脓毒症致急性肾损伤与微循环障碍的关系研究
Relationship between Acute Renal Injury In-duced by Sepsis and Microcirculation Disturbance
DOI: 10.12677/ACM.2023.13102142, PDF, HTML, XML, 下载: 303  浏览: 430 
作者: 胡 洁, 罗朋立*:青海大学附属医院肾病内科,青海 西宁
关键词: 急性肾损伤脓毒症肾脏微循环抗炎液体复苏Acute Kidney Injury Sepsis Renal Microcirculation Anti-Inflammation Fluid Resuscitation
摘要: 急性肾损伤发生最常见的原因是脓毒症,脓毒症导致肾脏微循环的改变是脓毒症相关急性肾损伤的主要原因,脓毒症通过炎症反应、球管失衡和血流重分布来影响肾脏微循环,进而导致肾小管坏死,针对病因出现了抗炎、液体复苏和血流重分布的治疗措施。本文旨在研究SA-AKI发生的机制,从而预防脓毒症患者进一步损伤肾脏及减低脓毒症患者死亡率,现就近年研究进展做一综述。
Abstract: Sepsis is the most common cause of acute kidney injury, and the change of renal microcirculation caused by sepsis is the main cause of sepsis-associated acute kidney injury, sepsis affects renal mi-crocirculation through inflammatory reaction, imbalance of bulbar duct and redistribution of blood flow, which leads to tubular necrosis. Anti-inflammatory, fluid resuscitation and redistribution of blood flow have been suggested to treat sepsis. This article aims to study the mechanism of SA-AKI, so as to prevent further renal damage and reduce mortality in patients with sepsis.
文章引用:胡洁, 罗朋立. 脓毒症致急性肾损伤与微循环障碍的关系研究[J]. 临床医学进展, 2023, 13(10): 15308-15313. https://doi.org/10.12677/ACM.2023.13102142

1. 引言

急性肾损伤(Acute kidney injury, AKI)是指各种病因导致的肾脏滤过功能短期内(数小时至数周)急剧下降的一组综合征,属于临床常见的肾脏急、危、重症,其发病率高,预后差,调查显示全球每年约1300万人发生AKI,约170万人死亡 [1] 。脓毒症(Sepsis)被定义为宿主对感染反应失调而导致的危及生命的器官功能障碍 [2] ,它是危重患者发生AKI最常见的原因 [3] 。脓毒症相关急性肾损伤(Sepsis associated acute kidney injury, SA-AKI)使住院死亡率增加6~8倍,发展为慢性肾脏疾病(Chronic kidney disease, CKD)的风险增加3倍,多达1/4的SA-AKI患者将需要肾脏替代治疗(Renal-replacement therapy, RRT) [4] 。研究SA-AKI发生的机制对于预防脓毒症患者进一步损伤肾脏及减低脓毒症患者死亡率至关重要,现就近年研究进展做一综述。

2. 微循环障碍

2.1. 免疫失衡

在脓毒症期间,免疫细胞和TEC表面表达的模式识别受体,即Toll样受体(Toll-like receptors, TLR),可识别释放的PAMPs和DAMPs,启动细胞内分子级联反应,增强感染的炎症反应 [4] 。在TEC中,DAMPS/PAMP与TLRs (即TLR2和TLR4)的结合会触发下游的信号级联反应,激活活化B细胞的核因子kappa轻链增强子(kappa-light-chain-enhancer of activated B-cells NF-κB) [5] ,这上调了炎性细胞因子的基因表达,是免疫细胞重新募集到损伤部位和清除细菌所必需的 [6] [7] 。此外,PAMPs/DAMPs可通过肾小球滤过屏障进入小管腔,识别TEC顶膜上的TLR4受体,启动炎症反应,表现为氧化应激、活性氧和线粒体损伤的增加 [8] 。这种双重打击机制使近端的TEC特别容易受到损伤。

