肥胖和代谢综合征相关机制和研究进展
Mechanisms and Research Progress Relatedto Obesity and Metabolic Syndrome
摘要: 肥胖症和代谢综合征(Metabolic syndrome, MetS)的发病率正在不断上升,炎症通路的激活通常被用作是宿主的一种防御手段,提醒人们该疾病的严重性。导致炎症激活的原因可能不止一个。代谢超负荷会引起应激反应,如氧化应激、炎症反应、细胞器和细胞肥大,从而产生恶性循环。脂肪细胞肥大会导致细胞破裂,从而引发炎症反应。脂肪组织的发育无法吞噬细胞破裂产生的脂肪,导致脂肪沉积在其他器官(主要是肝脏),从而诱发胰岛素抵抗。人们进食时也会产生氧化应激,尤其摄入过多的脂肪和/或其他营养素时却没有同时摄入富含抗氧化剂的食物的情况下,可能导致肥胖引起炎症。此外,有关微生物群与食物和肥胖相互作用的数据为肥胖/脂肪饮食与炎症的关系提出了新的假设。除此之外,其他现象,如心理和/或昼夜节律紊乱,也同样可能导致氧化/炎症状态。肥胖症/代谢综合征的治疗难度与它们的多因素性质有关,环境、遗传和社会心理因素通过复杂的网络相互作用。
Abstract: The prevalence of obesity and Metabolic syndrome (MetS) is increasing, and the activation of in-flammatory pathways is often used as a host defense and a reminder of the severity of the disease. There may be more than one cause of inflammatory activation. Metabolic overload induces a vicious cycle of stress responses such as oxidative stress, inflammatory responses, and organelle and cellu-lar hypertrophy. Adipocyte hypertrophy leads to cellular rupture, which triggers an inflammatory response. The development of adipose tissue is unable to phagocytose the fat produced by cell rup-ture, leading to fat deposition in other organs (mainly the liver), thus inducing insulin resistance. Oxidative stress also occurs when people eat, especially if they consume too much fat and/or other nutrients without also consuming antioxidant-rich foods, which can lead to obesity-induced in-flammation. In addition, data on microbiota interactions with food and obesity suggest new hy-potheses for the relationship between obesity/fat diets and inflammation. In addition to this, other phenomena, such as psychological and/or circadian rhythm disturbances, may likewise contribute to the oxidative/inflammatory state. The difficulty in treating obesity/metabolic syndrome is re-lated to their multifactorial nature, where environmental, genetic and psychosocial factors interact through a complex network.
文章引用:熊昱鹏, 刘文清, 祁海燕, 米娜瓦尔·胡加艾合买提. 肥胖和代谢综合征相关机制和研究进展[J]. 临床医学进展, 2023, 13(9): 14560-14568. https://doi.org/10.12677/ACM.2023.1392036

1. 肥胖和代谢综合征

随着年份增加,代谢综合征越来越常见,25%~35%的成年人患有代谢综合征 [1] [2] [3] 。代谢综合征是指肥胖、高血压、高血糖、血脂异常(高甘油三酯血症、低密度脂肪酸升高和高密度脂蛋白降低)等多种心血管疾病的危险因素在一个个体中同时存在的症候群 [4] 。根据该综合征不同成分之间相互组合,它可以以多种形式出现,已确定它会增加心血管疾病、肌肉骨骼疾病、2型糖尿病及癌症的发生风险 [5] 。目前认为,腹型肥胖和胰岛素抵抗是导致代谢综合征发生的重要因素。但是实际上,肥胖和代谢综合征并不完全重叠,目前有证据表明存在代谢健康型肥胖 [6] [7] 。代谢健康型肥胖(MHO)是指不患代谢综合征的肥胖,代谢健康型肥胖患者约占总肥胖人群的三分之一 [8] [9] 。在这种代谢健康型的肥胖中,脂联素的血浆浓度很高,这与脂联素在肥胖小鼠中过表达的影响非常吻合,导致脂肪量增加并防止代谢合并症 [10] 。胰岛素抵抗是代谢综合征的关键特征 [4] 。大量研究研究了肥胖与炎症之间关系的因果方向,得出的结论是,炎症是肥胖的结果,脂肪量和肥胖相关基因以及黑皮质素受体4单核苷酸多态性赋予的更多的肥胖量导致C反应蛋白(CRP)水平升高,没有证据说明有任何反向途径 [11] 。它支持了我们对代谢综合征相关慢性炎症中脂肪组织的重视。无论其起源如何,无论肥胖是否是其主要引发因素,伴随代谢综合征的慢性低度炎症性疾病都被认为是该综合征的形成及其相关病理生理后果的主要因素 [12] 。与这种解释非常契合的是:肥胖患者的体重减轻被反复证实与炎症生物标志物的降低有关;如Lidia等人发现肥胖患者的体重减轻可促进CRP、IL-6降低 [13] 、Ricardo等人发现代谢健康型的肥胖女性体重减轻,可降低炎症生物标志物 [14] 同时并伴有代谢指数(即胰岛素敏感性)的改善 [15] [16] 。

