单体的频率较高 [61] ,体细胞中X随机失活的频率较高 [62] 。此外,女性免疫后血清免疫球蛋白水平更高,细胞介导的免疫反应更强烈,而性激素在这一过程中发挥了关键作用,促进TH2而非TH1炎症反应 [63] [64] 。然而,这些机制在AIH中尚未得到研究,因此x染色体连锁异常和性激素在AIH发病机制中的作用尚不清楚。

3. 小结

尽管在过去的几十年里进行的研究,AIH诱发因素和致病调节途径仍然不完全确定。AIH的完整功能特征仅部分被理解。今后的研究需从遗传、免疫及环境三个不同的角度,更多地揭示AIH的遗传易感位点、致病及调控性免疫细胞和分子以及环境因素,尤其是肠道微生态及其代谢物在AIH发病过程中的作用,进一步研究AIH发病机制中的关键因素将有助于更深入地了解新的和更个性化的治疗方法。

参考文献

[1] Manns, M.P., Czaja, A.J., Gorham, J.D., Krawitt, E.L., Mieli-Vergani, G., Vergani, D., et al. (2010) Diagnosis and Management of Autoimmune Hepatitis. Hepatology, 51, 2193-2213.
https://doi.org/10.1002/hep.23584
[2] Alvarez, F., Berg, P.A., Bianchi, F.B., Bianchi, L., Burroughs, A.K., Can-cado, E.L., et al. (1999) International Autoimmune Hepatitis Group Report: Review of Criteria for Diagnosis of Auto-immune Hepatitis. Journal of Hepatology, 31, 929-938.
https://doi.org/10.1016/S0168-8278(99)80297-9
[3] Abe, M., Onji, M., Kawai-Ninomiya, K., Michitaka, K., Matsuura, B., Hiasa, Y., et al. (2007) Clinicopathologic Features of the Severe Form of Acute Type 1 Autoimmune Hepatitis. Clinical Gastroenterology and Hepatology, 5, 255-258.
https://doi.org/10.1016/j.cgh.2006.10.011
[4] Umemura, T., Joshita, S., Saito, H., Yoshizawa, K., Norman, G.L., Tanaka, E., et al. (2019) KIR/HLA Genotypes Confer Susceptibility and Progression in Patients with Autoimmune Hep-atitis. JHEP Reports, 1, 353-560.
https://doi.org/10.1016/j.jhepr.2019.09.003
[5] Furumoto, Y., Asano, T., Sugita, T., Abe, H., Chuganji, Y., Fu-jiki, K., et al. (2015) Evaluation of the Role of HLA-DR Antigens in Japanese Type 1 Autoimmune Hepatitis. BMC Gastroenterology, 15, Article No. 144.
https://doi.org/10.1186/s12876-015-0360-9
[6] Katsumi, T. and Ueno, Y. (2022) Epidemiology and Surveillance of Autoimmune Hepatitis in Asia. Liver International, 42, 2015-2022.
https://doi.org/10.1111/liv.15155
[7] Zhang, H.P., Liu, Y.M., Li, Z., Ma, Y.X., Li, L.J., Zhao, D.T., et al. (2021) Clinical Characteristics and HLA Genotypes in Chinese Patients with Anti-SLA/LP-Positive Autoimmune Hepatitis. An-nals of Translational Medicine, 9, Article 153.
https://doi.org/10.21037/atm-20-8036
[8] Mieli-Vergani, G., Ver-gani, D., Czaja, A.J., Manns, M.P., Krawitt, E.L., Vierling, J.M., et al. (2018) Autoimmune Hepatitis. Nature Reviews Disease Primers, 4, Article No. 18017.
https://doi.org/10.1038/nrdp.2018.17
[9] Ma, Y., Bogdanos, D.P., Hussain, M.J., et al. (2006) Polyclonal T-Cell Responses to Cytochrome P450IID6 Are Associated with Disease Activi-ty in Autoimmune Hepatitis Type 2. Gastroenterology, 130, 868-882.
https://doi.org/10.1053/j.gastro.2005.12.020
[10] Eskandari-Nasab, E., Tahmasebi, A. and Hashemi, M. (2015) Meta-Analysis: The Relationship between CTLA-4 + 49 A/G Polymorphism and Primary Biliary Cirrhosis and Type I Autoimmune Hepatitis. Immunological Investigations, 44, 331-348.