TEC损伤改变包括以单核免疫细胞为主的浸润,一定程度的肾小管细胞空泡化,刷状边缘和极性的丧失、细胞凋亡,以及细胞内连接和基底膜的功能障碍,从而导致细胞从基底膜脱落 [9] 。炎症引起的血小板活化聚集、血小板–内皮细胞黏附,可能导致微血栓的形成和毛细血管的堵塞,而白细胞滚动黏附、间质水肿形成及血管通透性的增加共同损伤肾脏微循环 [10] ,这会导致组织氧摄取困难进一步加重。除了以上机制,炎症还会导致内皮源性一氧化氮合酶(Endothelial Nitric oxide synthase, eNOS)的增加,使直接血管扩张,抑制血小板、白细胞的聚集和糖萼的保护/防御机制丧失 [11] 。同时,超氧化物与一氧化氮(Nitric oxide, NO)结合,导致NO的生物利用度降低,并产生破坏细胞的过氧亚硝酸盐,直接损伤内皮和破坏细胞外结构,如细胞膜和糖萼 [12] 。活性氧(Reactive oxygen species, ROS)还可以削弱内皮依赖的血管反应、介导其他激动剂的血管收缩作用、并调节NO的依赖作用 [12] 。ROS是导致糖萼脱落、促进白细胞粘附、破坏内皮屏障和引起肾小球滤过功能障碍的主要原因之一 [13] 。

2.2. 球–管失衡

脓毒症期间GFR的下降主要有以下三方面原因即平均动脉压下降、入球小动脉的血管收缩和出球小动脉的血管扩张 [14] 。脓毒症期间,促炎症细胞因子和NO的释放,下调血管紧张素II (Angiotensinogen II, Ang II)的AT-1受体表达,醛固酮分泌减少,引起机体血压下降,导致器官血流不足 [15] 。此外,低水平的醛固酮可引起出球和传入球小动脉收缩,增加肾小球毛细血管压力和肾血管阻力,导致肾小球功能障碍和肾脏疾病的肾小球结构损害 [9] 。肾小管重吸收受损时球–管反馈被激活,入球小动脉的收缩导致肾内通过肾小球外毛细血管的分流,从而完全绕过肾小球,导致GFR降低 [4] 。微循环损伤引起脱落的小管上皮细胞也会阻塞管腔增加肾小管的压力,导致滤过梯度降低 [16] ,同时通过减少超滤液形成尿液和引起肾水肿增加肾囊内压力阻碍滤过,进而导致小管细胞功能障碍、丧失紧密连接和损害小管完整性 [17] 。肾小球滤过率降低的最后一个机制是由于脓毒症对肾小球上皮和/或内皮细胞的损伤,导致肾小球通透性的改变,直接限制了滤过 [17] 。它们共同作用下引起球–管失衡,进而引起GFR降低,肾脏微循环缺乏血流导致无法为此自身功能乃至细胞的生命提供必要的物质。

2.3. 微循环血流的不均匀分布

在脓毒症期间,肾内血流发生重新分配,引起血流从髓质流向皮质 [18] 。Calzavacca等人 [19] 通过阻断健康绵羊的肾动脉,证明与肾皮质相比,肾髓质内的缺血和缺氧程度成比例地更大。这可能是肾髓质自身结构特点有关,在外髓中,髓袢升支粗段位于这些血管束的外围,它们需要足够的氧气来主动重吸收NaCl,但肾髓质血管束的走形限制了髓袢升支粗段的氧气的利用 [20] 。除此之外,炎症介质的释放、糖萼损伤和内皮屏障破坏也加剧了血流的重新分布,导致氧气在不同区域出现不同程度的缺乏 [21] 。同时NO也被证明在AKI的病理生理学中起着重要作用,因为它对肾脏不同区域的选择性抑制可以恢复微血管流量和保护肾功能,在脓毒症期间NO产量总体在增加,但诱导型一氧化氮合酶(Induced Nitric oxide synthase, iNOS)在肾脏不同部位表达的不同,从而导致有些部位缺乏NO和扩张血管的能力,从而面临血液分流和缺氧的风险 [11] 。在绵羊脓毒症AKI模型中,神经元型、诱导型和内皮型NOS的基因表达增加,而eNOS在髓质中选择性降低 [22] 。这可能与髓质更容易出现缺血和缺氧有关。以上这些原因共同造就了肾髓质对肾脏血流降低比肾皮质更敏,缺血受损情况更为严重。

