TyG指数与心血管疾病相关性研究进展
Research Progress on the Correlation of Triglyceride-Glucose Index with Cardiovascular Disease
DOI: 10.12677/ACM.2023.1392100, PDF, HTML, XML, 下载: 224  浏览: 531 
作者: 卜艾力·阿卜敦米吉提:新疆医科大学第五附属医院心血管内科,新疆 乌鲁木齐;热娜姑丽·吾守尔, 王贵鹏*:新疆医科大学第五附属医院甲乳外科,新疆 乌鲁木齐
关键词: 胰岛素抵抗甘油三酯–葡萄糖指数心血管疾病Insulin Resistance Triglyceride Glucose Index Cardiovascular Disease
摘要: 心血管疾病是全球发病率和死亡率的主要原因。在心血管疾病发病前对明显健康的人群进行早期风险检测在预防心血管事件中具有临床相关性。甘油三酯–葡萄糖指数已被确定为胰岛素抵抗的可靠替代生物标志物。最近,相当多的研究提供了强有力的统计学证据,表明甘油三酯–葡萄糖指数与心血管疾病的发展和预后有关,为此,在本综述中,旨在突出甘油三酯–葡萄糖指数在多种心血管疾病类型的应用价值,并探讨使用该指数对心血管疾病患者的早期筛查、危险分层及预后判断有潜在能力,并提供更广泛和精确的支持证据。
Abstract: Cardiovascular disease is the worldwide leading cause of morbidity and mortality. An early risk de-tection of apparently healthy people before cardiovascular disease onset has clinical relevance in the prevention of cardiovascular events. The triglyceride-glucose index has been identified as a re-liable alternative biomarker of insulin resistance. Recently, a considerable number of studies have provided robust statistical evidence suggesting that the triglyceride-glucose index is associated with the development and prognosis of cardiovascular disease. In this review, we aimed to highlight the application value of the triglyceride-glucose index for a variety of cardiovascular disease types and potential ability for early screening, risk stratification and prognosis judgment of patients with cardiovascular disease, also provide more extensive and precise supporting evidence.
文章引用:卜艾力·阿卜敦米吉提, 热娜姑丽·吾守尔, 王贵鹏. TyG指数与心血管疾病相关性研究进展[J]. 临床医学进展, 2023, 13(9): 15020-15027. https://doi.org/10.12677/ACM.2023.1392100

1. 引言

心血管疾病(cardiovascular disease, CVD)是全球发病率和死亡的主要原因,对公共卫生构成严重挑战,给患者带来经济负担 [1] 。心血管疾病患病率在我国持续上升,患者超过2.9亿例 [2] 。已表明CVD的几个危险因素,包括年龄、男性、肥胖、高血压、高胆固醇血症和糖尿病,但最近的研究表明,一些没有这些危险因素的个体也可能发生CVD [3] [4] 。此外,尽管技术不断发展,一级和二级预防措施也得到了普及,但CVD患者发生心血管不良事件的风险仍然增加,2016年约有240万人死于动脉粥样硬化性心脏病,占心血管疾病死亡人数的61%和总死亡人数的25%,比1990年约100万人死于动脉粥样硬化性心脏病(占心血管疾病死亡人数的40%和总死亡人数的11%)有所增加 [5] 。因此,识别心血管疾病的早期风险人群对于改善风险分层和治疗管理具有显著的临床意义。胰岛素抵抗(insulin resistance, IR)已被确定为CVD发生的重要危险因素 [6] 。在临床环境中,胰岛素抵抗的测量可能具有挑战性,因为胰岛素抵抗的稳态模型评估(homeostasis model assessment-estimated insulin resistance, HOMA-IR)存在局限性,高胰岛素–正葡萄糖钳夹技术既耗时又繁琐,主要使用于实验室检测,经济欠发达及偏远地区不便使用,甘油三酯–葡萄糖(triglyceride glucose, TyG)指数已被证明是胰岛素抵抗的简单衡量标准,可适用于实验室检测不便的经济欠发达地区 [7] 。美国一项大规模回顾性队列研究纳入31,209名患者,随访时间为123个月,发现较高的TyG指数使个体心血管事件风险增加了63% (P = 0.040),全因死亡风险增加了32% (P = 0.010)。高TyG被证明与肥胖人群的心血管事件有关(HR = 2.42, 95%CI 1.13~5.12, P = 0.020),TyG与美国年轻人和中年人群中有害的长期心血管事件独立相关,在肥胖人群中观察到更强的关联 [8] 。一项来自五大洲22个国家的大型前瞻性队列研究中,发现TyG指数与心血管疾病(如心肌梗死和中风)、心血管疾病死亡率和2型糖尿病显著相关,TyG指数与心血管疾病的相关性高于单独的葡萄糖和甘油三酯值 [9] 。较高的TyG指数水平与发生CVD的风险增加显著相关,与混杂因素无关,TyG指数是一种反映胰岛素抵抗的简单指标,有助于早期识别发生心血管疾病及心血管事件的高风险个体 [10] 。现结合最新研究对TyG指数预测CVD的潜在收益及意义进行阐述。