2. 炎症反应

炎症是机体对有害刺激(包括物理、化学和生物)防御性的生理反应,是一个损伤、抗损伤和修复的动态过程。它涉及许多细胞类型和介质的协调作用,其干预取决于初始刺激的性质和随后的反应。普通的急性炎症反应包括将血浆蛋白(例如抗体、补体、纤维蛋白)和白细胞输送到炎症病灶,由驻留在组织的巨噬细胞和肥大细胞引发,杀伤和清除致炎因子,产生不同类型的炎症介质(细胞因子、趋化因子、花生四烯酸代谢产物、血管活性胺和蛋白水解级联产物) [17] 。血管通透性使得中性粒细胞和可溶性成分外渗到组织中,在那里它们被活化,并向细胞外环境释放炎性介质。机体积极的防御反应如果成功,有害物质将被清除,炎症消退和组织修复随之开始。这是通过将脂质介质从促炎介质(例如前列腺素)切换到抗炎和促消退介质(脂蛋白、溶解素和保护蛋白)以及组织驻留和新募集巨噬细胞的作用来实现的 [18] [19] 。组织白细胞发生细胞凋亡,并被巨噬细胞吞噬,巨噬细胞通过淋巴引流离开发炎部位。炎症细胞的凋亡是去除死细胞的非炎性生理过程,对于炎症的消退至关重要,在吞噬这些凋亡细胞后,会继续促进巨噬细胞,释放抗炎信号,如白细胞介素10 (IL-10)和转化生长因子β (TGFβ),加速炎症的消退 [19] [20] [21] 。然而,这个过程失调,即有害刺激的中和与去除,或者从发炎组织中清除凋亡炎症细胞失败,炎症将过程持续存在,并且随着招募不同的免疫细胞,即T淋巴细胞和组织中淋巴细胞的浸润与发展,可能会出现慢性炎症或自身免疫状态 [22] 。有研究表明,与病态肥胖相关的慢性炎症性疾病的特征是先天免疫系统的持续激活 [23] ,且在女性中更为活跃。

3. 肥胖和代谢综合征的炎症

肥胖伴随代谢综合征的炎症状态显示出奇怪的表现,因为它不伴有感染或自身免疫的迹象,并且似乎没有发生很大成都的组织损伤。此外,炎症激活的尺度并不是很大它被称之为慢性低度炎症。最近的研究已经证实了肥胖指数与炎症标志物之间的正相关,主要是C反应蛋白 [13] ,也包括其他炎症标志物髓过氧化物酶(MPO)和钙卫蛋白 [24] 。代谢综合征的发病率增加主要负面特征包括压力大(长期的,持续的,心理上的),正能量平衡(过度的能量摄入和低体力活动),低质量的食物(高脂肪,高能量,同时缺乏微量元素)和生物钟的破坏。任何生理调节系统的急性紊乱都会引起倾向于重新建立新的平衡。当刺激(即使是中等幅度的刺激)是重复的或慢性的时,一个系统的变化会影响另一个系统,并产生和加强恶性循环。正能量平衡状态,脂肪随时间不断地累积,需要脂肪组织具有可塑性,包括新脂肪细胞的形成以及脂肪组织扩张的空间。否则,两个有害的现象便会接踵而至:脂肪细胞肥大生长,会越来越频繁地破裂,并沉积在脂肪组织以外的其它器官 [25] (主要在肝脏),继而导致局部(非酒精性脂肪性肝病)和全身(胰岛素抵抗)后果。但是,脂肪营养不良 [26] 中脂肪组织的缺乏同样可能导致代谢综合征的发展。

餐后,脂肪酸被脂肪细胞吸收,在禁食或增加消耗期间,脂肪酸被释放到血液中。这是通过激素、儿茶酚胺和胰岛素的协调作用来实现的,它们是这种平衡的主要调节因子。这些激素不仅改变了脂肪细胞的代谢,而且这些激素还通过调节血管张力来调节进入脂肪组织的血液,使得器官代谢活跃时血液供应增加。脂肪组织血液供应不足会导致氧合减少,这也可能导致炎症 [27] 。脂肪细胞增生对脂肪容纳需求的反应,有其局限性,在不能形成代谢健康型肥胖的人群中,可能会导致脂肪细胞肥大和炎症反应。

3.1. 脂肪细胞功能障碍和炎症

游离脂肪酸循环浓度的增加 [28] 反映了脂肪组织无法接受过量的营养摄入,并且与代谢综合征典型的血脂异常状态有关。当出现超负荷时,肝脏会增加含有载脂蛋白B (apo-B)的颗粒的产生,这些颗粒将三酰基甘油携带到脂肪组织,导致低密度脂蛋白(LDL)形成。这种现象在内脏脂肪组织形成效率非常高。并且该储存库在需要时也更有能力释放脂质。皮下脂肪组织通常被认为具有更大的储存脂质的能力,因为它的体积通常更大。这可能解释了为什么皮下脂肪组织似乎对代谢综合征有保护作用,以及为什么男性在遗传和激素的影响下拥有较小的皮下脂肪组织区,也就是说男性会更早地达到该储存库的极限而过度使用内脏脂肪储存库。当两个位置的容量都超负荷时,极低密度脂蛋白(VLDL)或类似颗粒的转化会延迟,并引发高甘油三酯血症 [29] 。此外,其他组织也用于脂质积累(肝脏肌肉、肝脏、心脏和胰腺) [25] 。由于这些器官不能在不损害其功能的情况下储存脂质,因此,肌肉、肝脏和胰腺的脂肪毒性可能最终导致胰岛素抵抗。除了上述,脂肪细胞还存在Toll样受体(TLR) [30] 。研究最广泛的两种TLR是TLR2和TLR4,它们分别由细菌脂蛋白和脂多糖(LPS)激活。任一受体的接合导致核转录因子-κB易位到细胞核 [31] 。除此之外,TLRs还参与代谢调节 [32] 。已经表明,这些受体可以被特定类型的脂质激活。已经证明TLR配体的脂肪酸部分对于它们的激活至关重要 [30] 。这导致了对不同种类脂质可能激活的研究。因此,发现饱和脂肪酸同时激活TLR2和TLR4,相反,不饱和脂肪酸抑制TLR介导的信号传导和基因表达 [33] 。饮食来源的饱和脂肪酸也证明了这一点,它增加了TLR介导的白介素6 (IL-6)和肿瘤坏死因子α (TNF-α)的表达,而不单独使用不饱和脂肪酸,但抑制了饱和脂肪酸诱导的TNF-α表达增加 [34] 。已经证明TLR的激活导致促炎因子的合成,如TNF-α、IL-6和单核细胞趋化蛋白1 (MCP-1)等。考虑到循环游离脂肪酸增加对脂肪组织功能障碍的影响,TLR的激活很可能发生在高脂血症状态,导致炎症放大并导致代谢综合征的发展或加重 [35] [36] 。