3. 预防和治疗

炎症、微血管功能障碍和肾小管细胞的适应性反应参与败血症AKI的发生,这一认识提供了新的诊断和治疗途径。目前关于SA-AKI的治疗方法主要手段有抗炎、液体复苏、血管活性剂、肾脏替代治疗等。

3.1. 抗炎

早期适当的抗生素给药和源头控制仍然是脓毒症治疗的支柱,这也可能防止进一步的肾脏损伤 [3] 。感染性休克延迟使用抗生素与早期AKI有关 [23] 。国际上关于严重脓毒症和脓毒症休克的指南中强烈建议,诊断脓毒症1h内需尽早、适量地输注抗菌药物,建议联合使用2种及以上抗生素治疗 [24] 。如多粘菌素-B血液灌流减少内毒素可降低RIFE评分和尿小管酶 [25] 。Bagshaw等 [23] 分析临床数据发现,尽早适当的抗菌治疗和控制感染源可以降低AKI的发生风险,治疗每迟滞1h,AKI发生的风险就会增加约40%。

3.2. 液体复苏

液体复苏和血管升压药治疗是休克治疗的基石,保存足够的血管内容量和维持血压,最终目的是促进组织灌流和氧合至关重要 [26] 。针对补液的类型,有生理盐水和平衡晶体两种选择,通过分别比较两者的不同临床结果发现,使用平衡晶体在30天内可以减少主要的肾脏不良事件 [4] 。同样有液体复苏作用的有羟乙基淀粉、明胶溶液、和白蛋白,尽管这溶液在多中心随机对照试验中被证明是安全的,但还没有发现白蛋白优于平衡晶体,而在危重病人,尤其是脓毒症病人,使用羟乙基淀粉和明胶溶液反而会增加AKI的风险和死亡率 [4] 。

然而,液体疗法在促进肾脏氧合方面的有效程度也受到质疑 [9] [17] 。尽管液体复苏可以使肾动脉血流正常化,但它也会进一步引起肾微循环血流的分布不均匀,形成不均匀的缺氧区,从而导致肾的氧摄取功能障碍 [27] 。同时过量输液也会导致肾功能衰竭,在一项包括2526名ICU患者的前瞻性观察研究中,AKI患者在前3天的每日和累积液体较高,液体超载是AKI和AKI严重性的独立风险因素 [28] 。液体超载和间质水肿还增加了肾脏微循环中氧气到靶细胞的扩散距离,导致氧气利用困难 [12] 。但是,限制液体使用另一方面可能导致低血容量血症,最后导致肾功能衰竭,因此确定脓毒症期间用于治疗低血容量血症的最佳液体量仍然是一个不确定的来源。

3.3. 血管活性药

去甲肾上腺素(Norepinephrine, NE)是推荐的治疗脓毒症休克和感染性休克的一线药物 [29] 。在绵羊脓毒症模型中,NE或去氧肾上腺素已被证明可以增强肾功能并促进利尿,NE的作用已经得到认可 [17] 。同样的,有抗利尿作用的加压素同样也可以收缩血管,应用加压素似乎不会增加AKI风险,甚至与较低的RRT率有关 [3] 。但基于其成本以及多中心随机对照试验和患者水平的荟萃分析证实,加压素虽然安全,但与NE相比并不能提高存活率,同时与NE相比有更多的副作用 [3] [4] 。