2. TyG指数与冠心病相关性

冠心病(coronary heart disease, CHD)是最常见的心血管疾病。由于老龄化、城市化、肥胖和不健康的生活习惯,冠心病的发病率和死亡率正在上升。因此,冠心病正在成为一个严重的公共卫生问题 [11] [12] 。动脉粥样硬化斑块的形成和发展是冠心病最重要的病理生理过程,可能的机制包括内皮细胞损伤、炎症、氧化应激、葡萄糖和脂质代谢紊乱以及血栓形成 [13] 。研究表明,动脉粥样硬化起病的主要危险因素之一就包括胰岛素抵抗,其会导致糖代谢及脂肪代谢紊乱,导致内皮不可逆的损害,促进平滑肌增生,血管扩张功能力减低,动脉粥样硬化的随之加快,且引起人体的凝血和纤溶状态的不协调,纤维蛋白原在体内不同水平的升高,并且能检测到纤溶酶原激活剂抑制因子1水平上升,诱发高凝血液状态,从而导致人体心脏和脑血管疾病的迅速发生 [14] 。

TyG指数是一个新型的反映IR的指数,诸多研究证实TyG指数升高与CHD的发生与不良结局呈正相关。在一项回顾性、观察性研究分析了来自重症监护医疗信息市场III的38511冠心病患者的TyG指数与院内全因死亡率之间的关系,结果显示TyG指数与医院死亡风险升高(HR = 1.71, 95%CI: 1.25~2.33, P = 0.001)和重症监护死亡率(HR = 1.50, 95%CI: 1.07~2.10, P = 0.019)独立相关 [15] 。Park等 [16] ,收集8945名患者的冠状动脉CT血管造影结果,所有参与者根据TyG指数三分位数分为三组,第一组、第二组和第三组的平均TyG指数分别为7.84 ± 0.19、8.27 ± 0.11和8.83 ± 0.30,发现冠状动脉粥样硬化性心脏病(coronary artery disease, CAD)的患病率随着TyG指数的升高而增加(I组:14.8%,II组:19.3%,III组:27.6%, P < 0.001),多变量logistic回归模型显示,TyG指数与CAD风险增加相关(OR = 1.473, 95%CI: 1.026~2.166),特别是非钙化(OR = 1.581, 95%CI: 1.002~2.493)和混合斑块(OR = 2.419, 95%CI: 1.051~5.569,均P < 0.05),指出TyG指数是CAD进展的独立标志物,特别是非钙化或混合斑块,预测CAD的最佳TyG指数临界值为8.44 (灵敏度47.9%;特异性68.5%,曲线下面积0.600,P < 0.001)。Won等 [17] 也在一项国际性、观察行研究中,通过计算机断层扫描血管造影技术进行斑块定量分析,发现与低TyG指数组相比,斑块进展风险和斑块快速进展风险比在高TyG指数显著增加,分别为(OR = 1.648, 95%CI: 1.167~2.327, P = 0.005)和(OR = 1.777, 95%CI: 1.288~2.451, P < 0.001),TyG指数是冠状动脉粥样硬化进展的独立预测标志。Xiong等 [18] 从冠状动脉造影结果分析发现,TyG指数与急性冠脉综合征(acute coronary syndrome, ACS)患者冠状动脉病变程度的中/高SYNTAX评分呈正相关(SYNTAX评分 > 22,OR = 2.6452, 95%CI: 1.9020~3.6786, P < 0.0001)。基于TyG指数三分位数的基线特征分为三组,T1 (TyG ≤ 8.67),T2 (8.67 < TyG ≤ 9.18),T3 (TyG > 9.18),TyG指数是中/高SYNTAX评分的独立危险因素(SYNTAX评分 > 22,OR = 2.645, 95%CI: 1.902~3.679, P < 0.001)。与T1组相比,T2组和T3组的中/高SYNTAX评分风险分别为高2.574倍(OR = 2.574, 95%CI: 1.610~4.112, P < 0.001)和3.732倍(OR = 3.732, 95%CI: 2.330~5.975, P < 0.001)。Wang等 [19] 将冠心病患者分为非多血管冠状动脉疾病(non-multivessel coronary disease, MVCD)和多血管冠状动脉疾病(multivessel coronary disease, MVCD)组,与非MVCD相比,TyG指数每增加一个单位,MVCD的风险就会增加1.213倍,还发现TyG指数每增加一单位,冠状动脉疾病严重程度增加1.897倍。随着TyG指数的升高,除全因死亡、心源性死亡、心力衰竭等心血管不良事件外,患者再住院、复发性ACS或计划外血运重建、冠状动脉非致死性脑卒中等的发病率均增加(P < 0.001)。一项嵌套病例对照研究纳入了1282例患有新发稳定型CAD的2型糖尿病患者,结果显示,在调整混杂危险因素后,TyG指数升高与主要心脑不良事件的风险增加相关(HR = 1.693, 95%CI: 1.238~2.316)。此外,在含有糖化血红蛋白的Cox模型中加入TyG指数可增加心脑血管不良事件的预测价值 [20] 。Zhu等 [21] 在一项回顾性研究中招募了1574例因ACS入院并成功接受了药物洗脱支架的冠状动脉介入治疗的患者,并发现TyG指数升高与药物洗脱支架后支架内再狭窄的发生呈独立且正相关(OR = 1.424, 95%CI: 1.116~1.818, P = 0.005),TyG指数可能对优化ACS患者药物洗脱支架后支架内再狭窄的早期风险分层具有临床意义。廖丽萍等 [22] 的研究发现,TyG指数与中青年冠心病患者的冠脉Gensini评分呈正相关,是中青年冠心病的独立危险因素,对于中青年冠心病患者的冠脉狭窄程度具有一定的预测价值。这些研究支持这样一种观点,即TyG指数是一种独立的标志物,TyG指数可作为冠心病患者冠脉病变严重程度及不良心血管事件风险的预测指标。

