术前无创检查评估肝脏储备功能在肝癌治疗中的应用进展
Preoperative Non-Invasive Examination to Evaluate the Application of Liver Reserve Function in the Treatment of Liver Cancer
DOI: 10.12677/ACM.2023.13102196, PDF, HTML, XML, 下载: 260  浏览: 397 
作者: 费发珠:青海大学临床医学院,青海 西宁;任 宾*:青海大学附属医院肝胆胰外科,青海 西宁
关键词: 肝肿瘤肝功能储备预后综述Liver Neoplasms Liver Functional Reserve Prognosis Review
摘要: 肝癌是我国第4位常见恶性肿瘤,其治疗首选肝切除术,而术后肝功能衰竭(PHLF)是肝癌术后发生重大并发症及患者死亡的重要原因,目前其临床发生率仍很高,因此术前准确评估患者肝脏储备功能对预防PHLF至关重要。传统评估术前肝功能储备方法(如:Child评分、CT等)对存在不同肝病基础的患者准确度欠佳,而无创检查由于创伤小,并发症少受到临床重视,近些年临床应用的吲哚菁绿(ICG)检查、肝弹性成像,三维重建技术、残肝体积计算及核医学等功能学显像技术能同时对术后残余肝体积(RLV)和残余肝功能进行评估,较传统评估方法更具优势。
Abstract: Liver Neoplasms is the fourth common malignant tumor in China, and its treatment is preferred by hepatectomy, but postoperative liver failure (PHLF) is an important cause of major complications and death of patients after liver cancer surgery, and its clinical incidence is still very high, so accu-rate assessment of liver reserve function in patients before surgery is very important to prevent PHLF. Traditional methods for assessing preoperative liver function reserve (such as Child score, CT, etc.) are not accurate for patients with different liver disease bases, while non-invasive examination has received little clinical attention due to small trauma and complications, and in recent years, the clinical application of indocyanine green (ICG) examination, liver elasticity imaging techniques, three-dimensional reconstruction technology, residual liver volume calculation and nuclear medi-cine and other functional imaging techniques can evaluate the residual liver volume (RLV) and re-sidual liver function at the same time, which has more advantages than traditional assessment methods.
文章引用:费发珠, 任宾. 术前无创检查评估肝脏储备功能在肝癌治疗中的应用进展[J]. 临床医学进展, 2023, 13(10): 15701-15709. https://doi.org/10.12677/ACM.2023.13102196

1. 引言

肝癌是全球第6大常见癌症,是亚洲和非洲发病率和死亡率最高的肿瘤 [1] ,是我国第4位常见恶性肿瘤及癌症相关死亡率第2的恶性肿瘤 [2] 。肝癌多发生在有潜在肝脏疾病(如乙型、丙型肝炎病毒感染或酗酒)的患者中,且任何原因的肝硬化(liver cirrhosis, LC)都会增加0.5%~3%患肝癌的风险 [3] 。目前原发性及继发性肝癌治疗均首选肝切除术,而在肝切除术治疗肝癌过程中术前肝脏储备功能(Liver functional reserve, LFR)的评估是判断肝切除术后患者预后的重要指标,尤其行扩大肝切除术的患者术后发生肝功能衰竭(post-hepatectomy liver failure, PHLF)的风险较高,发生率为0.7%~9.1% [4] 。

肝脏功能衰竭指肝脏受损后导致蛋白质及凝血因子合成障碍、代谢废物堆积、易受感染等。由于正常肝脏再生能力强,即使手术切除体积达70%时也不会引发肝功能衰竭 [5] [6] 。然而,在大多数异常肝脏如肝硬化、肝脏肿瘤等情况下,由于其肝脏储备功能降低,再生缓慢等原因,常导致术后残余肝体积(Residual liver volume, RLV)的不足,进而增加PHLF的发生风险。因此,术前精准评估肝储备功能能最大限度地减少PHLF的发生 [7] 。本文将对于目前肝功能储备方法现状进行概述,为HCC患者手术治疗提供参考依据。