https://doi.org/10.3109/08820139.2014.1003651
[11] Assis, D.N., Takahashi, H., Leng, L., et al. (2016) A Mac-rophage Migration Inhibitory Factor Polymorphism Is Associated with Autoimmune Hepatitis Severity in US and Japa-nese Patients. Digestive Diseases and Sciences, 61, 3506- 3512.
https://doi.org/10.1007/s10620-016-4322-z
[12] Chaouali, M., Fernandes, V., Ghazouani, E., Pereira, L. and Kochkar, R. (2018) Association of STAT4, TGFβ1, SH2B3 and PTPN22 Polymorphisms with Autoimmune Hepatitis. Experimental and Molecular Pathology, 105, 279- 284.
https://doi.org/10.1016/j.yexmp.2018.10.001
[13] Webb, G., Chen, Y.Y., Li, K.K., et al. (2016) Single-Gene Association between GATA-2 and Autoimmune Hepatitis: A Novel Genetic Insight Highlighting Immunologic Pathways to Disease. Journal of Hepatology, 64, 1190-1193.
https://doi.org/10.1016/j.jhep.2016.01.017
[14] Yousefi, A., Mahmoudi, E., Bidoki, A.Z., et al. (2016) IL4 Gene Polymorphisms in Iranian Patients with Autoimmune Hepatitis. Expert Review of Gastroenterology & Hepatology, 10, 659-663.
https://doi.org/10.1586/17474124.2016.1139449
[15] Yousefi, A., Bidoki, A.Z., Shafioyoun, A., et al. (2019) Association of IL-10 and TGF-β Cytokine Gene Polymorphisms with Autoimmune Hepatitis. Clinics and Research in Hepatology and Gastroenterology, 43, 45-50.
https://doi.org/10.1016/j.clinre.2018.07.004
[16] Racanelli, V. and Rehermann, B. (2006) The Liver as an Immu-nological Organ. Hepatology, 43, S54-S62.
https://doi.org/10.1002/hep.21060
[17] Horst, A.K., Neumann, K., Diehl, L. and Tiegs, G. (2016) Modulation of Liver Tolerance by Conventional and Nonconventional Antigen-Presenting Cells and Regulatory Immune Cells. Cellular & Molecular Immunology, 13, 277-292.
https://doi.org/10.1038/cmi.2015.112
[18] You, Z., Li, Y., Wang, Q., Zhao, Z., Li, Y., Qian, Q., et al. (2021) The Clinical Significance of Hepatic CD69+CD103+ CD8+ Resident-Memory T Cells in Autoimmune Hepatitis. Hepatology, 74, 847-863.
https://doi.org/10.1002/hep.31739
[19] Schultheiß, C., Steinmann, S., Lohse, A.W. and Binder, M. (2022) B Cells in Autoimmune Hepatitis: Bystanders or Central Players? Seminars in Immunopathology, 44, 411-427.
https://doi.org/10.1007/s00281-022-00937-5
[20] Czaja, A.J. (2021) Review Article: Targeting the B Cell Activa-tion System in Autoimmune Hepatitis. Alimentary Pharmacology & Therapeutics, 54, 902-922.
https://doi.org/10.1111/apt.16574
[21] Biewenga, M., Heidt, S., Vergunst, M., Marijnissen, C.M.J., de Man, R.A., van der Eijk, A.A., et al. (2022) B-Cell Activating Factor and IL-21 Levels Predict Treatment Response in Autoimmune Hepatitis. JHEP Reports, 4, Article ID: 100460.
https://doi.org/10.1016/j.jhepr.2022.100460
[22] Terziroli Beretta-Piccoli, B., Mieli-Vergani, G. and Vergani, D. (2022) Autoimmune Hepatitis: Serum Autoantibodies in Clinical Practice. Clinical Reviews in Allergy & Immunology, 63, 124-137.
https://doi.org/10.1016/j.jhep.2015.06.030
[23] Ye, H., Li, T., Wang, H., Wu, J., Yi, C., Shi, J., et al. (2021) TSPAN1, TMPRSS4, SDR16C5, and CTSE as Novel Panel for Pancreatic Cancer: A Bioinformatics Analysis and Ex-periments Validation. Frontiers in Immunology, 12, Article 649551.
https://doi.org/10.3389/fimmu.2021.649551
[24] Shin, H.Y., Yang, W., Chay, D.B., E, L., Chung, J.Y., Kim, H.S., et al. (2021) Tetraspanin 1 Promotes Endometriosis Leading to Ovarian Clear Cell Carcinoma. Molecular Oncolo-gy, 15, 987-1004.