3. TyG指数与高血压相关性

高血压是一种严重的疾病,会增加患心脏、大脑、肾脏和其他疾病的风险。它是全世界过早死亡的主要原因 [23] 。2019年全球高血压患者人数超过1亿,这自1990年以来,这一数字翻了一番 [24] 。中国占世界人口的20%,占这一负担的很大一部分,高血压和血压相关心血管疾病是主要的公共卫生挑战 [25] 。众所周知,IR是发生高血压的最重要危险因素之一 [26] 。然而,潜在的机制尚未完全阐明,可能的机制与以下方面有关:首先,IR可以刺激肾素–血管紧张素–醛固酮系统的活性,从而进一步促进盐的吸收和水钠潴留,最终导致高血压 [27] 。其次,高胰岛素血症激活交感神经系统,增加心输出量和外周血管阻力,儿茶酚胺的分泌可能导致血管平滑肌细胞和内皮细胞肥大,导致管腔狭窄 [28] 。最后,胰岛素可能通过内皮素的释放在外周血管系统的收缩和血管扩张中发挥重要作用,内皮素可引起血管收缩,并减少前列环素(PGI2)和前列腺素E2 (PGE2)的等血管舒张因子的合成,最终导致血压升高 [29] 。

新近的文献报道证实,TyG指数是一种容易获得的胰岛素抵抗指标,可以用作一般成年人群高血压风险的预测指标 [30] 。Lee等 [31] 韩国学者对15,721名没有心脏代谢疾病病史的成年人横断面研究发现,高血压患病率随TyG指数增加(P < 0.001),连续TyG指数与血压升高、高血压前期和高血压的几率增加具有很强的剂量反应关系。与低TyG指数四分位数组相比,较高的TyG指数四分位数组与正常健康个体血压升高的风险呈正相关(OR = 4.24, 95%CI: 3.49~5.16, P < 0.001)。一项针对中国普通成年人的大型全前瞻性研究也发现,高水平的TyG指数与新发高血压的风险较高有关,TyG指数每增加1.0,新发高血压的风险增加17% (HR = 1.17, 95%CI: 1.04~1.31) [32] 。Zhu等 [33] 一项横断面研究中,招募47,808参与者,发现与单纯的血脂和血糖参数相比,TyG指数在总受试者与高血压保持显着相关(OR = 1.33, 95%CI: 1.18~1.51, P < 0.0001)。在分层分析中,在年龄最大(≥65岁)亚组中,TyG 指数升高与高血压病显著相关(OR = 1.67, 95%CI: 1.30~2.14, P < 0.0001),表明中国老年人群中高血压的辨别能力优于血脂和血糖参数。一项西班牙回顾性队列研究表明高血压的危害随着TyG的增加而增加,当将低TyG组与高TyG 组进行比较时,该风险增加了三倍(HR = 3.31, 95%CI: 2.38~4.60),甘油三酯–葡萄糖指数是高血压发展的独立预测指标,可能被用作预测高血压发展的廉价指标,并对个体进行风险分层,以帮助临床实践中的管理 [34] 。