2. 血清学检查

术前常规血清学检查可以快速、简单地评估LFR:血清白蛋白和胆红素水平可反映肝脏合成和排泄功能,血小板和白细胞计数反映门静脉高压症,血清丙氨酸氨基转移酶和天冬氨酸氨基转移酶水平升高可提示持续的肝细胞破坏,但不能代表实际的肝功能,而凝血酶原时间或国际标准化比率则可反映实时肝功能。上述指标虽在一定程度上反映肝脏功能的受损情况,但孤立地根据这些指标判断LFR常存在很大的偏差,需同时结合多个检查结果综合评估,但临床缺乏统一指标,为此,近些年临床开发了许多基于血清学检查联合多项指标模型对LFR进行评估,如:白蛋白–胆红素(serum albumin-bilirubin score ALBI)、血小板–白蛋白–总胆红素分级(Platelet-Albumin-Bilirubin, PALBI)、ALT活性/血小板计数比值(AST/PLT ratio index, APRI)等评分系统,谢浩荣等 [8] 比较ALBI与Child评分系统发现前者ROC曲线下面积0.705较Child评分0.630能更好预测术后患者发生PHLF。William等 [9] 应用PALBI模型发现其预测PHLF能力较ALBI更高(OR = 2.06,P < 0.005比OR = 1.62,P < 0.01),总体而言,多个参数结合较单一指标能更准确评估评估LFR。但目前几乎所有综合评分系统均基于肝脏整体功能的评估,对于精准预测术后肝功能衰竭的准确度有限 [10] 。

3. 临床系统评估

1) Child-Pugh评分系统是由临床常规检查结合临床查体评估组成,来反映肝损害和肝代偿状态。根据Child-Pugh分级将患者分为A、B、C三级,普遍认为Child A级肝硬化患者可接受手术切除,Child B级肝硬化患者则是临界性病例。但与Child B、C级非手术治疗患者相比,手术并不能提供任何显著的益处,因此,对于这些患者倾向行局部消融、介入和肝移植治疗。在20年前,临床评判方法相对不足,Child评分一直作为手术金标准,且Child评分在其他评分系统也广泛应用,例如:BCLC分期系统 [11] ,意大利CLIP评分 [12] 和日本BM-JIS评分 [13] 均提到了Child评分。Child评分作为一种简单而实用的床旁评估方法,早已被证明是评估肝硬化、肝癌患者LFR的可靠工具。但由于其参数评估方式缺乏精确性及客观性,目前已不适合作为手术决策手段。近些年临床通过结合多个客观变量开发风险预测模型,大大改善了患者与医生之间的共同决策 [14] ,同时关注到其临床预测潜力仍有待开发。

2) 终末期肝病模型(Model for end-stage liver disease MELD)评分:MELD分数是对原始TIPS模型中使用的风险分数修改后的评分系统,公式如下:

它在计算中纳入了国际标准化比率、血清胆红素水平和血清肌酐水平,因此也被用于评价肝切除后死亡的风险。但大多数肝切除患者的血清肌酐浓度正常,计算后的MELD评分较低,导致用于预测切除后存活率的应用范围非常窄 [15] 。MELD量表是基于客观参数的模型,唯一需要解释的参数是肝病的病因。而研究发现 [16] ,当肝病的病因被排除后,模型的准确性并没有受到明显的影响,因此改良模型在排除了主观性的同时保留了模型的准确性,较Child评分能更准确的预测存活率。在一项近1.2万名接受肝切除的患者的数据表明 [17] ,MELD评分的增加是死亡率的独立预测因素,因此可以作为预测肝切除相关的死亡率的可靠工具,虽然MELD评分作为晚期失代偿期肝硬化患者生理储备的综合评估方式有效性得到了证实,但其在早期肝硬化患者中仍需进一步验证 [18] [19] 。

4. 肝脏功能定量试验

1) 吲哚菁绿(indocyanine green, ICG)清除试验评估:ICG被认为是目前反映LFR及和肝脏灌注情况最敏感的实验室指标,在静脉注射ICG后,从血浆到肝细胞的摄取只受到肝脏微循环状况的影响,通过胞浆转运和胆汁排泄从肝细胞中清除,不参与肝外代谢和排泄。长期以来,吲哚菁绿15 min滞留率(indocyanine retention at 15min, ICGR15)测量一直被认为是评估肝切除患者LFR的标准的最重要部分 [20] ,在2009年日本肝细胞癌治疗指南中建议作为评估术前LFR方法之一(证据B级) [21] 。过去认为,当肝硬化患者ICGR15 < 15%时,行肝切除术是安全的,ICGR15波动在10%~15%的患者建议行右肝切除,而ICGR15略高(范围10%至19%)的患者可考虑左肝切除 [22] 。在Makuuchi等 [23] 一项涉及1056例肝切除研究中报告,ICGR15与大范围肝切除患者死亡率明显相关。Seyama等 [24] 研究表明,采用ICGR15标准的肝切除手术死亡率几乎为零。因此,ICGR15已被越来越多地采用。Lee等 [25] 认为ICGR15大于14%是肝切除后发生术后并发症的独立危险因素。随着精准手术理念的发展,逐步转向使用CT测量肝脏体积联合ICGR15来确定肝切除范围的安全标准,Kim等 [26] 利用RLV与标准肝体积(SLV)的比值计算获得标准化残肝体积比(sFLR),在肝硬化组中当sFLR≥为25%且sFLR/ICGR15的比值>1.9时,表明行大范围肝切除术是安全的。虽然ICG目前是术前评估LFR较为准确的方法,但由于较高的血清胆红素(胆红素>3 mg/ml)会抑制ICG摄取,严重降低其结果的准确性 [27] ,目前针对于高胆红素影响ICG结果后的临界值没有准确的标准,近些年临床尝试使用多种实验方法对梗阻性黄疸患者进行评估,但效果均不佳,目前临床多采取先解除梗阻后进行评估方式处理。关于手术决策方面,董家鸿院士等 [28] 根据肝脏病变、Child评分及ICGR15作为LFR分级标准,提出依据必需功能性肝体积及剩余功能性肝体积的肝脏切除安全限量新概念(图1),满足了国内大部分临床肝胆外科中心的手术选择标准需要。

