ADAMTS-13调控急性心肌梗死的机制研究
Study on the Mechanism of ADAMTS-13 Regulating Acute Myocardial Infarction
DOI: 10.12677/ACM.2023.1391999, PDF, HTML, XML, 下载: 186  浏览: 250  科研立项经费支持
作者: 古再丽努尔·霍加阿卜杜拉, 阿卜杜如苏力·喀迪尔:新疆医科大学研究生学院,新疆 乌鲁木齐;彭 辉*:新疆维吾尔自治区人民医院心血管内科,新疆 乌鲁木齐
关键词: 急性心肌梗死ADAMTS-13VWF血栓形成炎症反应Acute Myocardial Infarction ADAMTS-13 VWF Thrombosis Inflammatory Response
摘要: ADAMTS-13是一种金属蛋白酶,可特异性切割血管性血友病因子(VWF),从而防止白细胞过度募集,下调炎症和血栓的形成。ADAMTS-13与VWF现在被认为在越来越多的血管炎症和血栓形成的疾病中起重要作用,特别是在急性心肌梗死(AMI)中研究越来越深入。ADAMTS-13结构与功能和AMI发生机制密切相关。本篇综述主要阐述ADAMTS-13调控AMI的作用机制。
Abstract: ADAMTS-13 is a metalloproteinase secreted in the blood that can specifically cleave von Willebrand Factor (VWF), thereby preventing excessive recruitment of white blood cells and downregulating inflammation and thrombosis formation. ADAMTS-13 and VWF are now considered to play an im-portant role in an increasing number of vascular inflammation and thrombosis diseases, especially in the study of acute myocardial infarction (AMI). The structure and function of ADAMTS-13 are closely related to the mechanism of AMI occurrence. This review mainly elaborates on the mecha-nism of ADAMTS-13 in regulating acute myocardial infarction.
文章引用:古再丽努尔·霍加阿卜杜拉, 阿卜杜如苏力·喀迪尔, 彭辉. ADAMTS-13调控急性心肌梗死的机制研究[J]. 临床医学进展, 2023, 13(9): 14297-14303. https://doi.org/10.12677/ACM.2023.1391999

1. 引言

冠状动脉粥样硬化性心脏病(Coronary atherosclerotic heart disease, CAD)对人类健康造成严重威胁,尤其是急性心肌梗死(Acute myocardial infarction, AMI),是CAD最严重、最凶险的表现形式 [1] 。我国AMI的发病率及病死率正在逐步增加,每年患有心脏疾病的人数持续上升 [2] 。AMI主要以血小板活化增加、内皮功能障碍、血栓形成和全身炎症为特征。ADAMTS-13 (一种具有血小板反应蛋白1型基序13的去整合素和金属蛋白酶),是在细胞外基质(ECM)和血浆中发现的一组蛋白酶。它主要切割负责止血和炎症反应的重要调节因子——VWF (von Willebrand Factor)多聚体 [3] ,从而防止白细胞过度募集,下调炎症和血栓的形成。VWF是血管损伤部位止血的重要成分,也有助于动脉粥样硬化斑块破裂部位的血栓形成。ADAMTS-13与VWF现在被认为在越来越多的血管炎症和血栓形成的疾病 [4] 中起重要作用,包括动脉粥样硬化、癌症、脓毒症、神经系统疾病和肝脏疾病等。近几年来,很多研究表明ADAMTS-13和VWF轴失衡可导致出血或血栓形成,VWF水平的升高与ADAMTS-13的降低成为AMI发生发展的危险因素,且ADAMTS-13结构与功能和AMI发生机制密切相关。

2. ADAMTS-13的来源与结构

1996年,ADAMTS-13初次从人的血浆中分离纯化,并被证实为VWF裂解蛋白酶(VWFCP) [5] 。在2001年,VWFCP的结构域表明它属于金属蛋白酶的ADAMTS家族,被鉴定为ADAMTS超家族中的一员 [6] 。ADAMTS-13主要在位于肝细胞间质的肝星状细胞(Hepatic stellate cells, HSCs)合成和分泌 [7] ,并通过毛细血管进入到血液循环中调节血浆ADAMTS-13水平。也有少量在内皮细胞、巨核细胞、血小板和肾足细胞中合成 [8] ,但其功能意义尚不明确。

