结直肠息肉的危险因素
Risk Factors for Colorectal Polyps
DOI: 10.12677/ACM.2023.1392071, PDF, HTML, XML, 下载: 295  浏览: 406 
作者: 王嫣琦, 郭宇扬, 白 宇:西安医学院研究生工作部,陕西 西安;刘丹平:陕西省人民医院急诊科,陕西 西安
关键词: 结直肠息肉CRC危险因素Colorectal Polyps CRC Risk Factors
摘要: 结直肠息肉是结直肠黏膜突向肠腔的隆起性病变,是大多数结直肠癌的前兆病变,通过检测和除去结直肠息肉来预防相关癌症发生是其所特有的特征。据报道,腺瘤发展为癌症的平均总时间为10.6~25.8年。因此,明确结直肠息肉发病的危险因素,早期筛查和干预是降低结直肠癌发病率的有效途径,本文通过综述结肠息肉的危险因素为结肠息肉的预防提供依据。
Abstract: Colorectal polyps are protruding lesions of the colorectal mucosa that protrude into the intestinal cavity, and are a precursor to most colorectal cancer. The detection and removal of colorectal polyps to prevent the occurrence of related cancers is its unique feature. It is reported that the average to-tal time from adenoma to cancer is 10.6 to 25.8 years. Therefore, identifying the risk factors of colo-rectal polyps, early screening and intervention are effective ways to reduce the incidence rate of colorectal cancer. This article reviews the risk factors of colorectal polyps to provide basis for the prevention of colorectal polyps.
文章引用:王嫣琦, 郭宇扬, 白宇, 刘丹平. 结直肠息肉的危险因素[J]. 临床医学进展, 2023, 13(9): 14803-14809. https://doi.org/10.12677/ACM.2023.1392071

1. 前言

结直肠癌(CRC)是一种普遍存在的癌症,其发病率和死亡率分别在全球癌症中排名第三和第二,发达国家的发病率最高,但随着发展中国家饮食和生活方式日益西化,预计到2030年将显著增加全球疾病负担 ‎[1] 。幸运的是,自从20世纪90年代广泛筛查以来,结直肠癌的发病率下降了35%,一些研究已经证明CRC筛查和癌前结直肠腺瘤的切除使CRC发病率和死亡率降低约50% ‎[2] ‎[3] ‎[4] 。多数CRC来自前体腺瘤或锯齿状息肉,在其进展为恶性肿瘤和转移之前检测和切除,为CRC预防提供了机会 ‎[5] 。因此,了解结直肠息肉的危险因素可能是预防和管理CRC的更好方法。研究认为结直肠息肉与人口特征、生活习惯、健康状态有关。以下展开描述。

2. 人口特征

2.1. 遗传

结直肠息肉的发生与遗传密切相关,约占5%~16%,具有结直肠癌家族病史及基因突变是最主要的遗传因素。最著名的遗传性结直肠癌疾病是林奇综合征和家族性腺瘤性息肉病。此外还包括MUTYH相关息肉病、Peutz-Jeghers综合征和青少年息肉病综合征等 ‎[6] 。大多数CRC都是由息肉伴腺瘤样改变或异型增生通过长达数年的多步骤过程(称为“腺瘤–癌序列”)引起的 ‎[7] 。近年来随着深度测序研究的发展,更精准的揭示了结直肠息肉到癌症的发生途径,包括染色体不稳定途径、微卫星不稳定途径、锯齿状通路等。例如增生性息肉可通过锯齿状或微卫星不稳定途径发展为CRC ‎[8] ,林奇综合征主要通过微卫星不稳定性(MSI)途径发展为CRC ‎[9] 。