4. TyG指数与心力衰竭相关性

流行病学研究表明,心力衰竭(heart failure, HF)是一种日益严重的健康负担,在成人人群中的患病率高达1%~2% [35] 。最近的研究表明,IR是HF患者预后不良的主要原因 [36] 。因此,IR替代标志物的在HF的预防和治疗中起着至关重要的作用。

在一项大样本、随访时间为8.78年的研究指出较高的TyG指数是一般人群中发生HF的风险高24% (HR = 1.24, 95%CI: 1.07~1.44) [37] 。Li等 [38] 通过来自两个大型中国队列的观察数据,其中开滦研究是一个基于唐山市社区的前瞻性队列研究,包含95,996名受试者,香港队列研究的数据是从临床数据分析和报告系统中回顾性提取的,包含19,345受试者,表明两个队列中TyG指数最高四分位数的受试者与最低四分位数相比发生HF的风险最高(开滦:HR = 1.23, 95%CI 1.09~1.39, P < 0.001;香港:HR = 1.21, 95%CI: 1.04~1.40, P = 0.007),TyG指数中每增加一个单位,开栾和香港队列的HF风险分别增加17%和13%。结合两个队列结果分析显示,TyG指数最高四分位数的受试者发生HF的风险比最低四分位数的受试者高出22% (95%CI = 11%~34%, P < 0.0001),TyG指数每增加一个单位,事故HF风险增加15%。还通过调整HF危险因素,行多变量孟德尔随机化分析,结果支持较高的TyG指数与HF风险增加之间存在因果关系(OR = 1.27, 95%CI: 1.15~1.40, P < 0.001)。提示较高的TyG指数是一般人群中发生HF的独立致病危险因素。在一项回顾性、观察性队列研究纳入932名急性失代偿期心衰患者,平均随访3年,结果显示在多变量Cox比例风险模型中,主要终点事件的风险与最高的TyG三分位数相关,最高三分位数(TyG指数 ≥ 9.32)与最低三分位数(TyG指数 < 8.83)的风险比在全因死亡中为2.09 (95%CI: 1.23~3.55, P = 0.006),心血管死亡为2.31 (95%CI: 1.26~4.24, P = 0.007),心脑血管不良事件为1.83 (95%CI: 1.18~3.01, P = 0.006),随着TyG指数的增加,主要终点时间的累积风险增加。当以TyG指数作为连续变量时,3个主要终点事件的危险比在TyG指数较高范围内迅速增加(全因死亡,TyG > 9.08;心血管死亡,TyG > 9.46;心脑血管不良事件,TyG > 9.87) [39] 。Zhou等也在一项回顾性研究中纳入6667名慢性心衰患者,平均随访3.9年,发现全因死亡和心血管死亡的累积发生率随TyG指数的升高而增加(均P < 0.001) [40] 。Huang等 [41] 在一个基于社区的前瞻性队列研究中对12374名参与者进行为期平均22.5年的随访,发现较高的TyG指数与心衰和左心室结构和功能受损的风险显着相增加(HR = 1.25, 95%CI: 1.08~1.45)。因此,TyG指数与HF风险及预后呈正相关,这表明TyG指数可能有助于识别HF的高风险人群和心血管疾病的危险分层。