ADAMTS-13属于锌依赖性细胞外基质金属蛋白酶家族,具有特征性多结构域结构和约180 kDa的分子量 [9] 。它的初级结构由1427个氨基酸残基组成,到目前为止解析出来的结构域除信号肽和前肽以外还包含14个结构域:具有Ca2+和Zn2+依赖性金属蛋白酶结构域(Mp)、去整合素样结构域(Dis)、I型凝血酶致敏蛋白重复序列-1结构域(TSP1)、富含半胱氨酸结构域(Cys-Rich)、间隔结构域(Spacer)、七个连续的I型凝血酶致敏蛋白重复序列结构域(TSP2-TSP8)、两个补体结构域(CUB) [10] [11] 。位于蛋白质N端的5个结构域Mp-Spacer称为近端结构域,位于C端的9个结构域TSP2-CUB2则称为远端结构域。ADAMTS-13的每一个结构域都影响ADAMTS-13功能的实现 [12] 。Ercig等 [13] 人在一项基础研究中观察到,与MDTCS近端结构域结合的突变或抗体可能会导致ADAMTS-13的结构和功能变化,从而导致VWF处理不足。

3. ADAMTS-13与VWF的相互作用

VWF和ADAMTS-13的近端MDTCS结构域之间的相互作用已经被广泛研究。ADAMTS-13通过以剪切依赖性方式特异性蛋白水解UL-VWF发挥作用。VWF是一种编码于12号染色体短臂的多聚体糖蛋白,主要通过募集血小板粘附在血管受损部位,介导止血和血栓形成。VWF在内皮细胞中合成,储存在Weibel Palade体(WPBs)和α-颗粒中 [14] 。VWF包含很多粘附结合位点,包括因子VIII (FVIII)、内皮下胶原和各种血小板糖蛋白(GP)受体(特别是GPIb/V/IX复合物和GPIIb/IIIa [也称为整合素αIIbβ3])。在正常情况下,VWF在血浆中以折叠状构象循环,隐藏其A1结构域中的GPIba结合位点。容纳ADAMTS-13切割位点的相邻A2结构域也被折叠,使其对ADAMTS-13蛋白水解具有抵抗性 [15] 。ADAMTS-13以“封闭”构象循环,通过C末端CUB结构域与Spacer结构域的相互作用稳定 [16] 。

ADAMTS-13头部参与VWF结合的关键位点被其尾部所掩盖。只有当ADAMTS-13与VWF结合时,ADAMTS-13的构象才能发生变化,从而暴露其头部隐藏的结合位点。ADAMTS-13介导的VWF蛋白水解发生时,可能会有三种不同的情况:1) 在内皮细胞分泌VWF的过程中,2) 在自由循环中,3) 在血管损伤部位的VWF分解过程,且这三种方式都依赖于VWF的剪切依赖性展开。

当血管受损时,内皮细胞下胶原蛋白被暴露,折叠状VWF因剪切力增高而分解成线性构象,继而介导血小板粘附和聚集 [17] 。VWF的粘附性能取决于多聚体的大小及其构象,内皮细胞释放的UL-VWF是止血和炎症反应的重要调节因子 [18] 。UL-VWF在高剪切应力下与血小板相互作用最活跃,当UL-VWF延伸成细长构象的同时,A2结构域发生去折叠,暴露出其中ADAMTS-13的切割位点——Tyr1605-Met1606肽键 [19] 。