2.2. 年龄、性别、种族、地区

年龄、性别、种族、地区与结直肠息肉发病率的相关性相差较大。结直肠息肉在我国的患病率约18.1% ‎[10] 。年龄是结直肠息肉发生的主要危险因素之一,大量研究表明结直肠息肉患病率与年龄呈正相关,年龄每增加1岁,患病风险增加1.03倍,同时,年龄增加了患大息肉的风险 ‎[11] 。美国的一项横断面研究报告称,筛查性结肠镜检查中男性患结直肠腺瘤的风险是女性的1.77倍 ‎[12] 。男性结直肠腺瘤的患病率始终高于女性,但两者的终生风险大致相等。此外,Corley DA等人发现基于人种和种族的结直肠腺瘤风险存在微小差异 ‎[12] 。美国的一项研究发现非裔美国人具有更高的大结直肠息肉风险,黑人比白人高25% ‎[13] 。直到65岁,黑人和白人的患病率相当。阿拉斯加土著人的CRC发病率和死亡率是非裔美国人的两倍 ‎[14] ,在结直肠息肉风险方面,种族群体之间似乎存在细微差异,这可能主要由生活方式暴露或其它因素驱动。

3. 生活习惯

3.1. 吸烟

吸烟是结直肠息肉和CRC发生的重要危险因素 ‎[15] 。主要的关机制是通过氧化应激和细胞DNA损伤 ‎[16] 。既往吸烟者与不吸烟者相比会增加腺瘤性息肉的风险。吸烟伴随着某些CRC的高风险亚型会增加近端结肠癌及直肠癌的风险,同时,一项荟萃分析显示,吸烟者发生锯齿状息肉的风险增加 ‎[17] 。特别是在远端结肠内。此外,吸烟还会以剂量依赖性方式增加结直肠癌的风险。最近的研究表明,戒烟25年后,结直肠癌的风险会降低,其相对风险(RR)下降0.03 ‎[18] 。

3.2. 饮酒

大量研究证实,每天饮用超过1种酒精饮料与结直肠息肉和CRC的发生有明显关系 ‎[19] 。韩国一项研究发现大量饮酒者与不饮酒者相比结直肠腺瘤的风险增加约86% ‎[20] 。另一项由Bardou及其同事进行的研究同样表明,大量饮酒者患大结直肠腺瘤(>10毫米)的风险明显增加。此外,大量饮酒者患锯齿状息肉的风险较不饮酒者增加了24%。同时,更具体的一项研究证明,酒精摄入剂量与锯齿状息肉风险之间存在依赖关系,重度饮酒者(>36 g)比适度饮酒者(8 g/d~36 g/d)的相对危险度更高 ‎[17] 。

3.3. 体力活动和锻炼

现有研究已充分证明,久坐与CRC、心脏病、糖尿病、过早死亡、肺癌和子宫内膜癌有关。体力活动可以降低CRC和结直肠息肉的风险。在一项横断面研究中发现,有规律的中度至剧烈的娱乐性体力活动与筛查时结直肠息肉患病率降低之间存在相关性。尤其是在女性中,即使是少时间的规律坐姿(0~20小时/天)也与息肉的存在有关 ‎[21] 。另一项荟萃分析发现体力活动将结直肠息肉发生的风险降低16%,并可能大幅降低大而晚期结直肠息肉的风险 ‎[22] 。同时,体力活动对吸烟者和肥胖者的结肠直肠息肉的存在更有益的影响。

3.4. 饮食

红肉与CRC和结直肠腺瘤的风险增加有关 ‎[16] 。红肉经过高温煎炸会产生大量杂环胺,杂环胺可以诱导DNA损害产生突变促进CRC的发展。研究发现,每天食用每100克红肉使CRC风险升高1.16倍 ‎[23] 。美国癌症协会指南指出限制红肉以及地中海饮食(定义为低饱和脂肪、肉类和奶制品,高蔬菜、水果和坚果)或素食饮食可降低CRC的风险 ‎[24] 。几项流行病学研究发现增加膳食钙和维生素D的摄入量可降低CRC的风险 ‎[25] 。强有力的证据表明纤维可降低CRC的风险和结直肠息肉的复发率。纤维可以缩短粪便传输时间,稀释肠腔内的致癌物并形成可调节细胞凋亡的脂肪酸 ‎[26] 。有证据表明水果具有抗癌特性,并且高水果摄入量可降低CRC的风险 ‎[27] 。健康和均衡的饮食不仅可以产生稳定且有益的肠道微生物组,还可以减少某些致癌的细菌代谢产物。