5. TyG指数与心房颤动

心房颤动(atrial fibrillation, AF)是一种心律失常,与卒中、心力衰竭和死亡风险升高有关。先前的研究表明,左心房内的基本电生理和结构变化是心房颤动的主要病理生理基础 [42] 。越来越多的证据表明代谢紊乱,特别是糖尿病和胰岛素抵抗,可能导致心房电生理和结构重塑,这有助于心房颤动的启动 [43] [44] 。IR可导致心房结构重塑和异常细胞内钙稳态,导致AF易感性增加 [45] 。高胰岛素血症也被提出参与交感神经和肾素–血管紧张素–醛固酮系统的激活,从而促进心房神经重塑和随后对AF的易感性增加 [46] 。Maria等人提出,IR可以抑制心房葡萄糖转运蛋白的表达,有助于建立有利于AF发生的代谢条件 [47] 。TyG指数是一种简单而有价值的胰岛素抵抗标志物。一项回顾性观察性研究,来自心脏病科356名住院患者作为研究对象,发现AF组的TyG指数明显高于非AF组。多因素logistic回归显示,TyG指数(OR = 2.092, 95%CI: 1.412~3.100, P < 0.001)与心房颤动呈正相关,指出TyG指数升高是非糖尿病住院患者心房颤动的独立危险因素 [48] 。Yang等 [49] ,在一项回顾性队列研究中招募了549名接受行冠状动脉介入治疗的急性ST段抬高型心肌梗死患者,发现TyG指数是新发房颤的独立预测因子(OR = 8.884, 95%CI: 1.570~50.265, P = 0.014)。Shi等 [50] ,在一项横断面研究中,发现高TyG组比低TyG组相比,AF患病风险为2.120倍。Liu等招募来自自社区动脉粥样硬化风险队列中没有已知心血管疾病(心力衰竭,冠心病或中风)的11,851个体,为期为24.26年的前瞻性调查研究发现,没有已知CVD的患者发生TyG水平的AF风险逐渐上升高(P < 0.001) [51] 。

6. 结语

综上,根据目前研究的证据,高TyG指数可能与心血管疾病的发生及预后有显著关系,这表明通过控制TyG指数相关因素或导致TyG升高的触发因素(如血糖、血脂)可以显著降低CVD的发病率。作为一个简单的测量指标,TyG指数在临床实践中可能更常用,常规将TyG指数添加到临床诊断模型中可能有助于完善心血管风险分层,并能够实施更有针对性的治疗或预防措施。关于公共卫生影响,通过评估人群的TyG指数来早期发现CVD发病,并且在确定疾病风险后及时干预可能有效降低一般人群中CVD的发病率,TyG指数可能会被添加到常规健康检查计划中,以筛查心血管疾病的发展。最后,TyG指数在不同类型CVD中的病理作用仍值得进一步研究,TyG指数靶向治疗对CVD患者的潜在益处也需要更深入的验证,以更有力地阐析TyG指数在评估心血管疾病预测风险中的重要作用价值,经济、有效地开展CVD风险评估,推动我国心血管疾病防治体系建设。