https://doi.org/10.1002/1878-0261.12884
[25] Zeng, A., Li, H., Guo, L., Gao, X., McKinney, S., Wang, Y., et al. (2018) Prospectively Isolated Tetraspanin+ Neoblasts Are Adult Pluripotent Stem Cells Underlying Planaria Regenera-tion. Cell, 173, 1593-1608.E20.
https://doi.org/10.1016/j.cell.2018.05.006
[26] Bogdanos, D.P., Choudhuri, K. and Vergani, D. (2001) Molecular Mimicry and Autoimmune Liver Disease: Virtuous Intentions, Malign Consequences. Liver, 21, 225-232.
https://doi.org/10.1034/j.1600-0676.2001.021004225.x
[27] Christen, U. and Hintermann, E. (2019) Pathogens and Autoimmune Hepatitis. Clinical and Experimental Immunology, 195, 35-51.
https://doi.org/10.1111/cei.13203
[28] Ehser, J., Holdener, M., Christen, S., Bayer, M., Pfeilschifter, J.M., Hinter-mann, E., et al. (2013) Molecular Mimicry Rather than Identity Breaks T-Cell Tolerance in the CYP2D6 Mouse Model for Human Autoimmune Hepatitis. Journal of Autoimmunity, 42, 39-49.
https://doi.org/10.1016/j.jaut.2012.11.001
[29] Hintermann, E., Ehser, J. and Christen, U. (2012) The CYP2D6 Animal Model: How to Induce Autoimmune Hepatitis in Mice. Journal of Visualized Experiments, 60, e3644.
https://doi.org/10.3791/3644
[30] Gregorio, G.V., Choudhuri, K., Ma, Y., Pensati, P., Iorio, R., Grant, P., et al. (2003) Mimicry between the Hepatitis C Virus Polyprotein and Antigenic Targets of Nuclear and Smooth Muscle Anti-bodies in Chronic Hepatitis C Virus Infection. Clinical and Experimental Immunology, 133, 404-413.
https://doi.org/10.1046/j.1365-2249.2003.02229.x
[31] Gregorio, G.V., Choudhuri, K., Ma, Y., Vegnente, A., Mieli-Vergani, G. and Vergani, D. (1999) Mimicry between the Hepatitis B Virus DNA Polymerase and the Antigenic Targets of Nuclear and Smooth Muscle Antibodies in Chronic Hepatitis B Virus Infection. The Journal of Immunology, 162, 1802-1810.
https://doi.org/10.4049/jimmunol.162.3.1802
[32] Kerkar, N., Choudhuri, K., Ma, Y., Mahmoud, A., Bogdanos, D.P., Muratori, L., et al. (2003) Cytochrome P4502D193-212: A New Immunodominant Epitope and Target of Virus/Self Cross-Reactivity in Liver Kidney Microsomal Autoantibody Type 1-Positive Liver Disease. The Journal of Immunology, 170, 1481-1489.
https://doi.org/10.4049/jimmunol.170.3.1481
[33] Manns, M.P., Griffin, K.J., Sullivan, K.F. and Johnson, E.F. (1991) LKM-1 Autoantibodies Recognize a Short Linear Sequence in P450IID6, a Cytochrome P-450 Monooxygenase. Journal of Clinical Investigation, 88, 1370-1378.
[34] Béland, K., Lapierre, P. and Alvarez, F. (2009) Influence of Genes, Sex, Age and Environment on the Onset of Autoimmune Hepatitis. World Journal of Gastroenterology, 15, 1025-1034.
https://doi.org/10.3748/wjg.15.1025
[35] Floreani, A., Restrepo-Jiménez, P., Francesca Secchi, M., et al. (2018) Etiopathogenesis of Autoimmune Hepatitis. Journal of Autoimmunity, 95, 133-143.
https://doi.org/10.1016/j.jaut.2018.10.020
[36] Vento, S., Garofano, T., Dolci, L., Di Perri, G., Concia, E. and Bassetti, D. (1991) Identification of Hepatitis A Virus as a Trigger for Autoimmune Chronic Hepatitis Type 1 in Suscep-tible Individuals. The Lancet, 337, 1183-1187.
https://doi.org/10.1016/0140-6736(91)92858-Y
[37] Hilzenrat, N., Zilberman, D., Klein, T., Zur, B. and Sikuler, E. (1999) Autoimmune Hepatitis in a Genetically Susceptible Patient: Is It Triggered by Acute Viral Hepatitis A? Digestive Diseases and Sciences, 44, 1950-1952.