ADAMTS-13对UL-VWF大小的调节特别复杂,需要彼此之间的多次相互作用。在未折叠状态下ADAMTS-13在循环中自我保护,不被其抗体识别。当ADAMTS-13通过D4-CK区域与VWF结合后,封闭状态的ADAMTS-13被打开。它首先通过Spacer结构域结合到A2结构域上,然后Cys-rich结构域和Dis结构域依次结合到A2上,使Mp结构域的催化中心正确定位到酶切位点进行酶切 [20] ,将UL-VWF切割成更小且活性较低的片段,干扰血小板的过度聚集,以维持精细的止血血栓平衡。这一作用降低了VWF的凝血活性,抑制血栓的形成。

4. ADAMTS-13与血栓性疾病

调节血栓形成是ADAMTS-13最早发现和最主要的生理功能。VWF在内皮细胞中表达,在释放到血浆前储存在WPBs内。一旦进入循环,它是分子量最高的多聚体,表现出最大的止血潜力。VWF介导血栓形成,ADAMTS-13通过裂解VWF防止微血管血栓形成。ADAMTS-13缺乏会引起“超大”VWF多聚体的存在,就促进了血栓形成 [21] 。目前已有很多研究证实ADAMTS-13在全身多系统疾病中必不可少。ADAMTS-13的降低水平在疾病严重程度和血栓性疾病中非常关键,并且其活性可以预测血栓性疾病的预后和发展 [22] 。血栓性血小板减少性紫癜(TTP)是一种很严重的血栓性微血管病 [23] ,是ADAMTS-13严重先天性或免疫介导的缺乏导致高浓度异常大的VWF多聚体,引起血栓事件和缺血性器官损伤 [24] 。当代引发全社会关注的2019冠状病毒病也与ADAMTS-13的减少和VWF的积累有关,可能会增加受影响患者的血栓风险 [25] [26] 。

高VWF、低ADAMTS-13会增加缺血性中风和心肌梗死的风险 [27] 。Fujioka等人 [28] 发现在诱导脑卒中再灌注后,与野生型(WT)小鼠相比,ADAMTS-13−/−小鼠的局部脑血流量逐渐减少。重组ADAMTS-13 (rhADAMTS-13)给药与小鼠模型中的溶栓治疗结合时,可减少脑梗死面积 [29] 。AMI主要是因冠状动脉中粥样硬化斑块的不稳定、破裂或糜烂,引发血管狭窄或闭塞引起不同程度的缺血或坏死导致的。血浆ADAMTS-13活性也与心肌缺血事件后的心肌梗死面积和心功能有关 [30] 。在Green D等 [31] 人的一项研究中,病例组中VWF与ADAMTS-13的比率高于对照组,发现低ADAMTS-13水平与AMI风险增加之间存在关联。De Meyer等 [32] 采用小鼠AMI模型研究发现,ADAMTS-13−/−小鼠的心肌梗死面积大于WT小鼠,给予rhADAMTS-13治疗可降低其心肌梗死面积。rADAMTS-13目前正在临床试验中作为一种酶替代疗法治疗先天性和免疫介导的TTP,它可以改善局部微循环,对于维持正常器官功能很重要。Paolo Rossato等人 [33] 在人源化SCD (镰状细胞病)小鼠模型中进一步证明,rhADAMTS-13的药物治疗可以恢复有效的VWF调节,提供了一种疾病改良治疗。除了调节血栓形成外,ADAMTS-13已开始被认为是其他疾病的预后和/或诊断标志物,例如与炎症、肝病、癌症、败血症和血管生成有关的疾病。

5. ADAMTS-13与动脉粥样硬化、炎症反应

有一研究结果 [34] 提供了确凿的证据,证明VWF的ADAMTS-13切割失败以多因素的方式易发生动脉粥样硬化。ADAMTS-13降低和VWF水平升高已被证明是心肌梗死的促成因素 [35] 。大量证据证实心肌梗死会引发炎症反应,这是一个十分复杂的生理过程 [36] 。随着生命科学的迅速发展,近年来在AMI进展的各阶段均检测到炎症相关因子的大量表达。在高脂血症动物模型中,已知VWF介导的血小板粘附可加速动脉粥样硬化,并促进先天免疫系统细胞向斑块形成区域的募集 [37] 。由此可以再次说明,冠状动脉粥样硬化的发生发展过程中免疫炎症反应发挥着不可替代的促进作用。炎症促进动脉粥样硬化的发生和发展,同时加重心肌细胞的缺血性损伤,并进一步加重AMI的严重程度。缺血引起的强烈炎症反应在AMI后心室重构中起着重要作用 [38] 。