Figure 1. Schematic diagram of the quantitative liver resection decision system. RES: Functionally standardize liver-to-volume ratio

图1. 定量化肝切除决策系统示意图。RES:必须功能性标准化肝体积比

5. 影像学检查

5.1. 超声扫描技术

超声扫描(Ultrasound scan, US)是一种传统的通过测量肝脏、二维图像、血流等情况诊断肝癌、肝脏相关事件(Liver-related events, LRE)以及LFR情况的方法。在慢性乙肝患者中,其能根据肝纤维化程度和进展很大程度决定RLV及手术方式并预测发生肝脏失代偿的风险,为临床医生准确预测LRE的风险并建立个体化监测策略,最终延长慢性乙肝患者的总体生存时间。但由于受肠气、肝脏纤维化水平、血流测量不准等原因,只能粗略进行评估,近年来无创性检查成为研究热点包含:肝脏瞬时弹性成像(TE),超声弹性成像的声辐射力脉冲成像(ARFI)、超声造影技术(CEUS)等新型非侵入检测方法,通过超声测量肝实质弹性来评估肝纤维化程度 [29] 。TE对于早期代偿性肝硬变的诊断及判定是较准确的,目前已开发使用TE的几种基于肝脏硬度的肝细胞癌预测模型已经被采用,例如肝硬度测量–肝细胞癌(LSM-HCC) [30] 和改良的CHB中的肝细胞癌风险估计(mREACH-B) [31] 。

5.2. 超声造影(Contrast-Enhanced Ultrasonography, CEUS)

CEUS是在常规超声检查的基础上,通过静脉注射超声造影剂(ultrasound contrast agents, UCA)增强肝脏血流信号,实时观察组织微血管信息(血流灌注参数、达峰时间(TtoPk)、到达时间(ATM)以及血流参数A、k和Axk等)来评估肝脏灌注血流量,间接评估患者LFR的方法,具有成像实时监测、空间分辨率高等优点。UCA概念是20世纪60年代末首次被提出 [32] ,随后2016年FDA批准了SonoVue(六氟化硫A型脂质微球)作为肝脏成像的第一代UCA [33] 。它在进行灌注成像同时也可以增强肝脏的Kupffer细胞,在造影剂晚期(也称为Kupffer细胞期)由于UCA能迅速被肝脏的Kupffer细胞吞噬,保持其回声能力同时能完整的增强肝脏实质,而无Kupffer细胞的肝脏局灶性病变(如转移瘤、良性肝脏病变等),与周围肝实质相比表现为低回声,识别出一个对比剂消失的局部区域。Zheng等 [34] 研究CEUS在鉴别肝脏局灶性病变的良恶性方面表现出很高的诊断准确率,晚期患者阳性预测值可达91%,对于较大的结节(>3 cm),其准确率可达100%。目前下一代UCA的开发转向使用纳米技术和材料科学将诊断和治疗应用联合起来形成单一试剂的策略,从而达到疾病诊断、靶向治疗甚至治疗反应监测一体化 [35] 。Ye等研究 [36] 尝试通过回声纳米颗粒:水飞蓟素纳米颗粒(s-KMD),不仅达到评估肝脏储备功能及疾病诊断,而且能通过抑制炎症细胞达到治疗肝细胞损害效果,但目前还处于动物实验阶段,未来的研究有必要探索其临床的潜力,以更早地应用于疾病治疗。