[38] Bogdanos, D.P. and Dalekos, G.N. (2008) Enzymes as Target Antigens of Liver-Specific Autoimmunity: The Case of Cytochromes P450s. Current Medicinal Chemistry, 15, 2285-2292.
https://doi.org/10.2174/092986708785747508
[39] Aceti, A., Mura, M.S., Babudieri, S. and Bacciu, S.A. (1995) A Young Woman with Hepatitis after a Sore Throat. The Lancet, 346, 1603.
https://doi.org/10.1016/S0140-6736(95)91932-5
[40] Kojima, K., Nagayama, R., Hirama, S., Maeda, T., Takikawa, H., Miyake, K., Yamanaka, M. and Shiga, J. (1999) Epstein-Barr Virus Infection Resembling Autoimmune Hepatitis with Lactate Dehydrogenase and Alkaline Phosphatase Anomaly. Journal of Gastroenterology, 34, 706-712.
https://doi.org/10.1007/s005350050324
[41] Nobili, V., Comparcola, D., Sartorelli, M.R., Devito, R. and Marcelli-ni, M. (2003) Autoimmune Hepatitis Type 1 after Epstein-Barr Virus Infection. The Pediatric Infectious Disease Journal, 22, 387.
https://doi.org/10.1097/01.inf.0000060825.68086.9c
[42] Vento, S., Guella, L., Mirandola, F., Cainelli, F., Di Per-ri, G., Solbiati, M., Ferraro, T. and Concia, E. (1995) Epstein-Barr Virus as a Trigger for Autoimmune Hepatitis in Sus-ceptible Individuals. The Lancet, 346, 608-609.
https://doi.org/10.1016/S0140-6736(95)91438-2
[43] Christen, U. and Hintermann, E. (2014) Pathogen Infection as a Possible Cause for Autoimmune Hepatitis. International Reviews of Immunology, 33, 296-313.
https://doi.org/10.3109/08830185.2014.921162
[44] Liwinski, T., Casar, C., Ruehlemann, M.C., Bang, C., Sebode, M., Hohenester, S., Denk, G., Lieb, W., Lohse, A.W., Franke, A. and Schramm, C. (2020) A Disease-Specific Decline of the Relative Abundance of Bifidobacterium in Patients with Autoimmune Hepatitis. Alimentary Pharmacology & Therapeutics, 51, 1417-1428.
https://doi.org/10.1111/apt.15754
[45] Wei, Y., Li, Y., Yan, L., Sun, C., Miao, Q., Wang, Q., Xiao, X., Lian, M., Li, B., Chen, Y., Zhang, J., Li, Y., Huang, B., Li, Y., Cao, Q., Fan, Z., Chen, X., Fang, J.Y., Gershwin, M.E., Tang, R. and Ma, X. (2020) Alterations of Gut Microbiome in Autoimmune Hepatitis. Gut, 69, 569-577.
https://doi.org/10.1136/gutjnl-2018-317836
[46] Terziroli Beretta-Piccoli, B., Mieli-Vergani, G. and Vergani, D. (2021) Autoimmmune Hepatitis. Cellular & Molecular Immunology, 19, 158-176.
https://doi.org/10.1038/s41423-021-00768-8
[47] Swanson, K.S., Gibson, G.R., Hutkins, R., Reimer, R.A., Reid, G., Verbeke, K., Scott, K.P., Holscher, H.D., Azad, M.B., Delzenne, N.M. and Sanders, M.E. (2020) The Internationa Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Synbi-otics. Nature Reviews Gastroenterology & Hepatology, 17, 687-701.
https://doi.org/10.1038/s41575-020-0344-2
[48] Liu, Q., Tian, H., Kang, Y., Tian, Y., Li, L., Kang, X., et al. (2021) Probiotics Alleviate Autoimmune Hepatitis in Mice through Modulation of Gut Microbiota and Intestinal Permea-bility. The Journal of Nutritional Biochemistry, 98, Article ID: 108863.
https://doi.org/10.1016/j.jnutbio.2021.108863
[49] Kang, Y., Kuang, X., Yan, H., Ren, P., Yang, X., Liu, H., Liu, Q., Yang, H., Kang, X., Shen, X., Tong, M., Li, L., Wang, X., Guo, L., Ma, J., Zhang, F. and Fan, W. (2023) A Novel Synbiotic Alleviates Autoimmune Hepatitis by Modulating the Gut Microbiota-Liver Axis and Inhibiting the Hepatic TLR4/NF-κB/NLRP3 Signaling Pathway. mSystems, 8, e0112722.