一项临床前研究表明ADAMTS-13通过减少血栓形成和炎症对脑和心肌缺血/再灌注损伤有益处。利用活体显微镜 [39] ,有研究发现ADAMTS-13−/−小鼠的动脉粥样硬化病变不仅更大,而且炎症性更强。故此项研究提出ADAMTS-13最有可能通过其对ULVWF的蛋白水解作用来减少过度炎症和动脉粥样硬化形成。ADAMTS-13缺乏可能导致白细胞过度粘附和加速动脉粥样硬化。在培养的肝星状细胞和内皮细胞中,肿瘤坏死因子-α (TNF-α)、白介素-4 (IL-4)和白介素-6 (IL-6)参与VWF和ADAMTS-13的合成、释放和切割。这些结果表明,炎症和血栓形成之间可能存在潜在的联系 [40] 。炎症相关的VWF过度释放和抑制之间的失衡和/或ADAMTS-13的裂解能力耗尽可能最终导致高粘性UL-VWF线的积聚损害了微循环。高VWF抗原水平和低ADAMTS-13之间的关系与炎症程度和器官衰竭的严重程度有关 [41] 。创伤也会激活凝血纤维蛋白溶解反应,引发创伤诱导的凝血病(TIC),最终可能导致DIC。TIC伴有全身炎症和内皮细胞损伤可能导致ADAMTS-13减少 [42] ,这可能是血小板进一步消耗和血栓形成的风险。

6. ADAMTS-13调控AMI后血管生成

血管生成是一个复杂的过程。血管内皮生长因子(VEGF)和VEGF受体2 (VEGFR-2)主要负责启动血管生成,血管生成素(Ang) 1和2则与血管的成熟与稳定有关。Ang-1可通过加强内皮细胞之间的连接,中和VEGF诱导的血管渗透性增加的现象,促新生血管成熟 [43] 。治疗性血管新生在防止心室重构和恢复血流方面起到重要作用,且早已成为AMI治疗中的新领域 [44] 。

有一项研究结果 [45] 表明ADAMTS-13和含有TSP1重复序列的ADAMTS-13的各种片段通过VEGF-VEGFR2信号通路促进血管生成。血管生成受ADAMTS-13的双向调节:内皮细胞增生时,ADAMTS-13浓度的增高可能会诱导局部血管生成,并以负反馈的形式抑制VEGF诱导的血管生成 [46] 。在生理性血管生成模型中,VWF的缺失导致血管紧张素-2 (Ang-2)释放增加和血管形成增强,而ADAMTS-13的减少导致Ang-2合成减少 [47] 。使用动物模型ADAMTS-13被证实为缺血性中风后新生血管形成和血管修复所需,并且使用rhADAMTS-13改善了ADAMTS-13缺陷小鼠和野生型小鼠的血管形成和功能恢复 [8] 。

7. 展望与未来

AMI是当代社会死亡率最高的心血管疾病,严重威胁人们生命健康 [48] 。ADAMTS-13分泌于血液之中被证实可以通过对VWF蛋白的水解作用,调节VWF水平和活性,下调血栓形成炎症和血管生成 [49] 。ADAMTS-13活性的调节是一个复杂还未研究透彻的过程,涉及变构调节机制和VWF的构象激活。因此在未来,我们仍需要继续阐明ADAMTS-13活性的范围,以区分病理生理学的严重程度,这可能有助于确定治疗干预措施。还需对ADAMTS-13各个结构域的深入研究,进一步挖掘ADAMTS-13的功能及作用机制,为缺血性心脏病的治疗与预后提供新的治疗潜力与思路。