现在有大量证据表明,细胞暴露于几种类型的应激源(氧化应激、炎性细胞因子和脂肪酸浓度升高)会诱导由细胞激酶介导的细胞反应,Lee等人观察到,月桂酸通过TLR4/核因子-κB (NF-κB)轴在RAW264.7巨噬细胞中上调了促炎症基因的表达 [37] 。他们随后的研究表明,月桂酸调节了RAW264.7巨噬细胞中细胞因子的产生,通过TLR4/骨髓分化初级反应基因88 (MyD88)/白细胞介素1受体相关激酶(IRAK)/TNF受体相关因子6 (TRAF6)/NF-κB信号级联 [38] 。现在有大量证据表明,非酯化脂肪酸暴露或高脂饮食之间存在关联。非酯化脂肪酸暴露或高脂饮食引起的慢性低度无菌性炎症是导致外周组织或器官出现胰岛素抵抗的主要原因之一。非酯化脂肪酸激活的TLR4明显减弱了胰岛素的信号传导,这可以通过TLR4的抑制或删除而完全取消 [39] 。TLR4的靶向抑制或自然发生的突变都可以挽救小鼠/大鼠在经典的促胰岛素分泌组织如脂肪组织、胸主动脉、骨骼肌和肝脏中的胰岛素抵抗,在受胰岛素抵抗影响的各种组织中,TLR4的表达和对其激动剂的反应性都得到加强。TLR4的缺乏甚至保护这些组织免受HFD诱导的内质网(ER)压力的影响 [40] ,这是外周胰岛素抵抗和T2DM的核心贡献特征。

3.2. 内脏肥胖

脂肪组织的致病性因脂肪组织定位、内脏或皮下的不同而有所不同 [41] ,外周肥胖(“梨”)患者的脂肪分布在臀部和腹部下部,并且代谢并发症的风险很小 [41] 。相反,上半身肥胖(“苹果”)的个体在皮下和内脏中积累脂肪,更容易出现代谢和心血管问题。内脏肥胖可能是胰岛抵抗 [42] 、糖耐量受损 [43] 、血压升高 [44] 和血脂异常 [45] 的独立预测因素。从代谢的角度上,内脏脂肪比皮下脂肪组织更容易发生分解,且是一种高度活跃的组织 [46] ,并且与TNF-α [47] 、纤溶酶原激活物抑制剂-1 (PAI-1) [48] 、IL-6和CRP的产生较高有关 [49] 。另一方面,它是脂联素的产生者,脂联素是一种与皮下脂肪相关性更强的脂肪因子 [50] 。D Gokalp发现脂肪细胞大小与TNF-α、IL-6和高敏感性CRP之间存在正相关关系。同时也发现脂联素与脂肪细胞大小呈负相关 [51] 。

内脏肥胖似乎在代谢综合征中起核心作用,通常被认为更能促炎 [52] 。但并非所有该综合征患者都表现出这一特征。我们已经证明,大脂肪细胞更容易破裂 [53] ,而细胞破裂显然又会成为炎症的中心。也就是说脂肪组织中死亡脂肪细胞周围的巨噬细胞聚集,Liping Ju团队所做实验同我们这一假设的结果是一致的 [54] 。如前所述,肥胖患者的脂肪因子水平通常会升高,其循环浓度随着肥胖程度的增加而增加。打破脂肪组织中的炎症平衡可能对代谢健康特别重要。脂肪细胞表现为免疫细胞,能够合成和释放大量促炎脂肪因子和细胞因子,包括瘦素、抵抗素、PAI-1、IL-6、TNFα、视黄醇结合蛋白4、IL-1β、单核细胞化学引诱蛋白-1 (MCP-1)、CRP、巨噬细胞迁移抑制因子(MIF) [55] 、CC和CXC家族的趋化因子 [56] ,其中大部分(如果不是全部)参与胰岛素抵抗。但是,除了脂肪细胞分泌这些和可能更多的促炎细胞因子的能力之外,在肥胖和/或营养超负荷的情况下,脂肪组织巨噬细胞也确实提供了胰岛素抵抗诱导细胞因子的对应物。此外,肥胖脂肪组织也含有淋巴细胞,参与并加强炎症反应和随之而来的胰岛素抵抗 [57] 。