4. 代谢综合征

4.1. 糖尿病

Vu HT等人发现糖尿病使结直肠息肉风险增加50% ‎[28] 。尤其增加年轻患者结直肠腺瘤的风险,40至49岁的糖尿病患者患结直肠息肉的风险是同年龄组非糖尿病患者的3倍。有研究表明,糖尿病患者的胰岛素抵抗和高胰岛素血症可通过直接刺激结直肠细胞增殖而促进癌变。此外,胰岛素可结合并激活胰岛素样生长因子-1受体(IGF-1R),该受体在正常结直肠上皮细胞和肿瘤细胞中均有表达。被激活的IGF-1R通过受体–配体复合物可以抑制细胞凋亡并允许细胞周期进展促进结直肠息肉的发生 ‎[29] 。虽然高血糖与结直肠风险相关,但尚不清楚高血糖或高胰岛素血症是否是结直肠息肉风险的主要驱动因素。

4.2. 肥胖

多项衡量肥胖的指标如体重指数(BMI)、腹围均可提示一定的结直肠癌发生的风险概率。一项荟萃分析发现体重指数(BMI)增加5个单位结直肠息肉风险增加19% ‎[30] 。据推测肥胖患者的脂肪组织释放(肿瘤坏死因子、白介素-6)等炎症因子,身体长期处于高水平的炎症状态,激活致CRC转录途径,引起结直肠腺瘤和CRC的发生 ‎[16] 。

4.3. 高脂血症

结直肠息肉和血脂水平之间的关系存在争议。大多数研究表明结直肠腺瘤性息肉患者的胆固醇(TC)水平高于正常人,并且患者的高密度脂蛋白(HDL-C)水平低于正常人。最近的一项荟萃分析中研究结果显示结直肠息肉(包括非腺瘤性息肉)患者甘油三酯(TG)和低密度脂蛋白(LDL-C)浓度高于健康人群 ‎[31] 。有以下几个相关的机制,TG对胰岛素样生长因子-I (IGF-1)的水平有影响,而IGF-1R的激活可通过增强核因子-κB或降低过氧化物酶体增殖物激活受体-γ来抑制细胞凋亡,进而促进癌症的发生发展 ‎[32] ;血脂异常可使炎性细胞因子含量增加,使抗炎因子水平降低促进细胞增殖;高脂饮食可刺激胆汁酸分泌,次级胆汁酸可进一步刺激结直肠上皮细胞增殖并抑制外源性致癌物的解毒;血清脂质诱导细胞氧化应激,可增加活性氧的产生并影响基因表达;此外,脂肪酸和TG可激活与CRC发展相关的环氧合酶-2 ‎[33] 。