基金项目

新疆维吾尔自治区自然科学基金,(项目编号:2022B03009-3)。

NOTES

*通讯作者。

参考文献

[1] Mozaffarian, D., Benjamin, E.J., Go, A.S., et al. (2015) Heart Disease and Stroke Statistics-2016 Update: A Report from the American Heart Association. Circulation, 133, e38-360.
[2] 雍婧雯, 王志坚, 林徐泽, 等. 急性心肌梗死患者患病构成比及住院死亡率变化趋势[J]. 中华心血管病杂志, 2019, 47(3): 209-214.
https://doi.org/10.3760/cma.j.issn.0253-3758.2019.03.006
[3] Blennerhassett, R., Curnow, J. and Pasalic, L. (2020) Immune-Mediated Thrombotic Thrombocytopenic Purpura: A Narrative Review of Diagnosis and Treatment in Adults. Seminars in Thrombosis and Hemostasis, 46, 289-301.
https://doi.org/10.1055/s-0040-1708541
[4] DeYoung, V., Singh, K. and Kretz, C.A. (2022) Mechanisms of ADAMTS13 Regulation. Journal of Thrombosis and Haemostasis, 20, 2722-2732.
https://doi.org/10.1111/jth.15873
[5] Wu, T., Lin, J., Cruz, M.A., Dong, J.-F. and Zhu, C. (2009) Force-Induced Cleavage of Single VWFA1A2A3 Tridomains by ADAMTS-13. Blood, 115, 370-378.
https://doi.org/10.1182/blood-2009-03-210369
[6] Zheng, X., Chung, D., Takayama, T.K., et al. (2001) Structure of Von Willebrand Factor-Cleaving Protease (ADAMTS13), a Metalloprotease Involved in Thrombotic Thrombocytope-nic Purpura. Journal of Biological Chemistry, 276, 41059- 41063.
https://doi.org/10.1074/jbc.C100515200
[7] Verbij, F., Sorvillo, N., Kaijen, P., et al. (2016) The Macro-phage-Specific CD163 Is an Endocytic Receptor for Von Willebrand Factor (VWF) Cleaving Protease ADAMTS13. Blood, 128, Article No. 17.
https://doi.org/10.1182/blood.V128.22.17.17
[8] Woods, A.I., Paiva, J., Dos Santos, C., Alberto, M.F. and Sánchez-Luceros, A. (2022) From the Discovery of ADAMTS13 to Current Understanding of Its Role in Health and Disease. Seminars in Thrombosis and Hemostasis, 49, 284-294.
https://doi.org/10.1055/s-0042-1758059
[9] Kelwick, R., Desanlis, I., Wheeler, G.N. and Edwards, D.R. (2015) The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin Motifs) Family. Genome Biology, 16, Arti-cle No. 113.
https://doi.org/10.1186/s13059-015-0676-3
[10] Kim, H.J., Xu, Y., Petri, A., et al. (2021) Crystal Structure of ADAMTS13 CUB Domains Reveals Their Role in Global Latency. Science Advances, 7.
https://doi.org/10.1126/sciadv.abg4403
[11] Zhu, J., Muia, J., Gupta, G., et al. (2019) Exploring the “Minimal” Structure of a Functional ADAMTS13 by Mutagenesis and Small-Angle X-Ray Scattering. Blood, 133, 1909-1918.
https://doi.org/10.1182/blood-2018-11-886309
[12] Muia, J., Zhu, J., Greco, S.C., et al. (2019) Phylogenetic and Functional Analysis of ADAMTS13 Identifies Highly Conserved Domains Essential for Allosteric Regulation. Blood, 133, 1899-1908.
https://doi.org/10.1182/blood-2018-11-886275
[13] Ercig, B., Wichapong, K., Reutelingsperger, C.P.M., et al. (2018) Insights into 3D Structure of ADAMTS13: A Stepping Stone towards Novel Therapeutic Treatment of Throm-botic Thrombocytopenic Purpura. Thrombosis and Haemostasis, 118, 28-41.
https://doi.org/10.1160/TH17-06-0404