虽然皮下脂肪细胞也可能肥厚,并且很可能也会破裂,但与皮下脂肪组织相比,内脏脂肪细胞除了由密度低得多的结缔组织支撑外,还经常受到与咳嗽、体育锻炼和睡眠呼吸暂停相关的突然压力变化。肥胖患者的腹内压较高 [58] ,这也可能会影响脂肪细胞稳定性,与肥胖相关并发症也有关。此外,有人提出,内脏脂肪组织生长主要是由于肥大,而在其他地方,可能主要通过增生生长 [59] 。腹腔内存在的物理限制可能会阻止脂肪组织前体的脂肪分化,从而减少感受态细胞的数量以积累摄入的过多能量。事实上,已经表明拉伸会抑制脂肪细胞分化 [34] 。

腹部脂肪组织的另一个特征是其高代谢活性和密集的血管形成。这种高血管形成很可能是由于血管生成/促炎因子的作用,其间瘦素分泌增加,考虑可能与这方面相关 [60] 。另一方面,腹内压升高以及压力变化可能很容易产生缺氧期/区域,导致缺氧诱导因子的产生。血管内皮生长因子(VEGF)、瘦素、腺苷和P物质等会影响代谢综合征的其他特征。此外,缺氧还通过刺激脂肪分解诱导HIF1α非依赖性炎症,从而增加游离脂肪酸,下调过氧化物酶体增殖物激活受体γ (PPARγ)表达,增加巨噬细胞炎症蛋白-1α (MIP-1α)和巨噬细胞浸润的表达 [61] ,介导几种促炎性细胞因子产生。

3.3. 饮食、微生物群和炎症

在遗传、代谢和环境因素之间复杂的相互作用中,饮食模式被认为是至关重要的,这很可能与目前肥胖和代谢综合征的流行有关。在这些研究中,人们的注意力集中在大量营养素的能量、数量和比例。以及它们本身和代谢调节剂对能量平衡的影响。直到最近才开始研究食物摄入的急性效应,考虑到食物的类型,以及一些营养素的具体影响,即脂肪酸,与肥胖和炎症的关系。总膳食脂肪和饱和脂肪与胰岛素抵抗和高血压以及肥胖相关炎症有关。在腹部肥胖男性中,高脂餐后血浆炎症标志物立即增加,而摄入富含单不饱和脂肪酸的饮食导致更多的抗炎谱,而食用富含单不饱和脂肪酸的饮食会导致更多的抗炎,摄入富含饱和脂肪酸的饮食导致促炎性“肥胖相关”基因表达谱 [4] 。

然而,必须考虑到,即使在混合餐后炎症标志物也会增加。Megan小组的一项最有趣的调查显示了高脂肪饮食本身的促炎作用:人们采用减肥饮食,当饮食高脂肪时,有效减肥会增加炎症标志物的浓度,这与低脂肪高碳水化合物饮食不同,其中炎症标志物随着体重减轻而减少 [62] 。同时,高脂肪饮食的促炎作用不依赖于氧化应激 [63] 。最近发表的一项小鼠实验研究证实了这些结果,该研究表明,从高脂肪饮食转向高碳水化合物饮食可改善脂肪因子和促炎细胞因子的水平 [64] 。

肠道微生物群,即已知有助于消化和代谢的微生物,在本篇综述中几乎没有被考虑。然而,我们的微生物群的扩展和代谢基因库与取决于微生物群构成的宿主的巨大代谢后果是相容的。

对肥胖和非肥胖受试者的肠道微生物群的比较显示,某些物种的比例不同 [65] ,但尚不清楚携带不同微生物群的原因和后果,或宿主的代谢后果。尽管在宿主的代谢兴趣中调节微生物群的进化具有假定的重要性。由于纳入的研究是在不同的国家进行的,这些国家的饮食习惯对人类肠道微生物组的生态有影响,而且也是观察性的设计,除了性别、种族或地理位置和饮食外,还有其他因素能够影响并因此改变肠道微生物组的组成,如体力活动、吸烟和肠道细菌产生的代谢物的变化以及其他因素,这意味着混杂因素有严重的偏倚风险,降低了所提供的证据水平的价值 [66] [67] [68] 。在这个过程中,我们可以看到不同的微生物群对宿主的影响,或者说对宿主的新陈代谢的影响。微生物多样性和组成的变化越来越与几种疾病状态相关,包括肥胖和行为障碍。肥胖相关的微生物群会改变宿主能量收集、胰岛素抵抗、炎症和脂肪沉积。此外,肠道微生物群可以调节新陈代谢、肥胖和能量平衡,以及中枢食欲和食物奖励信号,这些在肥胖中起着至关重要的作用。此外,一些细菌菌株及其代谢物可能通过迷走神经刺激直接靶向大脑或通过免疫神经内分泌机制间接靶向大脑。因此,肠道微生物群正在成为新的抗肥胖疗法的目标。例如饮食干预和粪便微生物群移植,作为有前途的代谢疗法,帮助患者终生保持健康的体重 [69] 。此外,Creely及其同事证明代谢性内毒素血症是与2型糖尿病发展相关的因素。肠道菌群和微生物代谢物的变化可能是高果糖和高脂肪饮食引起的慢性肠道炎症和便秘的基础 [70] 。