5. 胆囊疾病

胆囊疾病是全世界最常见的疾病之一,我们将胆囊疾病定义为胆结石或胆囊息肉 ‎[34] 。Jeun等人认为胆囊息肉可能与结直肠腺瘤无关 ‎[35] ,但Liu等人和Yamaji等人揭示了胆结石与结直肠腺瘤有关 ‎[36] [37] 。因此胆囊疾病与结直肠息肉之间的关系尚无统一定论,我国的一项研究发现胆囊息肉患者患结直肠息肉的几率更高,包括多发或较大的胆囊息肉以及患左结肠息肉的几率更高。该研究还表明胆囊息肉与结直肠腺瘤呈正相关,而与结直肠非腺瘤性息肉之间没有相关性 ‎[38] 。胆囊息肉和结直肠腺瘤之间的关联可能是由于相同的危险因素,两种疾病可能通过相似的途径发展。有证据表明,胆囊息肉与较高水平的次级胆汁酸相关,而腺瘤性息肉患者的粪便胆汁酸、石胆酸和总次级胆汁酸浓度高于正常个体,这可能是两者相关性的一种依据。此外,已表明胆固醇7α-羟化酶(胆固醇转化为胆汁酸的限速酶)是发生结直肠腺瘤的决定性风险因素 ‎[39] 。同时还有研究表明患有结直肠息肉或结直肠腺瘤的患者具有显著高水平的拟杆菌,这也增加了CRC发展的风险。并且胆汁酸和拟杆菌之间的串扰可以催化腺瘤和最终CRC的发展 ‎[40] 。

6. 上消化道息肉或上消化道病理改变

有研究表明上消化道(胃和十二指肠)中的息肉、腺瘤和癌症患者可能在其下消化道(尤其是结肠和直肠)中具有同步或异时性息肉和肿瘤 ‎[41] 。一个假设是遗传因素,APC、p53、K-ras、hMSH 1、hMSH 2等基因的改变在胃、结直肠肿瘤的发生中起重要作用。另一个假设与环境因素有关,许多因素,如H.幽门螺杆菌感染、高血糖和吸烟影响胃癌和结肠直肠癌的发病率 ‎[42] 。还有研究表明腺瘤性息肉与胃幽门螺杆菌感染、肠上皮化生、胃底腺息肉、胃增生性息肉之间具有相关性,各种类型的胃组织病理学异常与结肠息肉之间的正相关性所基于的统一原则可能与胃酸屏障的降低及其在防止细菌侵入下肠道中的功能有关。长期抑制胃酸分泌可能改变下消化道的细菌组成,对结肠肿瘤生长产生有害后果 ‎[43] 。