参考文献

NOTES

*通讯作者。

参考文献

[1] Sacco, R.L., Roth, G.A., Reddy, K.S., et al. (2016) The Heart of 25 by 25: Achieving the Goal of Reducing Global and Regional Premature Deaths From Cardiovascular Diseases and Stroke: A Modeling Study from the American Heart As-sociation and World Heart Federation. Global Heart, 11, 251-264.
https://doi.org/10.1016/j.gheart.2016.04.002
[2] 陈伟伟, 高润霖, 刘力生, 等. 《中国心血管病报告2017》概要[J]. 中国循环杂志, 2018, 33(1): 1-8.
[3] Choi, S. (2019) The Potential Role of Biomarkers Associated with ASCVD Risk: Risk-Enhancing Biomarkers. Journal of Lipid and Atherosclerosis, 8, 173-182.
https://doi.org/10.12997/jla.2019.8.2.173
[4] Rosenblit, P.D. (2019) Extreme Atherosclerotic Cardiovascular Dis-ease (ASCVD) Risk Recognition. Current Diabetes Reports, 19, Article No. 61.
https://doi.org/10.1007/s11892-019-1178-6
[5] Zhao, D., Liu, J., Wang, M., et al. (2019) Epidemiology of Car-diovascular Disease in China: Current Features and Implications. Nature Reviews Cardiology, 16, 203-212.
https://doi.org/10.1038/s41569-018-0119-4
[6] Adeva-Andany, M.M., Martínez-Rodríguez, J., González-Lucán, M., et al. (2019) Insulin Resistance Is a Cardiovascular Risk Factor in Humans. Diabetes & Metabolic Syndrome: Clini-cal Research & Reviews, 13, 1449-1455.
https://doi.org/10.1016/j.dsx.2019.02.023
[7] Simental-Mendia, L.E., Rodriguez-Moran, M. and Guerre-ro-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304.
https://doi.org/10.1089/met.2008.0034
[8] Chen, W., Ding, S., Tu, J., et al. (2023) Association between the Insu-lin Resistance Marker TyG Index and Subsequent Adverse Long-Term Cardiovascular Events in Young and Mid-dle-Aged US Adults Based on Obesity Status. Lipids in Health and Disease, 22, Article No. 65.
https://doi.org/10.1186/s12944-023-01834-y
[9] Lopez-Jaramillo, P., Gomez-Arbelaez, D., Martinez-Bello, D., et al. (2023) Association of the Triglyceride Glucose Index as a Measure of Insulin Resistance with Mortality and Cardio-vascular Disease in Populations from Five Continents (PURE Study): A Prospective Cohort Study. The Lancet Healthy Longevity, 4, e23-e33.
https://doi.org/10.1016/S2666-7568(22)00247-1
[10] Sanchez-Inigo, L., Navarro-Gonzalez, D., Fernan-dez-Montero, A., et al. (2016) The TyG Index May Predict the Development of Cardiovascular Events. European Jour-nal of Clinical Investigation, 46, 189-197.
https://doi.org/10.1111/eci.12583
[11] Virani, S.S., Alonso, A., Benjamin, E.J., et al. (2020) Heart Disease and Stroke Statistics-2020 Update: A Report from the American Heart Association. Circulation, 141, e139-e596.
[12] Sheng-Shou, H. U. (2023) Report on Cardiovascular Health and Diseases in China 2021: An Updated Summary. Journal of Geriatric Cardiology, 20, 1-32.
[13] Juhani, K., William, W., Antti, S., et al. (2019) 2019 ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes. European Heart Journal, 41, 407-477.
[14] Caminiti, G., Fossati, C., Battaglia, D., et al. (2016) Ranolazine Improves Insulin Resistance in Non-Diabetic Patients with Coronary Heart Disease. A Pilot Study. International Journal of Cardiology, 219, 127-129.
https://doi.org/10.1016/j.ijcard.2016.06.003
[15] Zhang, R., Shi, S., Chen, W., et al. (2023) Independent Effects of the Triglyceride-Glucose Index on All-Cause Mortality in Critically Ill Patients with Coronary Heart Disease: Analysis of the MIMIC-III Database. Cardiovascular Diabetology, 22, Article No. 10.
https://doi.org/10.1186/s12933-023-01737-3
[16] Park, G.M., Cho, Y.R., Won, K.B., et al. (2020) Triglyceride Glucose Index Is a Useful Marker for Predicting Subclinical Coronary Artery Disease in the Absence of Traditional Risk Factors. Lipids in Health and Disease, 19, Article No. 7.
https://doi.org/10.1186/s12944-020-1187-0
[17] Won, K.B., Lee, B.K., Park, H.B., et al. (2020) Quantitative Assessment of Coronary Plaque Volume Change Related to Tri-glyceride Glucose Index: The Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angi-ography Imaging (PARADIGM) Registry. Cardiovascular Diabetology, 19, Article No. 113.
https://doi.org/10.1186/s12933-020-01081-w
[18] Xiong, S., Chen, Q., Long, Y., et al. (2023) Association of the Triglyceride-Glucose Index with Coronary Artery Disease Complexity in Patients with Acute Coronary Syndrome. Car-diovascular Diabetology, 22, Article No. 56.