Ang II是一种血管收缩药,对绵羊或猪的研究也报告了Ang II不会恶化脓毒症期间的ATP水平、髓质缺氧和线粒体呼吸 [8] 。与NE不同,Ang II可以保护髓质的灌流和氧合,对儿茶酚胺耐药的高输出量休克患者静脉注射Ang II发现,患者血压升高,对其他血管加压剂的需求减少,甚至28天的死亡率降低23%,更多的患者停止RRT [3] 。因此,合并休克的SA-AKI患者可能受益于Ang II,但是否可以替代NE值得在临床试验中进一步研究。

3.4. 肾替代治疗

虽然有研究发现早期启动RRT对重度AKI患者的生存优势,但随机对照试验的一致性较差 [3] 。在ICU启动的早期透析与延迟透析试验专门针对感染性休克和严重AKI患者,但早期和延迟启动RRT患者之间的90天死亡率没有显著差异,且有9%的患者在早期启动和延迟启动RRT之间死亡 [30] 。高容量血液滤过(High volume hemofiltration, HVHF)被定义为一种持续治疗,对流剂量 > 35 ml/kg/h [31] 。针对HVHF,一些随机对照试验显示血流动力学和器官功能得到改善,以及循环炎症细胞因子的减少,但这些改善并不影响临床结果 [32] 。因此对于HVHF的效果及用法存在质疑。针对肾替代治疗的效果仍有待进一步研究。

4. 展望与总结

SA-AKI被定义为在存在脓毒症的情况下肾功能的突然恶化,是宿主对感染反应失调的结果。虽然SA-AKI的病理生理学机制仍不完全清楚,但很明显,SA-AKI并不等同于ATN,除了低灌流外,还有其他机制在起作用。肾功能的这些生理决定因素之间的平衡被破坏,微循环功能障碍、炎症和线粒体的代谢重新编程之间相互作用,共同影响了SA-AKI的发生。作为临床医生需要清楚地了解这种复杂综合征的临床过程,对其病理生理机制的了解可以为潜在的新疗法提供了方向。同时针对性的干预疾病的进展过程及挽救已经发生SA-AKI的患者,从而改善患者的短期和长期预后。然而,预防和治疗SA-AKI有效、特异的措施仍然缺乏,未来的研究须集中在更好地理解导致SA-AKI发生的机制上,以寻求在预防和治疗上有进一步的突破。