7. 讨论

结直肠息肉起病隐匿,早期多无症状,少数病人因便血、腹痛、腹胀、腹泻等症状就医。目前只有肠镜可以明确诊断,但肠镜属于侵入性检查,患者极易产生恐惧心理,导致肠镜检查接受率低。但随着社会的发展无痛肠镜、胶囊内镜及无痛肠镜等技术的成熟,肠镜的接受度逐渐增加。肠镜检查没有明确的年龄要求,有研究建议从45岁开始肠镜筛查 ‎[44] ,有以下几种情况建议40岁开始肠镜检查:有肠道肿瘤家族史或肠道肿瘤高发地区的人群;无特殊症状存在但有明确高危因素存在的患者。若镜下发现息肉建议切除,且结直肠息肉复发率高应定期复查肠镜,长期随访。本文简单概述了结直肠息肉可控危险因素如吸烟、饮酒、饮食习惯、代谢综合征、胆囊疾病。不可控危险因素如年龄、性别、种族、地区等及其可能的发病机制。为后续对疾病的临床预防提供依据,减少结直肠癌的患病率。吸烟、饮酒、代谢综合征等不仅是结直肠息肉的危险因素还是心脑血管疾病等多种疾病的危险因素,积极地纠正不良习惯,预防出现代谢综合征,加强健康宣从根源上控制结直肠息肉和结直肠癌的发病率。鼓励高危人群体检,在做好一二级预防的同时,早发现、早治疗。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Welch, H.G. and Robertson, D.J. (2016) Colorectal Cancer on the De-cline—Why Screening Can’t Explain It All. The New England Journal of Medicine, 374, 1605-1607.
https://doi.org/10.1056/NEJMp1600448
[3] Malvezzi, M., Carioli, G., Bertuccio, P., et al. (2018) European Can-cer Mortality Predictions for the Year 2018 with Focus on Colorectal Cancer. Annals of Oncology, 29, 1016-1022.
https://doi.org/10.1093/annonc/mdy033
[4] Murphy, C.C., Sandler, R.S., Sanoff, H.K., et al. (2017) Decrease in Incidence of Colorectal Cancer among Individuals 50 Years or Older after Recommendations for Population-Based Screening. Clinical Gastroenterology and Hepatology, 15, 903-909.
https://doi.org/10.1016/j.cgh.2016.08.037
[5] Sullivan, B.A. and Noujaim, M. (2022) Cause, Epidemiology, and Histology of Polyps and Pathways to Colorectal Cancer. Gastrointestinal Endoscopy Clinics of North America, 32, 177-194.
https://doi.org/10.1016/j.giec.2021.12.001
[6] Stoffel, E.M., Mangu, P.B., Gruber, S.B., et al. (2014) Hereditary Colorectal Cancer Syndromes: American Society of Clinical Oncology Clinical Practice Guideline Endorse-ment of the Familial Risk-Colorectal Cancer: European Society for Medical Oncology Clinical Practice Guidelines. Jour-nal of Clinical Oncology, 33, 209-217.
https://doi.org/10.1200/JCO.2014.58.1322
[7] Vogelstein, B., Fearon, E.R., Hamilton, S.R., et al. (1988) Genetic Alterations during Colorectal-Tumor Development. The New England Journal of Medicine, 319, 525-532.
https://doi.org/10.1056/NEJM198809013190901
[8] Leggett, B. and Whitehall, V. (2010) Role of the Serrated Pathway in Colorectal Cancer Pathogenesis. Gastroenterology, 138, 2088-2100.
https://doi.org/10.1053/j.gastro.2009.12.066
[9] Daca Alvarez, M., Quintana, I., Terradas, M., Mur, P., Balaguer, F. and Valle, L. (2021) The Inherited and Familial Component of Early-Onset Colorectal Cancer. Cells, 10, Article No. 710.
https://doi.org/10.3390/cells10030710
[10] Pan, J.Q., Cen, L., Xu, L., et al. (2020) Prevalence and Risk Fac-tors for Colorectal Polyps in a Chinese Population: A Retrospective Study. Scientific Reports, 10, Article No. 6974.
https://doi.org/10.1038/s41598-020-63827-6
[11] McCashland, T.M., Brand, R., Lyden, E., et al. (2001) Gender Differences in Colorectal Polyps and Tumors. American Journal of Gastroenterology, 96, 882-886.
https://doi.org/10.1111/j.1572-0241.2001.03638.x
[12] Corley, D.A., Jensen, C.D., Marks, A.R., et al. (2013) Variation of Adenoma Prevalence by Age, Sex, Race, and Colon Location in a Large Population: Implications for Screening and Quality Programs. Clinical Gastroenterology and Hepatology, 11, 172-180.
https://doi.org/10.1016/j.cgh.2012.09.010
[13] Shavers, V.L. (2007) Racial/Ethnic Variation in the Anatomic Sub-site Location of in Situ and Invasive Cancers of the Colon. Journal of the National Medical Association, 99, 733-748.