4. 结论

与肥胖和超重相关的炎症状况在代谢综合征的病因中起着重要作用,并在很大程度上导致了相关的结果。从本文提出的理由来看,脂肪细胞功能障碍可能是这一问题的根源,代谢负荷过重导致脂肪细胞功能失调。从此,几种恶性循环加剧了紊乱并导致炎症反应,当脂肪细胞达到较大体积并很容易因物理原因而破裂时,炎症反应最为强烈。与此同时,肥胖者经常摄入的高脂肪饮食也会加重炎症反应,直接原因是脂肪中含有丰富的饱和脂肪酸,间接原因则是对微生物群和肠道渗透性的影响。

这一高度复杂的病理生理事件网络包括多种细胞类型、细胞因子、营养物质、处于不同的神经和激素状态以及特定的物理限制和微生物定植,对这一网络的认识取得进展将为有效的治疗干预开辟道路。炎症介质已经显示出其作为代谢综合征患者代谢/炎症/疾病易发状态生物标志物的有用性。

但是,饮食仍将在这个大问题的多个方面发挥关键作用。尽管在营养方面仍有许多知识有待了解,但最大的挑战将是重新建立非肥胖的生活方式。

参考文献

NOTES

*通讯作者。

参考文献

[1] Li, W., Song, F., Wang, X., et al. (2018) Prevalence of Metabolic Syndrome among Middle-Aged and Elderly Adults in China: Current Status and Temporal Trends. Annals of Medicine, 50, 345-353.
https://doi.org/10.1080/07853890.2018.1464202
[2] Guo, H., Gao, X., Ma, R., et al. (2017) Prevalence of Meta-bolic Syndrome and Its Associated Factors among Multi-Ethnic Adults in Rural Areas in Xinjiang, China. Scientific Re-ports, 7, Article No. 17643.
https://doi.org/10.1038/s41598-017-17870-5
[3] Yao, F., Bo, Y., Zhao, L., et al. (2021) Prevalence and Influenc-ing Factors of Metabolic Syndrome among Adults in China from 2015 to 2017. Nutrients, 13, Article 4475.
https://doi.org/10.3390/nu13124475
[4] Fahed, G., Aoun, L., Bou Zerdan, M., et al. (2022) Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. International Journal of Molecular Sciences, 23, Article 786.
https://doi.org/10.3390/ijms23020786
[5] Alkhulaifi, F. and Darkoh, C. (2022) Meal Timing, Meal Frequency and Metabolic Syndrome. Nutrients, 14, Article 1719.
https://doi.org/10.3390/nu14091719
[6] Blüher, M. (2020) Metabolically Healthy Obesity. Endocrine Reviews, 41, bnaa004.
https://doi.org/10.1210/endrev/bnaa004
[7] Mathis, B.J., Tanaka, K. and Hiramatsu, Y. (2022) Factors of Obesity and Metabolically Healthy Obesity in Asia. Medicina, 58, Article 1271.
https://doi.org/10.3390/medicina58091271
[8] Lin, L., Zhang, J., Jiang, L., et al. (2020) Transition of Metabolic Phenotypes and Risk of Subclinical Atherosclerosis according to BMI: A Prospective Study. Diabetologia, 3, 1312-1323.
https://doi.org/10.1007/s00125-020-05116-5
[9] Zhang, Y., Fu, J., Yang, S., et al. (2017) Prevalence of Metabol-ically Obese But Normal Weight (MONW) and Metabolically Healthy But Obese (MHO) in Chinese Beijing Urban Subjects. Bioscience Trends, 11, 418-426.
https://doi.org/10.5582/bst.2017.01016
[10] Aguilar-Salinas, C.A., García, E.G., Robles, L., et al. (2008) High Adiponectin Concentrations Are Associated with the Metabolically Healthy Obese Phenotype. The Journal of Clinical Endocrinology and Metabolism, 93, 4075-4079.
https://doi.org/10.1210/jc.2007-2724
[11] Welsh, P., Polisecki, E., Robertson, M., et al. (2010) Unraveling the Di-rectional Link between Adiposity and Inflammation: A Bidirectional Mendelian Randomization Approach. The Journal of Clinical Endocrinology and Metabolism, 95, 93-99.
https://doi.org/10.1210/jc.2009-1064
[12] Ma, L., Xu, Y., Zhang, Y., Ji, T. and Li, Y. (2020) Lower Levels of Circulating Adiponectin in Elderly Patients with Metabolic Inflam-matory Syndrome: A Cross-Sectional Study. Diabetes, Metabolic Syndrome and Obesity, 13, 591-596.
https://doi.org/10.2147/DMSO.S242397
[13] Cobos-Palacios, L., Ruiz-Moreno, M.I., Vilches-Perez, A., et al. (2022) Metabolically Healthy Obesity: Inflammatory Biomarkers and Adipokines in Elderly Population. PLOS ONE, 17, e0265362.
https://doi.org/10.1371/journal.pone.0265362
[14] Gomez-Huelgas, R., Ruiz-Nava, J., Santamaria-Fernandez, S., et al. (2019) Impact of Intensive Lifestyle Modification on Levels of Adipokines and Inflammatory Biomarkers in Metabol-ically Healthy Obese Women. Mediators of Inflammation, 2019, Article ID: 4165260.
https://doi.org/10.1155/2019/4165260
[15] Celik, O. and Yildiz, B.O. (2021) Obesity and Physical Exercise. Mi-nerva Endocrinology, 46, 131-144.
[16] Kahleova, H., Rembert, E., Alwarith, J., et al. (2020) Effects of a Low-Fat Ve-gan Diet on Gut Microbiota in Overweight Individuals and Relationships with Body Weight, Body Composition, and Insulin Sensitivity. A Randomized Clinical Trial. Nutrients, 12, Article 2917.
https://doi.org/10.3390/nu12102917
[17] Kolb, H. (2022) Obese Visceral Fat Tissue Inflammation: From Protec-tive to Detrimental? BMC Medicine, 20, Article No. 494.