NOTES

*通讯作者。

参考文献

[1] 张莎, 陈刘, 孙曹周. 基于社区老年健康体检人群的慢性肾脏病流行病学调查[J]. 实用医学杂志, 2021, 37(13): 1755-1760.
[2] Singer, M., Deutschman, C.S., Seymour, C.W., et al. (2016) The Third International Consensus Defi-nitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[3] Peerapornratana, S., Manrique-Caballero, C.L., Gómez, H. and Kellum, J.A. (2019) Acute Kidney Injury from Sepsis: Current Concepts, Epidemiology, Pathophysiology, Prevention and Treatment. Kidney International, 96, 1083-1099.
https://doi.org/10.1016/j.kint.2019.05.026
[4] Manrique-Caballero, C.L., Del Rio-Pertuz, G. and Gomez, H. (2021) Sepsis-Associated Acute Kidney Injury. Critical Care Clinics, 37, 279-301.
https://doi.org/10.1016/j.ccc.2020.11.010
[5] Jansen, M.P.B., Pulskens, W.P., Butter, L.M., et al. (2018) Mito-chondrial DNA is Released in Urine of SIRS Patients with Acute Kidney Injury and Correlates with Severity of Renal Dysfunction. Shock, 49, 301-310.
https://doi.org/10.1097/SHK.0000000000000967
[6] Beunders, R., Schutz, M.J., Van Groenendael, R., et al. (2020) Endotoxemia-Induced Release of Pro-Inflammatory Mediators Are Associated with Increased Glomerular Filtra-tion Rate in Humans in Vivo. Frontiers in Medicine, 7, Article 559671.
https://doi.org/10.3389/fmed.2020.559671
[7] Dellepiane, S., Marengo, M. and Cantaluppi, V. (2016) Detrimental Cross-Talk between Sepsis and Acute Kidney Injury: New Pathogenic Mechanisms, Early Biomarkers and Targeted Therapies. Critical Care, 20, Article No. 61.
https://doi.org/10.1186/s13054-016-1219-3
[8] Nakano, D. (2020) Septic Acute Kidney Injury: A Review of Basic Research. Clinical and Experimental Nephrology, 24, 1091-1102.
https://doi.org/10.1007/s10157-020-01951-3
[9] Ergin, B., Kapucu, A., Demirci-Tansel, C. and Ince, C. (2015) The Renal Microcirculation in Sepsis. Nephrology Dialysis Transplantation, 30, 169-177.
https://doi.org/10.1093/ndt/gfu105
[10] Vlahu, C.A., Lemkes, B.A., Struijk, D.G., et al. (2012) Damage of the Endothelial Glycocalyx in Dialysis Patients. Journal of the American Society of Nephrology, 23, 1900-1908.
https://doi.org/10.1681/ASN.2011121181
[11] Gomez, H. and Kellum, J.A. (2016) Sepsis-Induced Acute Kidney Injury. Current Opinion in Critical Care, 22, 546- 553.
https://doi.org/10.1097/MCC.0000000000000356
[12] Zafrani, L., Payen, D., Azoulay, E. and Ince, C. (2015) The Microcirculation of the Septic Kidney. Seminars in Nephro- logy, 35, 75-84.
https://doi.org/10.1016/j.semnephrol.2015.01.008
[13] Singh, A., Ramnath, R.D., Foster, R.R., et al. (2013) Reac-tive Oxygen Species Modulate the Barrier Function of the Human Glomerular Endothelial Glycocalyx. PLOS ONE, 8, e55852.
https://doi.org/10.1371/journal.pone.0055852
[14] Martensson, J. and Bellomo, R. (2015) Sepsis-Induced Acute Kidney Injury. Critical Care Clinics, 31, 649-660.
https://doi.org/10.1016/j.ccc.2015.06.003
[15] Hering, D. and Winklewski, P.J. (2017) R1 Autonomic Nervous System in Acute Kidney Injury. Clinical and Experi- mental Pharmacology and Physiology, 44, 162-171.
https://doi.org/10.1111/1440-1681.12694
[16] Oliver, J., Macdowell, M. and Tracy, A. (1951) The Pathogenesis of Acute Renal Failure Associated with Traumatic and Toxic Injury. Renal Ischemia, Nephrotoxic Damage and the Ischemu-ric Episode. Journal of Clinical Investigation, 30, 1307-1439.
https://doi.org/10.1172/JCI102550
[17] Prowle, J.R. and Bellomo, R. (2015) Sepsis-Associated Acute Kidney Injury: Macrohemodynamic and Microhemo- dynamic Altera-tions in the Renal Circulation. Seminars in Nephrology, 35, 64-74.
https://doi.org/10.1016/j.semnephrol.2015.01.007