[14] Morici, N., Cantoni, S., Panzeri, F., et al. (2017) Von Willebrand Fac-tor and Its Cleaving Protease ADAMTS13 Balance in Coronary Artery Vessels: Lessons Learned from Thrombotic Thrombocytopenic Purpura. A Narrative Review. Thrombosis Research, 155, 78-85.
https://doi.org/10.1016/j.thromres.2017.05.011
[15] Schelpe, A.S., Petri, A., Roose, E., et al. (2020) Antibodies That Conformationally Activate ADAMTS13 Allosterically Enhance Metalloprotease Domain Function. Blood Advances, 4, 1072-1080.
https://doi.org/10.1182/bloodadvances.2019001375
[16] Deforche, L., Roose, E., Vandenbulcke, A., et al. (2015) Linker Regions and Flexibility around the Metalloprotease Domain Account for Conformational Activation of ADAMTS-13. Journal of Thrombosis and Haemostasis, 13, 2063- 2075.
https://doi.org/10.1111/jth.13149
[17] Löf, A., Müller, J.P. and Brehm, M.A. (2017) A Biophysical View on Von Willebrand Factor Activation. Journal of Cellular Physiology, 233, 799-810.
https://doi.org/10.1002/jcp.25887
[18] Zhang, C., Kelkar, A. and Neelamegham, S. (2019) Von Willebrand Factor Self-Association Is Regulated by the Shear-Dependent Unfolding of the A2 Domain. Blood Advances, 3, 957-968.
https://doi.org/10.1182/bloodadvances.2018030122
[19] Aponte-Santamaría, C., Huck, V., Posch, S., et al. (2015) Force-Sensitive Autoinhibition of the Von Willebrand Factor Is Mediated by Interdomain Interactions. Biophysical Jour-nal, 108, 2312-2321.
https://doi.org/10.1016/j.bpj.2015.03.041
[20] Petri, A., Kim, H.J., Xu, Y., et al. (2019) Crystal Structure and Sub-strate-Induced Activation of ADAMTS13. Nature Communications, 10, Article No. 3781.
https://doi.org/10.1038/s41467-019-11474-5
[21] South, K., Freitas, M.O. and Lane, D.A. (2017) A Model for the Conformational Activation of the Structurally Quiescent Metalloprotease ADAMTS13 by Von Willebrand Factor. Jour-nal of Biological Chemistry, 292, 5760-5769.
https://doi.org/10.1074/jbc.M117.776732
[22] Matsumoto, H., Takeba, J., Umakoshi, K., et al. (2021) ADAMTS13 Activity Decreases in the Early Phase of Trauma Associated with Coagulopathy and Systemic Inflamma-tion: A Prospective Observational Study. Thrombosis Journal, 19, Article No. 17.
https://doi.org/10.1186/s12959-021-00270-1
[23] Zheng, X.L., Vesely, S.K., Cataland, S.R., et al. (2020) ISTH Guidelines for the Diagnosis of Thrombotic Thrombocytopenic Purpura. Journal of Thrombosis and Haemostasis, 18, 2486-2495.
https://doi.org/10.1111/jth.15006
[24] Smock, K.J. (2021) ADAMTS13 Testing Update: Focus on Laboratory Aspects of Difficult Thrombotic Thrombocytopenic Purpura Diagnoses and Effects of New Therapies. Inter-national Journal of Laboratory Hematology, 43, 103-108.
https://doi.org/10.1111/ijlh.13557
[25] Favaloro, E.J., Henry, B.M. and Lippi, G. (2021) Increased VWF and Decreased ADAMTS-13 in COVID-19: Creating a Milieu for (Micro)Thrombosis. Seminars in Thrombosis and Hemostasis, 47, 400-418.
https://doi.org/10.1055/s-0041-1727282