https://doi.org/10.1186/s12916-022-02672-y
[18] Serhan, C.N. (2007) Resolution Phase of Inflammation: Novel Endogenous Anti-Inflammatory and Proresolving Lipid Mediators and Pathways. Annual Review of Immunology, 25, 101-137.
https://doi.org/10.1146/annurev.immunol.25.022106.141647
[19] Panigrahy, D., Gilligan, M.M., Serhan, C.N. and Kashfi, K. (2021) Resolution of Inflammation: An Organizing Principle in Biology and Medicine. Pharmacology & Therapeutics, 227, Article ID: 107879.
https://doi.org/10.1016/j.pharmthera.2021.107879
[20] Segawa, K. and Nagata, S. (2015) An Apoptotic ‘Eat Me’ Signal: Phosphatidylserine Exposure. Trends in Cell Biology, 25, 639-650.
https://doi.org/10.1016/j.tcb.2015.08.003
[21] Huynh, M.L., Fadok, V.A. and Henson, P.M. (2002) Phosphatidyl-serine-Dependent Ingestion of Apoptotic Cells Promotes TGF-β1 Secretion and the Resolution of Inflammation. The Journal of Clinical Investigation, 109, 41-50.
https://doi.org/10.1172/JCI0211638
[22] Gilroy, D. and De Maeyer, R. (2015) New Insights into the Resolution of Inflammation. Seminars in Immunology, 27, 161-168.
https://doi.org/10.1016/j.smim.2015.05.003
[23] Nijhuis, J., Rensen, S.S., Slaats, Y., et al. (2009) Neutrophil Activation in Morbid Obesity, Chronic Activation of Acute Inflamma-tion. Obesity, 17, 2014-2018.
https://doi.org/10.1038/oby.2009.113
[24] Jukic, A., Bakiri, L., Wagner, E.F., et al. (2021) Calprotectin: From Biomarker to Biological Function. Gut, 70, 1978-1988.
https://doi.org/10.1136/gutjnl-2021-324855
[25] Pellegrinelli, V., Carobbio, S. and Vidal-Puig, A. (2016) Adipose Tissue Plasticity: How Fat Depots Respond Differently to Pathophysiological Cues. Diabetologia, 59, 1075-1088.
https://doi.org/10.1007/s00125-016-3933-4
[26] 林泽明. 脂肪营养不良综合征的临床表型和分子遗传学研究[D]: [博士学位论文]. 北京: 北京协和医学院, 2017.
[27] Wang, R., Sun, Q., Wu, X., et al. (2022) Hypoxia as a Double-Edged Sword to Combat Obesity and Comorbidities. Cells, 11, Article 3735.
https://doi.org/10.3390/cells11233735
[28] Al Mahri, S., Malik, S.S., Al Ibrahim, M., et al. (2022) Free Fatty Acid Receptors (FFARs) in Adipose: Physiological Role and Therapeutic Outlook. Cells, 11, Article 750.
https://doi.org/10.3390/cells11040750
[29] Mccracken, E., Monaghan, M. and Sreenivasan, S. (2018) Pathophysi-ology of the Metabolic Syndrome. Clinics in Dermatology, 36, 14-20.
https://doi.org/10.1016/j.clindermatol.2017.09.004
[30] Fitzgerald, K.A. and Kagan, J.C. (2020) Toll-Like Recep-tors and the Control of Immunity. Cell, 180, 1044-1066.
https://doi.org/10.1016/j.cell.2020.02.041
[31] Artemniak-Wojtowicz, D., Kucharska, A.M. and Pyrżak, B. (2020) Obesity and Chronic Inflammation Crosslinking. Central-European Journal of Immunology, 45, 461-468.
https://doi.org/10.5114/ceji.2020.103418
[32] Li, D. and Wu, M. (2021) Pattern Recognition Receptors in Health and Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 291.
https://doi.org/10.1038/s41392-021-00687-0
[33] Eguchi, K., Manabe, I., Oishi-Tanaka, Y., et al. (2012) Saturated Fatty Acid and TLR Signaling Link β Cell Dysfunction and Islet Inflammation. Cell Metabolism, 15, 518-533.
https://doi.org/10.1016/j.cmet.2012.01.023
[34] Qatanani, M. and Lazar, M.A. (2007) Mechanisms of Obesi-ty-Associated Insulin Resistance: Many Choices on the Menu. Genes & Development, 21, 1443-1455.
https://doi.org/10.1101/gad.1550907
[35] Shi, H., Kokoeva, M.V., Inouye, K., et al. (2006) TLR4 Links Innate Immunity and Fatty Acid-Induced Insulin Resistance. The Journal of Clinical Investigation, 116, 3015-3025.
https://doi.org/10.1172/JCI28898
[36] Li, B., Leung, J.C.K., Chan, L.Y.Y., et al. (2020) A Global Perspective on the Crosstalk between Saturated Fatty Acids and Toll-Like Receptor 4 in the Etiology of Inflammation and Insulin Re-sistance. Progress in Lipid Research, 77, Article ID: 101020.
https://doi.org/10.1016/j.plipres.2019.101020
[37] Lee, J.Y., Sohn, K.H., Rhee, S.H. and Hwang, D. (2001) Satu-rated Fatty Acids, But Not Unsaturated Fatty Acids, Induce the Expression of Cyclooxygenase-2 Mediated through Toll-Like Receptor 4. The Journal of Biological Chemistry, 276, 16683-16689.
https://doi.org/10.1074/jbc.M011695200