[14] Siegel, R.L., Miller, K.D., Goding, S.A., et al. (2020) Colorectal Cancer Statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 145-164.
https://doi.org/10.3322/caac.21601
[15] Kuipers, E.J., Grady, W.M., Lieber-man, D., et al. (2015) Colorectal Cancer. Nature Reviews Disease Primers, 1, Article No. 15065.
https://doi.org/10.1038/nrdp.2015.65
[16] Hao, Y., Wang, Y., Qi, M., et al. (2020) Risk Factors for Recurrent Colorectal Polyps. Gut Liver, 14, 399-411.
https://doi.org/10.5009/gnl19097
[17] Wang, Y.M., Zhou, Q.Y., Zhu, J.Z., et al. (2015) Systematic Review with Meta-Analysis: Alcohol Consumption and Risk of Colorectal Serrated Polyp. Digestive Diseases and Sciences, 60, 1889-1902.
https://doi.org/10.1007/s10620-014-3518-3
[18] Botteri, E. (2020) Smoking and Colorectal Cancer Risk, Overall and by Molecular Subtypes: A Meta-Analysis. The American Journal of Gastroenterology, 115, 1940-1949.
https://doi.org/10.14309/ajg.0000000000000803
[19] Veettil, S.K., Wong, T.Y., Loo, Y.S., et al. (2021) Role of Diet in Colorectal Cancer Incidence: Umbrella Review of Meta-Analyses of Prospective Observational Studies. JAMA Network Open, 4, e2037341.
https://doi.org/10.1001/jamanetworkopen.2020.37341
[20] Yang, Y.J., Bang, C.S., Choi, J.H., et al. (2019) Alco-hol Consumption Is Associated with the Risk of Developing Colorectal Neoplasia: Propensity Score Matching Analysis. Scientific Reports, 9, Article No. 8253.
https://doi.org/10.1038/s41598-019-44719-w
[21] Brenner, D.R., Shawa, E. and Yannitsosa, D.H. (2018) The Association between Recreational Physical Activity, Sedentary Time, and Colorectal Polyps in a Population Screened for Colorectal Cancer. Cancer Epidemiology, 53, 12-20.
https://doi.org/10.1016/j.canep.2017.12.017
[22] Wolin, K.Y., Yan, Y. and Colditz, G.A. (2011) Physical Activity and Risk of Colon Adenoma: A Meta-Analysis. British Journal of Cancer, 104, 882-885.
https://doi.org/10.1038/sj.bjc.6606045
[23] Øines, M., Helsingen, L.M., Bretthauer, M., et al. (2017) Epidemiology and Risk Factors of Colorectal Polyps. Best Practice & Research Clinical Gastroenterology, 31, 419-424.
https://doi.org/10.1016/j.bpg.2017.06.004
[24] Davis, C., Bryan, J., Hodgson, J., et al. (2015) Definition of the Mediterranean Diet, a Literature Review. Nutrients, 7, 9139-9153.
https://doi.org/10.3390/nu7115459
[25] Meng, Y., Sun, J., Yu, J., et al. (2019) Dietary Intakes of Calcium, Iron, Magnesium, and Potassium Elements and the Risk of Colorectal Cancer: A Meta-Analysis. Biological Trace Element Research, 189, 325-335.
https://doi.org/10.1007/s12011-018-1474-z
[26] Song, M., Chan, A.T. and Sun, J. (2020) Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology, 158, 322-340.
https://doi.org/10.1053/j.gastro.2019.06.048
[27] Schwingshackl, L., Schwedhelm, C., Hoffmann, G., et al. (2018) Food Groups and Risk of Colorectal Cancer. International Journal of Cancer, 142, 1748-1758.
https://doi.org/10.1002/ijc.31198
[28] Ottaviano, L.F., Li, X., Murray, M., et al. (2020) Type 2 Diabetes Impacts Colorectal Adenoma Detection in Screening Colonoscopy. Scientific Reports, 10, Article No. 7793.
https://doi.org/10.1038/s41598-020-64344-2
[29] Strissel, P.L., Ellmann, S., Loprich, E., et al. (2008) Early Aber-rant Insulin-Like Growth Factor Signaling in the Progression to Endometrial Carcinoma Is Augmented by Tamoxifen. International Journal of Cancer, 123, 2871-2879.