https://doi.org/10.1186/s12933-023-01780-0
[19] Wang, J., Huang, X., Fu, C., et al. (2022) Association between Triglyceride Glucose Index, Coronary Artery Calcification and Multivessel Coronary Disease in Chinese Patients with Acute Coronary Syndrome. Cardiovascular Diabetology, 21, Article No. 187.
https://doi.org/10.1186/s12933-022-01615-4
[20] Jin, J.L., Sun, D., Cao, Y.X., et al. (2018) Triglyceride Glucose and Haemoglobin Glycation Index for Predicting Outcomes in Diabetes Patients with New-Onset, Stable Coronary Ar-tery Disease: A Nested Case-Control Study. Annals of Medicine, 50, 576-586.
https://doi.org/10.1080/07853890.2018.1523549
[21] Zhu, Y., Liu, K., Chen, M., et al. (2021) Triglycer-ide-Glucose Index Is Associated with In-Stent Restenosis in Patients with Acute Coronary Syndrome after Percutaneous Coronary Intervention with Drug-Eluting Stents. Cardiovascular Diabetology, 20, Article No. 137.
https://doi.org/10.1186/s12933-021-01332-4
[22] 廖丽萍, 周跟东, 张晓红, 等. 甘油三酯葡萄糖乘积指数对中青年人群冠心病及冠状动脉狭窄程度的预测价值[J]. 中国心血管病研究, 2021, 19(5): 440-444.
[23] Prins, K.W. and Thenappan, T. (2016) World Health Organization Group I Pulmonary Hypertension: Epidemiology and Path-ophysiology. Cardiology Clinics, 34, 363-374.
https://doi.org/10.1016/j.ccl.2016.04.001
[24] Nguyen, T.N. and Chow, C.K. (2021) Global and National High Blood Pressure Burden and Control. The Lancet, 398, 932-933.
https://doi.org/10.1016/S0140-6736(21)01688-3
[25] Lewington, S., Lacey, B., Clarke, R., et al. (2016) The Bur-den of Hypertension and Associated Risk for Cardiovascular Mortality in China. JAMA Internal Medicine, 176, 524-532.
https://doi.org/10.1001/jamainternmed.2016.0190
[26] Lytsy, P., Ingelsson, E., Lind, L., et al. (2014) Interplay of Overweight and Insulin Resistance on Hypertension Development. Journal of Hypertension, 32, 834-839.
https://doi.org/10.1097/HJH.0000000000000081
[27] Soleimani, M. (2015) Insulin Resistance and Hypertension: New Insights. Kidney International, 87, 497-499.
https://doi.org/10.1038/ki.2014.392
[28] Da, S.A., Do, C.J., Li, X., et al. (2020) Role of Hyperinsulinemia and In-sulin Resistance in Hypertension: Metabolic Syndrome Revisited. The Canadian Journal of Cardiology, 36, 671-682.
https://doi.org/10.1016/j.cjca.2020.02.066
[29] Muniyappa, R., Chen, H., Montagnani, M., et al. (2020) Endothelial Dysfunction Due to Selective Insulin Resistance in Vascular Endothelium: Insights from Mechanistic Modeling. Ameri-can Journal of Physiology-Endocrinology and Metabolism, 319, E629-E646.
https://doi.org/10.1152/ajpendo.00247.2020
[30] Wang, Y., Yang, W. and Jiang, X. (2021) Association between Triglyceride-Glucose Index and Hypertension: A Meta-Analysis. Frontiers in Cardiovascular Medicine, 8, Article ID: 644035.
https://doi.org/10.3389/fcvm.2021.644035
[31] Lee, D.H., Park, J.E., Kim, S.Y., et al. (2022) Association between the Triglyceride-Glucose (TyG) Index and Increased Blood Pressure in Normotensive Subjects: A Popula-tion-Based Study. Diabetology Metabolic Syndrome, 14, Article No. 161.
https://doi.org/10.1186/s13098-022-00927-5
[32] Gao, Q., Lin, Y., Xu, R., et al. (2023) Positive Association of Triglyceride-Glucose Index with New-Onset Hypertension among Adults: A National Cohort Study in China. Cardio-vascular Diabetology, 22, Article No. 58.
https://doi.org/10.1186/s12933-023-01795-7
[33] Zhu, B., Wang, J., Chen, K., et al. (2020) A High Triglyceride Glucose Index Is More Closely Associated with Hypertension than Lipid or Glycemic Parameters in Elderly Individuals: A Cross-Sectional Survey from the Reaction Study. Cardiovascular Diabetology, 19, Article No. 112.
https://doi.org/10.1186/s12933-020-01077-6
[34] Khoo, J.K., Low, S., Irwan, B., et al. (2023) The Role of Tri-glyceride-Glucose Index in the Prediction of the Development of Hypertension—Findings from a Community Cohort in Singapore. Journal of the ASEAN Federation of Endocrine Societies, 38, 62-67.
https://doi.org/10.15605/jafes.038.01.09
[35] Ziaeian, B. and Fonarow, G.C. (2016) Epidemiology and Aetiology of Heart Failure. Nature Reviews Cardiology, 13, 368-378.
https://doi.org/10.1038/nrcardio.2016.25