5.3. X线计算机断层摄影技术(Computed Tomography, CT)

CT图像较超声更稳定、清晰,且造影剂对血管、胆道等显影更加开拓了其应用范围,对于疾病的诊断、判断、治疗等方面有着无可替代的作用,同时利用CT三维重建技术来计算肝脏总体积、病灶体积及RLV等来评估LFR,从而决定肝脏手术方案及手术切除范围。目前普遍认同:肝脏无实质病变,可切除范围达70%左右,在合并肝硬化,PVTT等病变基础上,切除范围只能40%左右。但在正常肝脏计算RLV和合并有脂肪肝、肝炎、肝硬化等发生纤维化、微血管改变的肝脏计算LFR却不对等,并且不同条件下的切除的范围差异却很大,研究 [37] 观察到,即使切除较小的肿瘤也可能导致肝功能衰竭,而切除较大的肿瘤可能会有更长的生存时间,因此,不同程度的肝硬变患者的RLV不应相同。Tu等 [38] 通过将CT容积测量与形态测量相结合评估患者不同情况下的肝脏功能储备,发现RLV和CT等级这两个参数与肝功能储备显著相关(p < 0.05),使用这两个参数建立临床预测模型对接受肝切除术的患者预测判断RLV,并且模型表明,如果没有发生肝硬变,40%的残余肝体积百分比(PRLV:预计RLV/预计总肝体积 × 100%)是安全的,但在CT3级时,90%以上的PRLV是边缘安全的。该标准已在更多的临床应用中进行了测试和验证 [6] 。最近有证据表明 [39] ,肝切除后门静脉压力升高与肝功能不全有关,术前行门静脉栓塞术(portal vein embolization, PVE)可以缓解切除后门静脉压力的突然升高,行大范围切除者,术前行PVE患者术后发生PHLF率更低。目前,CT通过形态学及容积测量方式评估LFR是较成熟方式,但临床仍需结合多个评估方式提高准确性。

5.4. 磁共振扫描技术(MRI)

MRI评估LFR主要从以下:灌注加权(PWI)、弥散加权(DWI)及波谱分析(MRS)方面分析,但同CT相似,主要根据肝脏体积及肿瘤体积的评估进行判断,近几年除了传统方法,发现定量肝功能试验可通过评估肝脏的摄取和排泄功能更精确评估LFR。如使用99mTc标记的亚氨基二乙酸衍生物的肝胆闪烁成像(HBS)来完成,其中甲溴芬宁是最具肝细胞特异性的 [40] ,此外,动态肝细胞特异性对比剂增强磁共振成像(DHCE-MRI)也可以准确显示肝脏的良性或恶性病变及评估LFR [41] 。研究表明 [42] 在肝癌患者中应用HBS和DHCE-MRI测定的参数有很强的相关性(Pearson r = 0.7, p = 0.001),二者对肝功能的评价价值相当,Deha等 [43] 研究显示HBS与ICG清除率密切相关,是确定肝功能的有效方法,同时提供了节段肝组织的功能性信息,在计划肝切除术时具有更广泛的用途。钆塞酸二钠(gadolinium ethoxybenzyl-diethyle- netriaminepentaacetic acid, Gd-EOB-DTPA)作为肝胆细胞特异性造影剂,可以很大程度检测病灶性质,普美显MRI对于肝功能异常者,Gd-EOB-DTPA吸收量会更低,对比T1和T2获得肝实质摄取造影剂及T1弛豫时间,从而定量评估LFR,据报道,GdEOB-DTPA增强MRI的结果与ICGR15显著相关,因为大多数Gd-EOB-DTPA摄取与ICG的转运体相同 [44] 。此外,使用增强MRI进行残肝功能评估已被报道为有助于预测术后发病率,并可作为门静脉癌栓患者肝细胞癌的手术指征 [45] 。但高胆红素血症由于排泄原因会影响其准确性,对于梗阻性黄疸患者并不适用。