[38] Hwang, D.H, Kim, J.A. and Lee, J.Y. (2016) Mechanisms for the Activation of Toll-Like Receptor 2/4 by Saturated Fatty Acids and Inhibition by Docosahexaenoic Acid. European Jour-nal of Pharmacology, 785, 24-35.
https://doi.org/10.1016/j.ejphar.2016.04.024
[39] Wang, Y., Qian, Y., Fang, Q., et al. (2017) Saturated Palmitic Acid Induces Myocardial Inflammatory Injuries through Direct Binding to TLR4 Accessory Protein MD2. Nature Communications, 8, Article No. 13997.
https://doi.org/10.1038/ncomms13997
[40] Lemmer, I.L., Willemsen, N., Hilal, N., et al. (2021) A Guide to Un-derstanding Endoplasmic Reticulum Stress in Metabolic Disorders. Molecular Metabolism, 47, Article ID: 101169.
https://doi.org/10.1016/j.molmet.2021.101169
[41] Lafontan, M. and Berlan, M. (2003) Do Regional Differences in Adipocyte Biology Provide New Pathophysiological Insights? Trends in Pharmacological Sciences, 24, 276-283.
https://doi.org/10.1016/S0165-6147(03)00132-9
[42] Chartrand, D.J., Larose, E., Poirier, P., et al. (2020) Visceral Adiposity and Liver Fat as Mediators of the Association between Cardiorespiratory Fitness and Plasma Glucose-Insulin Homeostasis. American Journal of Physiology Endocrinology and Metabolism, 319, E548-E556.
https://doi.org/10.1152/ajpendo.00251.2020
[43] Ahn, N., Baumeister, S.E., Amann, U., et al. (2019) Visceral Adiposity Index (VAI), Lipid Accumulation Product (LAP), and Product of Triglycerides and Glucose (TyG) to Dis-criminate Prediabetes and Diabetes. Scientific Reports, 9, Article No. 9693.
https://doi.org/10.1038/s41598-019-46187-8
[44] Leite, N.N., Cota, B.C., Gotine, A., et al. (2021) Visceral Adi-posity Index Is Positively Associated with Blood Pressure: A Systematic Review. Obesity Research & Clinical Practice, 15, 546-556.
https://doi.org/10.1016/j.orcp.2021.10.001
[45] Jabłonowska-Lietz, B., Wrzosek, M., Włodarczyk, M., et al. (2017) New Indexes of Body Fat Distribution, Visceral Adiposity Index, Body Adiposity Index, Waist-to-Height Ratio, and Metabolic Disturbances in the Obese. Kardiologia Polska, 75, 1185-1191.
https://doi.org/10.5603/KP.a2017.0149
[46] Ibrahim, M.M. (2010) Subcutaneous and Visceral Adipose Tissue: Structural and Functional Differences. Obesity Reviews, 11, 11-18.
https://doi.org/10.1111/j.1467-789X.2009.00623.x
[47] Fain, J.N. (2010) Release of Inflammatory Mediators by Human Adipose Tissue Is Enhanced in Obesity and Primarily by the Nonfat Cells: A Review. Mediators of Inflammation, 2010, Article 513948.
https://doi.org/10.1155/2010/513948
[48] Barnard, S.A., Pieters, M. and De Lange, Z. (2016) The Contribution of Different Adipose Tissue Depots to Plasma Plasminogen Activator Inhibitor-1 (PAI-1) Levels. Blood Reviews, 30, 421-429.
https://doi.org/10.1016/j.blre.2016.05.002
[49] You, T., Nicklas, B.J., Ding, J., et al. (2008) The Metabolic Syn-drome Is Associated with Circulating Adipokines in Older Adults across a Wide Range of Adiposity. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 63, 414-419.
https://doi.org/10.1093/gerona/63.4.414
[50] Cnop, M., Havel, P.J., Utzschneider, K.M., et al. (2003) Relationship of Adiponectin to Body Fat Distribution, Insulin Sensitivity and Plasma Lipoproteins: Evidence for Independent Roles of Age and Sex. Diabetologia, 46, 459-469.
https://doi.org/10.1007/s00125-003-1074-z
[51] Bahceci, M., Gokalp, D., Bahceci, S., et al. (2007) The Correlation between Adiposity and Adiponectin, Tumor Necrosis Factor α, Interleukin-6 and High Sensitivity C-Reactive Protein Levels. Is Adipocyte Size Associated with Inflammation in Adults? Journal of Endocrinological Investigation, 30, 210-214.
https://doi.org/10.1007/BF03347427
[52] Bennett, N.R., Ferguson, T.S., Bennett, F.I., et al. (2014) High-Sensitivity C-Reactive Protein Is Related to Central Obesity and the Number of Metabolic Syndrome Components in Jamaican Young Adults. Frontiers in Cardiovascular Medicine, 1, Article 12.
https://doi.org/10.3389/fcvm.2014.00012
[53] Laforest, S., Labrecque, J., Michaud, A., Cianflone, K. and Tchernof, A. (2015) Adipocyte Size as a Determinant of Metabolic Disease and Adipose Tissue Dysfunction. Critical Reviews in Clinical Laboratory Sciences, 52, 301-313.
https://doi.org/10.3109/10408363.2015.1041582