https://doi.org/10.1002/ijc.23900
[30] Ben, Q., An, W., Jiang, Y., et al. (2012) Body Mass Index Increases Risk for Colorectal Adenomas Based on Meta-Analysis. Gastroenterology, 142, 762-772.
https://doi.org/10.1053/j.gastro.2011.12.050
[31] Chao, G., Zhu, Y. and Fang, L. (2020) Retrospective Study of Risk Factors for Colorectal Adenomas and Non-Adenomatous Polyps. Translational Cancer Research, 9, 1670-1677.
https://doi.org/10.21037/tcr.2020.01.69
[32] Yang, M.H., Rampal, S., Sung, J., et al. (2013) The Association of Serum Lipids with Colorectal Adenomas. American Journal of Gastroenterology, 108, 833-841.
https://doi.org/10.1038/ajg.2013.64
[33] Zhang, R.X., Yin, J.L. and Huo, C.Y. (2022) The Relationship between Colorectal Polyps and Serum Lipid Levels: A Systematic Review and Meta-Analysis. Journal of Clinical Gastroenterol-ogy, 56, 654-667.
https://doi.org/10.1097/MCG.0000000000001678
[34] Lammert, F., Gurusamy, K., Ko, C., et al. (2016) Gall-stones. Nature Reviews Disease Primers, 2, Article No. 16024.
https://doi.org/10.1038/nrdp.2016.24
[35] Jeun, J.W., Cha, J.M., Lee, J.I., et al. (2014) Association of Gallbladder Polyp with the Risk of Colorectal Adenoma. Intestinal Research, 12, 48-52.
https://doi.org/10.5217/ir.2014.12.1.48
[36] Liu, Y.-L., Yang, Y.-C., et al. (2018) Gallbladder Stones and Gallbladder Polyps Associated with Increased Risk of Colorectal Adenoma in Men. Journal of Gastroenterology and Hepatology, 33, 800-806.
https://doi.org/10.1111/jgh.14006
[37] Yamaji, Y., Okamoto, M., Yoshida, H., et al. (2008) Cholelithiasis Is a Risk Factor for Colorectal Adenoma. American Journal of Gastroenterology, 103, 2847-2852.
https://doi.org/10.1111/j.1572-0241.2008.02069.x
[38] Geng, W.B., Qin, X.R. and Yang, P. (2022) Association of Gallbladder Diseases with Risk of Gastrointestinal Polyps. BMC Gastroenterology, 22, Article No. 476.
https://doi.org/10.1186/s12876-022-02566-6
[39] Wertheim, B.C., Smith, J.W., Fang, C.M., et al. (2012) Risk Modification of Colorectal Adenoma by CYP7A1 Polymorphisms and the Role of Bile Acid Metabolism in Carcinogen-esis. Cancer Prevention Research (Phila), 5, 197-204.
https://doi.org/10.1158/1940-6207.CAPR-11-0320
[40] Wang, S., Dong, W., Liu, L., et al. (2019) Interplay be-tween Bile Acids and the Gut Microbiota Promotes Intestinal Carcinogenesis. Molecular Carcinogenesis, 58, 1155-1167.
https://doi.org/10.1002/mc.22999
[41] Wu, Z.-J., Lin, Y. and Xiao, J. (2014) Clinical Significance of Colonoscopy in Patients with Upper Gastrointestinal Polyps and Neoplasms: A Meta-Analysis. PLOS ONE, 9, e91810.
https://doi.org/10.1371/journal.pone.0091810
[42] Shmuely, H., Passaro, D., Figer, A., Niv, Y., Pitlik, S., et al. (2001) Relationship between Helicobacter pylori CagA Status and Colorectal Cancer. American Journal of Gastroenter-ology, 96, 3406-3410.
https://doi.org/10.1111/j.1572-0241.2001.05342.x
[43] Yu, L.C., Wei, S.C. and Ni, Y.H. (2018) Impact of Micro-biota in Colorectal Carcinogenesis: Lessons from Experimental Models. Intestinal Research, 16, 346-357.
https://doi.org/10.5217/ir.2018.16.3.346
[44] Davidson, K.W., Barry, M.J., Mangione, C.M., et al. (2021) Screen-ing for Colorectal Cancer: US Preventive Services Task Force Recommendation Statement. JAMA, 325, 1965-1977.
https://doi.org/10.1001/jama.2021.6238