6. 核医学

6.1. 锝标记的去唾液酸糖蛋白类似物半乳糖化人血清清蛋白(99mTc-GSA)显像

99mTC-GSA显像是利用TcGSA显影技术进行,通过肝细胞上的去唾液酸糖蛋白受体反映肝细胞的功能,同时利用闪烁扫描技术或者应用单光子发射计算机断层扫描(SPECT)测量分离肝段的功能性肝体积 [46] 。因此,99mTc-GSA可提供LFR和活动肝体积的信息,有助于决定肝切除的范围进而选择最合适的肝切除术。在67例HCC患者研究中 [47] 99mTc-GSA参数显示,功能性肝体积的测量可作为决策手术适应症之一。在未来,我们可以在此基础上补充其他肝功能参数对术后发病率进行综合风险评分和分类。对于PVE患者,虽然99mTc-GSA核素扫描不能明显显示未栓塞肝脏的功能改变,但是Sugai等人 [48] 发现,未栓塞的肝脏摄取密度显著增加,遂推测行PVE、肝切除术后的RLV可能有更大的再生潜力,此外,PVE肝大部切除后的安全性已可能得到证实 [49] ,以后有必要应用99mTc-GSA肝显像开发一种预测手术及切除范围的安全性模型,同时,为了改善肝细胞癌患者早期和晚期肝切除后的预后,可结合其他可靠的试验和相关的治疗标准对术前肝储备功能再进行充分的评估。

6.2. 99mTc-甲溴苯宁(Mebrofenin)肝胆显像(Hepatobiliary Scintigraphy, HBS)

99mTc-Mebrofenin体内转化也是直接通过胆道排泄,动态99mTc-Mebrofenin HBS相比于CT等其在预测PHLF方面更有价值,已证实可用于测量LFR功能方式,但二维平面图像缺乏评估节段性肝功能的能力,现将SPECT/CT相结合测量甲溴苯宁摄取率(mebrofenin uptake rate, MUR),从而达到精确评估RLV的体积和功能 [46] 。Rassam等 [42] 通过比较HBS衍生的MUR和DHCE-MRI衍生的均值Ki发现与总函数和RLV函数密切相关(Pearson r = 0.70,p = 0.001和r = 0.89,p < 0.001),确定99mTc-Mebrofenin HBS可作为一种量化肝功能的新兴方法,并在未来为接受肝脏手术的患者提供一站式评估。尤其对于病灶处于不同肝段,且合并其他基础肝病、肝功能受损等患者提供局部肝段及整体功能信息,但Mebrofenin对于胆道梗阻性患者提供参考价值仍然较差,仍然需要更进一步研究,进而完善此类患者精准评估LFR。

7. 小结及展望

综上所述,手术切除作为原发性肝癌目前唯一的根治方式,术前评估与手术方式的选择尤为重要,Child评分、ICGR15和CT、MRI等影像学检查对于局部和整体LFR的判断提供更多价值,对手术行局部切除或肝段、半肝切除有重要指导意义,此外合并有肝硬化、PVE等患者有助于行手术决策,LFR的评估是基于手术切除理念下尽可能通过术前评估降低死亡率、并发症等情况下完成手术,是当下外科手术考虑的重要问题。目前,尽管HCC患者术后病死率及并发症发生率较前明显下降,但PHLF发生率仍居高不下,严重威胁患者术后生存,目前术前评估LFR方式较多,对于临床应用的选择不统一,多数评价方式存在一定局限性,遂手术方式及方法选择各不相同,只有将多个术前定量方法综合应用,进而精准评估,参考后进行个性化手术决策,以期达到精准肝切除预期效果,避免发生术后肝衰竭等风险,延长患者生存时间及改善患者预后。