https://doi.org/10.1128/msystems.01127-22
[50] Björnsson, E., Talwalkar, J., Treeprasertsuk, S., Kamath, P.S., Takahashi, N., Sanderson, S., Neuhauser, M. and Lindor, K. (2010) Drug-Induced Autoimmune Hepatitis: Clinical Characteristics and Prognosis. Hepatology, 51, 2040- 2048.
https://doi.org/10.1002/hep.23588
[51] Czaja, A.J. (2011) Drug-Induced Autoimmune-Like Hepatitis. Digestive Diseases and Sciences, 56, 958-976.
https://doi.org/10.1007/s10620-011-1611-4
[52] Saitis, A., Gatselis, N., Zachou, K. and Dalekos, G.N. (2013) Use of TNFα Antagonists in Refractory AIH: Revealing the Unforeseen. Journal of Hepatology, 59, 197-198.
https://doi.org/10.1016/j.jhep.2013.02.029
[53] Zachou, K., Muratori, P., Koukoulis, G.K., Granito, A., Gatselis, N., Fabbri, A., Dalekos, G.N. and Muratori, L. (2013) Review Article: Autoimmune Hepatitis—Current Management and Challenges. Alimentary Pharmacology & Therapeutics, 38, 887-913.
https://doi.org/10.1111/apt.12470
[54] 高晓琴, 赵永勋, 任茜, 等. 药物诱导的自身免疫性肝炎的研究进展[J]. 临床肝胆病杂志, 2017, 33(11): 2222- 2225.
[55] He, Y. and Zhan, J. (2013) Advances in Drug—Induced Autoimmune Hepatitis. Journal of Practical Hepa-tology, 16, 178-180. (In Chinese)
[56] Paronetto, F. (1993) Immunologic Reactions in Alcoholic Liver Disease. Semi-nars in Liver Disease, 13, 183-195.
https://doi.org/10.1055/s-2007-1007348
[57] Xu, D., Thiele, G.M., Beckenhauer, J.L., Klassen, L.W., Sorrell, M.F. and Tuma, D.J. (1998) Detection of Circulating Antibodies to Malondialdehyde-Acetaldehyde Adducts in Etha-nol-Fed Rats. Gastroenterology, 115, 686-692.
https://doi.org/10.1016/S0016-5085(98)70148-9
[58] Luong, K.V. and Nguyen, L.T. (2013) The Role of Vitamin D in Autoimmune Hepatitis. Journal of Clinical Medicine Research, 5, 407-415.
https://doi.org/10.4021/jocmr1505w
[59] Invernizzi, P., Pasini, S., Selmi, C., Gershwin, M.E. and Podda, M. (2009) Female Predominance and X Chromosome Defects in Autoimmune Diseases. Journal of Autoimmunity, 33, 12-16.
https://doi.org/10.1016/j.jaut.2009.03.005
[60] Invernizzi, P., Miozzo, M., Battezzati, P.M., Bianchi, I., Gra-ti, F.R., Simoni, G., Selmi, C., Watnik, M., Gershwin, M.E. and Podda, M. (2004) Frequency of Monosomy X in Women with Primary Biliary Cirrhosis. The Lancet, 363, 533-535.
https://doi.org/10.1016/S0140-6736(04)15541-4
[61] Miozzo, M., Selmi, C., Gentilin, B., Grati, F.R., Sirchia, S., Oertelt, S., Zuin, M., Gershwin, M.E., Podda, M. and Invernizzi, P. (2007) Preferential X Chromosome Loss But Ran-dom Inactivation Characterize Primary Biliary Cirrhosis. Hepatology, 46, 456-462.
https://doi.org/10.1002/hep.21696
[62] Czaja, A.J., dos Santos, R.M., Porto, A., Santrach, P.J. and Moore, S.B. (1998) Immune Phenotype of Chronic Liver Disease. Digestive Diseases and Sciences, 43, 2149-2155.
https://doi.org/10.1023/A:1018836004279
[63] McFarlane, I.G. and Heneghan, M.A. (2004) Autoimmunity and the Female Liver. Hepatology Research, 28, 171-176.
https://doi.org/10.1016/j.hepres.2003.12.002
[64] Whitacre, C.C., Reingold, S.C. and O’Looney, P.A. (1999) A Gender Gap in Autoimmunity. Science, 283, 1277-1278.
https://doi.org/10.1126/science.283.5406.1277