[26] Henry, B.M., Benoit, S.W., et al. (2020) ADAMTS13 Activity to Von Willebrand Factor Antigen Ratio Predicts Acute Kidney Injury in Patients with COVID-19: Evidence of SARS-CoV-2 Induced Secondary Thrombotic Microangiopathy. International Journal of Laboratory Hematology, 43, 129-136.
https://doi.org/10.1111/ijlh.13415
[27] Andersson, H.M., Siegerink, B., Luken, B.M., et al. (2011) High VWF, Low ADAMTS13, and Oral Contraceptives Increase the Risk of Ischemic Stroke and Myocardial Infarction in Young Women. Blood, 119, 1555-1560.
https://doi.org/10.1182/blood-2011-09-380618
[28] Fujioka, M., Hayakawa, K., Mishima, K., et al. (2009) ADAMTS13 Gene Deletion Aggravates Ischemic Brain Damage: A Possible Neuroprotective Role of ADAMTS13 by Ameliorating Postischemic Hypoperfusion. Blood, 115, 1650-1653.
https://doi.org/10.1182/blood-2009-06-230110
[29] Denorme, F., Langhauser, F., Desender, L., et al. (2016) ADAMTS13-Mediated Thrombolysis of t-PA-Resistant Occlusions in Ischemic Stroke in Mice. Blood, 127, 2337-2345.
https://doi.org/10.1182/blood-2015-08-662650
[30] Witsch, T., Martinod, K., Sorvillo, N., et al. (2018) Recombi-nant Human ADAMTS13 Treatment Improves Myocardial Remodeling and Functionality after Pressure Overload Injury in Mice. Journal of the American Heart Association, 7, e007004.
https://doi.org/10.1161/JAHA.117.007004
[31] Green, D., Tian, L., Greenland, P., et al. (2016) Association of the Von Willebrand Factor-ADAMTS13 Ratio with Incident Cardiovascular Events in Patients with Peripheral Arterial Dis-ease. Clinical and Applied Thrombosis/Hemostasis, 23, 807-813.
https://doi.org/10.1177/1076029616655615
[32] De Meyer, S.F., Savchenko, A.S., Haas, M.S., et al. (2012) Pro-tective Anti-Inflammatory Effect of ADAMTS13 on Myocardial Ischemia/Reperfusion Injury in Mice. Blood, 120, 5217-5223.
https://doi.org/10.1182/blood-2012-06-439935
[33] Rossato, P., Glantschnig, H., Canneva, F., et al. (2022) Treat-ment with Recombinant ADAMTS13, Alleviates Hypoxia/Reoxygenation-Induced Pathologies in a Mouse Model of Human Sickle Cell Disease. Journal of Thrombosis and Haemostasis, 21, 269-275.
https://doi.org/10.1016/j.jtha.2022.10.016
[34] Ozawa, K., Muller, M.A., Varlamov, O., et al. (2022) Reduced Proteolytic Cleavage of Von Willebrand Factor Leads to Aortic Valve Stenosis and Load-Dependent Ventricular Remod-eling. JACC: Basic to Translational Science, 7, 642-655.
https://doi.org/10.1016/j.jacbts.2022.02.021
[35] Al-Masri, A.A., Habib, S.S., Hersi, A., et al. (2020) Effect of Acute Myocardial Infarction on a Disintegrin and Metalloprotease with Thrombospondin Motif 13 and Von Willebrand Factor and Their Relationship with Markers of Inflammation. International Journal of Vascular Medicine, 2020, Article ID: 4981092.
https://doi.org/10.1155/2020/4981092
[36] Swirski, F.K. and Nahrendorf, M. (2018) Cardioimmunology: The Immune System in Cardiac Homeostasis and Disease. Nature Reviews Immunology, 18, 733-744.
https://doi.org/10.1038/s41577-018-0065-8