NOTES

*通讯作者。

参考文献

[1] Llovet, J.M., Kelley, R.K., Villanueva, A., et al. (2021) Hepatocellular Carcinoma. Nature Reviews Disease Primers, 7, Article No. 6.
https://doi.org/10.1038/s41572-020-00240-3
[2] 中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗指南(2022年版) [J]. 中华肝脏病杂志, 2022, 30(4): 367-388.
[3] Huang, D.Q., El-Serag, H.B. and Loomba, R. (2021) Global Epidemiology of NAFLD-Related HCC: Trends, Predictions, Risk Factors and Preven-tion. Nature Reviews Gastroenterology & Hepatology, 18, 223-238.
https://doi.org/10.1038/s41575-020-00381-6
[4] Van Den Broek, M.A.J., Olde Damink, S.W.M., Dejong, C.H.C., et al. (2008) Liver Failure after Partial Hepatic Resection: Definition, Pathophysiology, Risk Factors and Treat-ment. Liver International, 28, 767-780.
https://doi.org/10.1111/j.1478-3231.2008.01777.x
[5] Shoup, M., Gonen, M., D’Angelica, M., et al. (2003) Volumetric Analysis Predicts Hepatic Dysfunction in Patients Undergoing Major Liver Resection. Journal of Gastroin-testinal Surgery, 7, 325-330.
https://doi.org/10.1016/S1091-255X(02)00370-0
[6] Lin, X.J., Yang, J., Chen, X.B., et al. (2014) The Critical Value of Remnant Liver Volume-to-Body Weight Ratio to Estimate Posthepatectomy Liver Failure in Cirrhotic Patients. Journal of Surgical Research, 188, 489-495.
https://doi.org/10.1016/j.jss.2014.01.023
[7] Laurent, C., Sa Cunha, A., Couderc, P., et al. (2003) Influence of Postoperative Morbidity on Long-Term Survival Following Liver Resection for Colorectal Metastases. British Journal of Surgery, 90, 1131-1136.
https://doi.org/10.1002/bjs.4202
[8] 谢浩荣, 王恺, 周杰. 白蛋白-胆红素评分与Child-Pugh评分预测肝癌患者术后肝功能衰竭的效果比较[J]. 中华肝胆外科杂志, 2018, 24(3): 173-178.
[9] Wong, W.G., Perez Holguin, R.A., Tarren, A.Y., et al. (2022) Albumin-Bilirubin Score Is Superior to Platelet-Albumin- Bilirubin Score and Model for End-State Liver Disease Sodium for Predicting Posthepatectomy Liver Failure. Journal of Surgical Oncology, 126, 667-679.
https://doi.org/10.1002/jso.26981
[10] Garcea, G., Ong, S.L. and Maddern, G.J. (2009) Predicting Liver Failure Following Major Hepatectomy. Digestive and Liver Disease, 41, 798-806.
https://doi.org/10.1016/j.dld.2009.01.015
[11] Forner, A., Reig, M.E., de Lope, C.R., et al. (2010) Current Strategy for Staging and Treatment: The BCLC Update and Future Prospects. Seminars in Liver Disease, 30, 61-74.
https://doi.org/10.1055/s-0030-1247133
[12] Kudo, M., Chung, H. and Osaki, Y. (2003) Prognostic Staging Sys-tem for Hepatocellular Carcinoma (CLIP Score): Its Value and Limitations, and a Proposal for a New Staging System, the Japan Integrated Staging Score (JIS Score). Journal of Gastroenterology, 38, 207-215.
https://doi.org/10.1007/s005350300038
[13] Kitai, S., Kudo, M., Minami, Y., et al. (2008) Validation of a New Prognostic Staging System for Hepatocellular Carcinoma: A Comparison of the Biomarker-Combined Japan Integrated Staging Score, the Conventional Japan Integrated Staging Score and the BALAD Score. Oncology, 75, 83-90.
https://doi.org/10.1159/000173428
[14] Bruix, J., Cheng, A.L., Meinhardt, G., et al. (2017) Prognostic Factors and Predictors of Sorafenib Benefit in Patients with Hepatocellular Carcinoma: Analysis of Two Phase III Studies. Journal of Hepatology, 67, 999-1008.
https://doi.org/10.1016/j.jhep.2017.06.026
[15] Cescon, M., Cucchetti, A., Grazi, G.L., et al. (2009) Indication of the Extent of Hepatectomy for Hepatocellular Carcinoma on Cirrhosis by a Simple Algorithm Based on Preoperative Variables. The Archives of Surgery, 144, 57-63.
https://doi.org/10.1001/archsurg.2008.522
[16] Kamath, P.S., Wiesner, R.H., Malinchoc, M., et al. (2001) A Mod-el to Predict Survival in Patients with End-Stage Liver Disease. Hepatology, 33, 464-470.
https://doi.org/10.1053/jhep.2001.22172
[17] Ross Samuel, W., Seshadri, R., Walters, A.L., et al. (2016) Mortality in Hepatectomy: Model for End-Stage Liver Disease as a Predictor of Death Using the National Surgical Quality Im-provement Program Database. Surgery, 159, 777-792.