[54] Ju, L., Han, J., Zhang, X., et al. (2019) Obesity-Associated Inflammation Triggers an Autophagy-Lysosomal Response in Adipocytes and Causes Degradation of Perilipin 1. Cell Death & Disease, 10, Article No. 121.
https://doi.org/10.1038/s41419-019-1393-8
[55] Finucane, O.M., Reynolds, C.M., Mcgillicuddy, F.C. and Roche, H.M. (2012) Insights into the Role of Macrophage Migration Inhibitory Factor in Obesity and Insulin Resistance. The Proceedings of the Nutrition Society, 71, 622-633.
https://doi.org/10.1017/S0029665112000730
[56] Okamoto, Y., Folco, E.J., Minami, M., et al. (2008) Adiponectin Inhibits the Production of CXC Receptor 3 Chemokine Ligands in Macrophages and Reduces T-Lymphocyte Recruit-ment in Atherogenesis. Circulation Research, 102, 218-225.
https://doi.org/10.1161/CIRCRESAHA.107.164988
[57] Johnston, E.K. and Abbott, R.D. (2023) Adipose Tissue Paracrine-, Autocrine-, and Matrix-Dependent Signaling during the Development and Progression of Obesity. Cells, 12, Article 407.
https://doi.org/10.3390/cells12030407
[58] Varela, J.E., Hinojosa, M. and Nguyen, N. (2009) Correla-tions between Intra-Abdominal Pressure and Obesity-Related Co-Morbidities. Surgery for Obesity and Related Diseases, 5, 524-528.
https://doi.org/10.1016/j.soard.2009.04.003
[59] Ghaben, A.L. and Scherer, P.E. (2019) Adipogenesis and Metabolic Health. Nature Reviews Molecular Cell Biology, 20, 242-258.
https://doi.org/10.1038/s41580-018-0093-z
[60] Wang, B., Wood, I.S. and Trayhurn, P. (2008) Hypoxia Induces Leptin Gene Expression and Secretion in Human Preadipocytes: Differential Effects of Hypoxia on Adipokine Expres-sion by Preadipocytes. The Journal of Endocrinology, 198, 127-134.
https://doi.org/10.1677/JOE-08-0156
[61] Eltzschig, H.K. and Carmeliet, P. (2011) Hypoxia and Inflammation. The New England Journal of Medicine, 364, 656-665.
https://doi.org/10.1056/NEJMra0910283
[62] Ruth, M.R., Port, A.M., Shah, M., et al. (2013) Consuming a Hypocaloric High Fat Low Carbohydrate Diet for 12 Weeks Lowers C-Reactive Protein, and Raises Serum Adiponectin and High Density Lipoprotein-Cholesterol in Obese Subjects. Metab-olism: Clinical and Experimental, 62, 1779-1787.
https://doi.org/10.1016/j.metabol.2013.07.006
[63] Peairs, A.T. and Rankin, J.W. (2008) Inflammatory Response to a High-Fat, Low-Carbohydrate Weight Loss Diet: Effect of Antioxi-dants. Obesity, 16, 1573-1578.
https://doi.org/10.1038/oby.2008.252
[64] Lee, I.S., Shin, G. and Choue, R. (2010) Shifts in Diet from High Fat to High Carbohydrate Improved Levels of Adipokines and Pro-Inflammatory Cytokines in Mice Fed a High-Fat Diet. Endocrine Journal, 57, 39-50.
https://doi.org/10.1507/endocrj.K09E-046
[65] Pinart, M., Dötsch, A., Schlicht, K., et al. (2021) Gut Microbiome Composition in Obese and Non-Obese Persons: A Systematic Review and Meta-Analysis. Nutrients, 14, Article 12.
https://doi.org/10.3390/nu14010012
[66] Chávez-Carbajal, A., Nirmalkar, K., Pérez-Lizaur, A., et al. (2019) Gut Microbiota and Predicted Metabolic Pathways in a Sample of Mexican Women Affected by Obesity and Obesity plus Metabolic Syndrome. International Journal of Molecular Sciences, 20, Article 438.
https://doi.org/10.3390/ijms20020438
[67] Org, E., Blum, Y., Kasela, S., et al. (2017) Relationships between Gut Microbiota, Plasma Metabolites, and Metabolic Syndrome Traits in the METSIM Cohort. Genome Biology, 18, Article No. 70.
https://doi.org/10.1186/s13059-017-1194-2
[68] Rahat-Rozenbloom, S., Fernandes, J., Gloor, G.B. and Wolever, T.M.S. (2014) Evidence for Greater Production of Colonic Short-Chain Fatty Acids in Overweight than Lean Humans. International Journal of Obesity, 38, 1525-1531.
https://doi.org/10.1038/ijo.2014.46
[69] Torres-Fuentes, C., Schellekens, H., Dinan, T.G. and Cryan, J.F. (2017) The Microbiota-Gut-Brain Axis in Obesity. The Lancet Gastroenterology & Hepatology, 2, 747-756.
https://doi.org/10.1016/S2468-1253(17)30147-4
[70] Tan, R., Dong, H., Chen, Z., et al. (2021) Intestinal Microbi-ota Mediates High-Fructose and High-Fat Diets to Induce Chronic Intestinal Inflammation. Frontiers in Cellular and In-fection Microbiology, 11, Article 654074.
https://doi.org/10.3389/fcimb.2021.654074