[37] Ozawa, K., Muller, M.A., Varlamov, O., et al. (2020) Proteolysis of Von Willebrand Factor Influences Inflammatory Endothelial Activation and Vascular Compliance in Atherosclerosis. JACC: Basic to Translational Science, 5, 1017-1028.
https://doi.org/10.1016/j.jacbts.2020.08.009
[38] Ma, C., Jiang, Y., Zhang, X., et al. (2018) Isoquercetin Amelio-rates Myocardial Infarction through Anti-Inflammation and Anti-Apoptosis Factor and Regulating TLR4-NF-κB Signal Pathway. Molecular Medicine Reports, 17, 6675-6680.
https://doi.org/10.3892/mmr.2018.8709
[39] Gandhi, C., Khan, M.M., Lentz, S.R. and Chauhan, A.K. (2011) ADAMTS13 Reduces Vascular Inflammation and the Development of Early Atherosclerosis in Mice. Blood, 119, 2385-2391.
https://doi.org/10.1182/blood-2011-09-376202
[40] Shen, L., Lu, G., Dong, N., et al. (2013) Simvas-tatin Increases ADAMTS13 Expression in Podocytes. Thrombosis Research, 132, 94-99.
https://doi.org/10.1016/j.thromres.2013.05.024
[41] Claus, R.A., Bockmeyer, C.L., Sossdorf, M. and Losche, W. (2010) The Balance Between Von-Willebrand Factor and Its Cleaving Protease ADAMTS13: Biomarker in Systemic In-flammation and Development of Organ Failure? Current Molecular Medicine, 10, 236-248.
https://doi.org/10.2174/156652410790963367
[42] Russell, R.T., McDaniel, J.K., Cao, W., et al. (2018) Low Plasma ADAMTS13 Activity Is Associated with Coagulopathy., Endothelial Cell Damage and Mortality after Severe Paediatric Trauma. Thrombosis and Haemostasis, 118, 676-687.
https://doi.org/10.1055/s-0038-1636528
[43] Zhang, H., Yuan, Y.L., Wang, Z., et al. (2013) Sequential, Timely and Controlled Expression of HVEGF165 and Ang-1 Effectively Improves Functional Angiogenesis and Cardiac Func-tion in Vivo. Gene Therapy, 20, 893-900.
https://doi.org/10.1038/gt.2013.12
[44] Zheng, Y., Xiao, M., Li, L., et al. (2017) Remote Physiological Ischemic Training Promotes Coronary Angiogenesis via Molecular and Cellular Mobilization After Myocardial Ischemia. Cardio-vascular Therapeutics, 35, e12257.
https://doi.org/10.1111/1755-5922.12257
[45] Lee, M., Keener, J., Xiao, J., Zheng, X.L. and Rodgers, G.M. (2014) ADAMTS13 and Its Variants Promote Angiogenesis via Upregulation of VEGF and VEGFR2. Cellular and Molecular Life Sciences, 72, 349-356.
https://doi.org/10.1007/s00018-014-1667-3
[46] Lee, M., Rodansky, E.S., Smith, J.K. and Rodgers, G.M. (2012) ADAMTS13 Promotes Angiogenesis and Modulates VEGF-Induced Angiogenesis. Microvascular Research, 84, 109-115.
https://doi.org/10.1016/j.mvr.2012.05.004
[47] Xu, H., Cao, Y., Yang, X., et al. (2017) ADAMTS13 Controls Vascular Remodeling by Modifying VWF Reactivity during Stroke Recovery. Blood, 130, 11-22.
https://doi.org/10.1182/blood-2016-10-747089
[48] 张成森, 刘锐, 鲍永辉, 时金栗, 李长江. 转化生长因子-β/Smads信号通路在急性心肌梗死左心室重构中的研究进展[J]. 中国心血管病研究, 2023, 21(3): 213-218.
https://doi.org/10.3969/j.issn.1672-5301.2023.03.005
[49] Favaloro, E.J., Pasalic, L., Henry, B. and Lippi, G. (2021) Laboratory Testing for ADAMTS13: Utility for TTP Diagnosis/Exclusion and beyond. American Journal of Hematology, 96, 1049-1055.
https://doi.org/10.1002/ajh.26241