https://doi.org/10.1016/j.surg.2015.08.021
[18] Brown, C., Aksan, N. and Muir, A.J. (2022) MELD-Na Accurately Predicts 6-Month Mortality in Patients with Decompensated Cirrhosis: Potential Trigger for Hospice Referral. Journal of Clinical Gastroenterology, 56, 902-907.
https://doi.org/10.1097/MCG.0000000000001642
[19] Natkha, V.P., Southerland, P., Almekdash, M.H., et al. (2023) Predicting Outcomes in Trauma Patients with Cirrhosis Using Model for End-Stage Liver Disease Score: A Ret-rospective Study. The American Surgeon, 89, 2383-2390.
https://doi.org/10.1177/00031348221093534
[20] De Gasperi, A., Mazza, E. and Prosperi, M. (2016) Indocyanine Green Kinetics to Assess Liver Function: Ready for a Clinical Dynamic Assessment in Major Liver Surgery? World Journal of Hepatology, 8, 355-367.
https://doi.org/10.4254/wjh.v8.i7.355
[21] Kokudo, N. and Makuuchi, M. (2009) Evidence-Based Clinical Practice Guidelines for Hepatocellular Carcinoma in Japan: The J-HCC Guidelines. Journal of Gastroenterology, 44, 119-121.
https://doi.org/10.1007/s00535-008-2244-z
[22] Greco, E., Nanji, S., Bromberg, I.L., et al. (2011) Predictors of Peri-Opertative Morbidity and Liver Dysfunction after Hepatic Resection in Patients with Chronic Liver Disease. HPB (Oxford), 13, 559-565.
https://doi.org/10.1111/j.1477-2574.2011.00329.x
[23] Imamura, H., Seyama, Y., Kokudo, N., et al. (2003) One Thousand Fifty-Six Hepatectomies without Mortality in 8 Years. The Archives of Surgery, 138, 1198-1206.
https://doi.org/10.1001/archsurg.138.11.1198
[24] Seyama, Y. and Kokudo, N. (2009) Assessment of Liver Func-tion for Safe Hepatic Resection. Hepatology Research, 39, 107-116.
https://doi.org/10.1111/j.1872-034X.2008.00441.x
[25] Lee, C.F., Yu, M.C., Kuo, L.M., et al. (2007) Using In-docyanine Green Test to Avoid Post-Hepatectomy Liver Dysfunction. Chang Gung Medical Journal, 30, 333-338.
[26] Kim, H.J., Kim, C.Y., Park, E.K., Hur, Y.H., Koh, Y.S., et al. (2015) Volumetric Analysis and Indocya-nine Green Retention Rate at 15 Min as Predictors of Post-Hepatectomy Liver Failure. HPB, 17, 159-167.
https://doi.org/10.1111/hpb.12295
[27] Vos, J.J., Wietasch, J.K., Absalom, A.R., et al. (2014) Green Light for Liver Function Monitoring Using Indocyanine Green? An Overview of Current Clinical Applications. Anaesthesia, 69, 1364-1376.
https://doi.org/10.1111/anae.12755
[28] 董家鸿, 郑树森, 陈孝平, 等. 肝切除术前肝脏储备功能评估的专家共识(2011版) [J]. 中华消化外科杂志, 2011, 10(1): 20-25.
[29] Martínez, S.M., Crespo, G., Navasa, M., et al. (2011) Noninvasive Assessment of Liver Fibrosis. Hepatology, 53, 325- 335.
https://doi.org/10.1002/hep.24013
[30] Wong, G.L., Chan, H.L., Wong, C.K., et al. (2014) Liver Stiffness-Based Optimization of Hepatocellular Carcinoma Risk Score in Patients with Chronic Hepatitis B. Journal of Hepatology, 60, 339-345.
https://doi.org/10.1016/j.jhep.2013.09.029
[31] Lee, H.W., Yoo, E.J., Kim, B.K., et al. (2014) Prediction of De-velopment of Liver-Related Events by Transient Elastography in Hepatitis B Patients with Complete Virological Re-sponse on Antiviral Therapy. The American Journal of Gastroenterology, 109, 1241-1249.
https://doi.org/10.1038/ajg.2014.157
[32] Paefgen, V., Doleschel, D. and Kiessling, F. (2015) Evolution of Con-trast Agents for Ultrasound Imaging and Ultrasound-Mediated Drug Delivery. Frontiers in Pharmacology, 15, Article No. 197.
https://doi.org/10.3389/fphar.2015.00197
[33] Chernyak, V., Fowler, K.J., Kamaya, A., et al. (2018) Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients. Radi-ology, 289, 816-830.
https://doi.org/10.1148/radiol.2018181494
[34] Zheng, S.G., Xu, H.X. and Liu, L.N. (2014) Management of Hepatocellular Carcinoma: The Role of Contrast-Enhanced Ultrasound. World Journal of Radiology, 6, 7-14.
https://doi.org/10.4329/wjr.v6.i1.7