[36] Doehner, W., Rauchhaus, M., Ponikowski, P., et al. (2005) Impaired Insulin Sensitivity as an Independent Risk Factor for Mortal-ity in Patients with Stable Chronic Heart Failure. Journal of the American College of Cardiology, 46, 1019- 1026.
https://doi.org/10.1016/j.jacc.2005.02.093
[37] Xu, L., Wu, M., Chen, S., et al. (2022) Triglyceride-Glucose Index Associates with Incident Heart Failure: A Cohort Study. Diabetes & Metabolism, 48, Article ID: 101365.
https://doi.org/10.1016/j.diabet.2022.101365
[38] Li, X., Chan, J.S.K., Guan, B., et al. (2022) Triglyceride-Glucose Index and the Risk of Heart Failure: Evidence from Two Large Cohorts and a Mendelian Randomization Analysis. Car-diovascular Diabetology, 21, Article No. 229.
https://doi.org/10.1186/s12933-022-01658-7
[39] Huang, R., Wang, Z., Chen, J., et al. (2022) Prognostic Value of Triglyceride Glucose (TyG) Index in Patients with Acute Decompensated Heart Failure. Cardiovascular Diabetology, 21, Article No. 88.
https://doi.org/10.1186/s12933-022-01507-7
[40] Zhou, Y., Wang, C., Che, H., et al. (2023) Association between the Triglyceride-Glucose Index and the Risk of Mortality among Patients with Chronic Heart Failure: Results from a Retrospective Cohort Study in China. Cardiovascular Diabetology, 22, Article No. 171.
https://doi.org/10.1186/s12933-023-01895-4
[41] Huang, R., Lin, Y., Ye, X., et al. (2022) Triglyceride-Glucose Index in the Development of Heart Failure and Left Ventricular Dysfunction: Analysis of the ARIC Study. European Journal of Preventive Cardiology, 29, 1531-1541.
https://doi.org/10.1093/eurjpc/zwac058
[42] Gawako, M., Saljic, A., Li, N., et al. (2022) Adiposity-Associated Atrial Fibrillation: Molecular Determinants, Mechanisms and Clinical Significance. Cardiovascular Research, 119, 614-630.
https://doi.org/10.1093/cvr/cvac093
[43] Trieb, M., Kornej, J., Knuplez, E., et al. (2019) Atrial Fibrillation Is Associated with Alterations in HDL Function, Metabolism, and Particle Number. Basic Research in Cardiology, 114, Article No. 27.
https://doi.org/10.1007/s00395-019-0735-0
[44] Wang, L. (2021) The Relationship between Blood Lipids and Risk of Atrial Fibrillation: Univariable and Multivariable Mendelian Randomization Analysis. Nutrients, 14, Article No. 181.
https://doi.org/10.3390/nu14010181
[45] Chan, Y.H., Chang, G.J., Lai, Y.J., et al. (2019) Atrial Fibrillation and Its Arrhythmogenesis Associated with Insulin Resistance. Cardiovascular Diabetology, 18, Article No. 125.
https://doi.org/10.1186/s12933-019-0928-8
[46] Hideki, O., Hitoshi, S., Takashi, H., et al. (2009) Influences of Autonomic Nervous System on Atrial Arrhythmogenic Substrates and the Incidence of Atrial Fibrillation in Diabetic Heart. International Heart Journal, 50, 627-641.
https://doi.org/10.1536/ihj.50.627
[47] Maria, Z., Campolo, A.R., Scherlag, B.J., et al. (2017) Dysregulation of Insulin-Sensitive Glucose Transporters during Insulin Resistance-Induced Atrial Fibrillation. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1864, 987-996.
https://doi.org/10.1016/j.bbadis.2017.12.038
[48] Chen, L., Ding, X.H., Fan, K.J., et al. (2022) Association between Triglyceride-Glucose Index and 2-Year Adverse Cardio-vascular and Cerebrovascular Events in Patients with Type 2 Diabetes Mellitus Who Underwent Off-Pump Coronary Artery Bypass Grafting. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 15, 439-450.
https://doi.org/10.2147/DMSO.S343374
[49] Ling, Y., Fu, C., Fan, Q., et al. (2022) Triglyceride-Glucose Index and New-Onset Atrial Fibrillation in ST-Segment Elevation Myocardial Infarction Patients after Percutaneous Coronary Intervention. Frontiers in Cardiovascular Medicine, 9, Article ID: 838761.
https://doi.org/10.3389/fcvm.2022.838761
[50] Shi, W., Qin, M., Wu, S., et al. (2022) Usefulness of Triglycer-ide-Glucose Index for Detecting Prevalent Atrial Fibrillation in a Type 2 Diabetic Population. Postgraduate Medicine, 134, 820-828.
https://doi.org/10.1080/00325481.2022.2124088
[51] Liu, X., Abudukeremu, A., Jiang, Y., et al. (2023) U-Shaped Association between the Triglyceride-Glucose Index and Atrial Fibrillation Incidence in a General Population without Known Cardiovascular Disease. Cardiovascular Diabetology, 22, Article No. 118.
https://doi.org/10.1186/s12933-023-01777-9