[18] Calzavacca, P., Evans, R.G., Bailey, M., Bellomo, R. and May, C.N. (2015) Cortical and Medullary Tissue Perfusion and Oxygenation in Experimental Septic Acute Kidney Injury. Critical Care Medicine, 43, e431-e439.
https://doi.org/10.1097/CCM.0000000000001198
[19] Calzavacca, P., Evans, R.G., Bailey, M., et al. (2015) Long-Term Measurement of Renal Cortical and Medullary Tissue Oxygenation and Perfusion in Unanesthetized Sheep. American Journal of Physiology-Regulatory, Integrative and Com- parative Physiology, 308, R832-R839.
https://doi.org/10.1152/ajpregu.00515.2014
[20] Fry, B.C., Edwards, A., Sgouralis, I. and Layton, A.T. (2014) Impact of Renal Medullary Three-Dimensional Architecture on Oxygen Transport. American Journal of Physiolo-gy-Renal Physiology, 307, F263-F272.
https://doi.org/10.1152/ajprenal.00149.2014
[21] Post, E.H., Kellum, J.A., Bellomo, R. and Vincent, J.-L. (2017) Renal Perfusion in Sepsis: From Macro- to Microcir- culation. Kidney International, 91, 45-60.
https://doi.org/10.1016/j.kint.2016.07.032
[22] Langenberg, C., Gobe, G., Hood, S., May, C.N. and Bellomo, R. (2014) Renal Histopathology during Experimental Septic Acute Kidney Injury and Recovery. Critical Care Medicine, 42, e58-e67.
https://doi.org/10.1097/CCM.0b013e3182a639da
[23] Bagshaw, S.M., Lapinsky, S., Dial, S., et al. (2009) Acute Kidney Injury in Septic Shock: Clinical Outcomes and Impact of Duration of Hypotension Prior to Initiation of Antimi-crobial Therapy. Intensive Care Medicine, 35, 871-881.
https://doi.org/10.1007/s00134-008-1367-2
[24] 黄浩, 汪薇, 柳林伟. 不同标准对脓毒症急性肾损伤患者预后评估的价值[J]. 中华实验和临床感染病杂志(电子版), 2016, 10(4): 435-439.
[25] Cantaluppi, V., Assenzio, B., Pasero, D., et al. (2008) Polymyxin-B Hemoperfusion Inactivates Circulating Proapoptotic Factors. Intensive Care Medi-cine, 34, 1638-1645.
https://doi.org/10.1007/s00134-008-1124-6
[26] Vincent, J.-L. and Gerlach, H. (2004) Fluid Resuscitation in Severe Sepsis and Septic Shock: An Evidence-Based Review. Critical Care Medicine, 32, S451-S454.
https://doi.org/10.1097/01.CCM.0000142984.44321.A4
[27] Kwon, O., Nelson, W.J., Sibley, R., Huie, P., Scan-dling, J.D., Dafoe, D., Alfrey, E. and Myers, B.D. (1998) Backleak, Tight Junctions, and Cell-Cell Adhesion in Postis-chemic Injury to the Renal Allograft. Journal of Clinical Investigation, 101, 2054-2064.
https://doi.org/10.1172/JCI772
[28] Wang, N., Jiang, L., Zhu, B., et al. (2015) Fluid Balance and Mortality in Crit-ically Ill Patients with Acute Kidney Injury: A Multicenter Prospective Epidemiological Study. Critical Care, 19, Article No. 371.
https://doi.org/10.1186/s13054-015-1085-4
[29] Rhodes, A., Evans, L.E., Alhazzani, W., et al. (2017) Surviving Sepsis Campaign: International Guidelines for Manage- ment of Sepsis and Septic Shock: 2016. Intensive Care Medicine, 43, 304-377.
https://doi.org/10.1007/s00134-017-4683-6
[30] Barbar, S.D., Clere-Jehl, R., Bourredjem, A., et al. (2018) Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis. New England Journal of Medicine, 379, 1431-1442.
https://doi.org/10.1056/NEJMoa1803213
[31] Ankawi, G., Neri, M., Zhang, J., et al. (2018) Extracorporeal Techniques for the Treatment of Critically Ill Patients with Sepsis Beyond Conventional Blood Purification Therapy: The Promises and the Pitfalls. Critical Care, 22, Article No. 262.
https://doi.org/10.1186/s13054-018-2181-z
[32] Park, J.T., Lee, H., Kee, Y.K., et al. (2016) High-Dose versus Conventional-Dose Continuous Venovenous Hemodiafiltration and Patient and Kidney Survival and Cytokine Removal in Sepsis-Associated Acute Kidney Injury: A Randomized Con-trolled Trial. American Journal of Kidney Diseases, 68, 599-608.
https://doi.org/10.1053/j.ajkd.2016.02.049