[35] Cho, K., Wang, X., Nie, S., et al. (2018) Therapeutic Nanoparticles for Drug Delivery in Cancer. Clinical Cancer Research, 14, 1310-1316.
https://doi.org/10.1158/1078-0432.CCR-07-1441
[36] Go, Y., Lee, H., Jeong, L., et al. (2018) Acid-Triggered Echogenic Nanoparticles for Contrast-Enhanced Ultrasound Imaging and Therapy of Acute Liver Failure. Biomaterials, 186, 22-30.
https://doi.org/10.1016/j.biomaterials.2018.09.034
[37] Capussotti, L., Muratore, A., Amisano, M., et al. (2006) Liver Resection for Large-Size Hepatocellular Carcinomas in 47 Non-Cirrhotic Patients—No Mortality and Long-Term Survival. Hepatogastroenterology, 53, 768-772.
[38] Tu, R., Xia, L.-P., Yu, A.-L., et al. (2007) Assessment of Hepatic Functional Reserve by Cirrhosis Grading and Liver Volume Measurement Using CT. World Journal of Gastroenterolo-gy, 13, 3956-3961.
https://doi.org/10.3748/wjg.v13.i29.3956
[39] Bogner, A., Reissfelder, C., Striebel, F., et al. (2021) Intraoperative Increase of Portal Venous Pressure Is an Immediate Predictor of Posthepatectomy Liver Failure after Major Hepatectomy: A Prospective Study. Annals of Surgery, 274, e10-e17.
https://doi.org/10.1097/SLA.0000000000003496
[40] Ghibellini, G., Leslie, E.M., Pollack, G.M., et al. (2008) Use of tc-99m Mebrofenin as a Clinical Probe to Assess Altered Hepatobiliary Transport: Integration of in Vitro, Pharmaco-kinetic Modeling, and Simulation Studies. Pharmaceutical Research, 25, 1851-1860.
https://doi.org/10.1007/s11095-008-9597-0
[41] Liu, X., Jiang, H., Chen, J., et al. (2017) Gadoxetic Acid Diso-dium-Enhanced Magnetic Resonance Imaging Outperformed Multidetector Computed Tomography in Diagnosing Small Hepatocellular Carcinoma: A Meta-Analysis. Liver Transplantation, 23, 1505-1518.
https://doi.org/10.1002/lt.24867
[42] Rassam, F., Zhang, T., Cieslak, K.P., et al. (2019) Comparison between Dy-namic Gadoxetate-Enhanced MRI and 99mTc-Mebrofenin Hepatobiliary Scintigraphy with SPECT for Quantitative As-sessment of Liver Function. European Radiology, 29, 5063-5072.
https://doi.org/10.1007/s00330-019-06029-7
[43] Erdogan, D., Heijnen, B.H.M., Bennink, R.J., et al. (2004) Pre-operative Assessment of Liver Function: A Comparison of 99mTc-Mebrofenin Scintigraphy with Indocyanine Green Clearance Test. Liver International, 24, 117-123.
https://doi.org/10.1111/j.1478-3231.2004.00901.x
[44] Chang, C.C., Huang, H.C., Liu, K., et al. (2016) Clinical Feasibility of GD-EOB-DTPA Enhanced MR Imaging for Assessing Liver Function: Validation with ICG Tests and Parenchymal Cell Volume. Clinical Imaging, 40, 797-800.
https://doi.org/10.1016/j.clinimag.2016.03.003
[45] Araki, K., Harimoto, N., Yamanaka, T., et al. (2020) Efficiency of Regional Functional Liver Volume Assessment Using GD-EOB-DTPA-Enhanced Magnetic Resonance Imaging for Hepatocellular Carcinoma with Portal Vein Tumor Thrombus. Surgery Today, 50, 1496-1506.
https://doi.org/10.1007/s00595-020-02062-y
[46] de Graaf, W., van Lienden, K.P., van Gulik, T.M., et al. (2010) (99m)Tc-mebrofenin Hepatobiliary Scintigraphy with SPECT for the Assessment of Hepatic Function and Liver Func-tional Volume before Partial Hepatectomy. Journal of Nuclear Medicine, 51, 229-236.
https://doi.org/10.2967/jnumed.109.069724
[47] Nanashima, A., Abo, T., Kudo, T., et al. (2013) Usefulness of Examining Hepatic Functional Volume Using Technetium-99m Galactosyl Serum Albumin Scintigraphy in Hepatocellu-lar Carcinoma. Nuclear Medicine Communications, 34, 478-488.
https://doi.org/10.1097/MNM.0b013e32835f945f
[48] Sugai, Y., Komatani, A., Hosoya, T., et al. (2000) Re-sponse to Percutaneous Transhepatic Portal Embolization: New Proposed Parameters by99mTc-GSA SPECT and Their Usefulness in Prognostic Estimation after Hepatectomy. Journal of Nuclear Medicine, 41, 421-425.
[49] Kaibori, M., Ha-Kawa, S.K., Ishizaki, M., et al. (2008) HA/GSA-Rmaxratio as a Predictor of Postoperative Liver Failure. World Journal of Surgery, 32, 2410-2418.
https://doi.org/10.1007/s00268-008-9725-3