白蛋白在肝硬化治疗中的应用及有效白蛋白概念解读
Application of Albumin in the Treatment of Liver Cirrhosis and Interpretation of the Concept of Effective Albumin
DOI: 10.12677/ACM.2023.1391996, PDF, HTML, XML, 下载: 293  浏览: 445 
作者: 张瑶瑶, 雷 芯:延安大学医学院,陕西 延安 ;戴光荣*:延安大学附属医院消化内科,陕西 延安
关键词: 肝硬化白蛋白有效白蛋白治疗Liver Cirrhosis Albumin Effective Albumin Treatment
摘要: 肝硬化是一种由肝脏炎症及纤维化引起的慢性疾病,是一种连续、动态性、进行性肝病。肝硬化是肝组织的病理性瘢痕,导致肝功能受损,它可以由慢性肝病的任何病因引起,并引起严重的疾病负担,通过控制病因,消除诱因可以改善肝硬化预后,控制病情进展,全身炎症在肝硬化发生中有着不可忽略的作用。血清白蛋白可以治疗并发症,改善患者生活质量,改善全身炎症,维持血管内皮稳定,改善循环系统障碍,对于患者有较大益处,但目前对于白蛋白使用有较大争议,且有效白蛋白概念未得到普及,本文就白蛋白在肝硬化治疗中价值及有效白蛋白进行综述,期望能对肝硬化患者诊疗提供思路。
Abstract: Liver cirrhosis is a chronic, dynamic and progressive liver disease caused by inflammation and fi-brosis of the liver. Liver cirrhosis is a pathological scar of liver tissue, resulting in impaired liver function, it can be caused by any cause of chronic liver disease, and cause a serious disease burden, by controlling the cause, eliminating the cause can improve the prognosis of cirrhosis, control the progression of the disease, systemic inflammation has a non-negligible role in the onset of cirrhosis. Serum albumin can treat complications, improve the quality of life of patients, improve systemic in-flammation, maintain vascular endothelial stability, improve circulatory system disorders, and have great benefits for patients, but at present, the use of albumin is controversial, and the concept of effective albumin has not been popularized, this article reviews the value of albumin in the treatment of liver cirrhosis and effective albumin, hoping to provide ideas for the diagnosis and treatment of patients with liver cirrhosis.
文章引用:张瑶瑶, 雷芯, 戴光荣. 白蛋白在肝硬化治疗中的应用及有效白蛋白概念解读[J]. 临床医学进展, 2023, 13(9): 14274-14282. https://doi.org/10.12677/ACM.2023.1391996

1. 引言

肝硬化是一种由不同病因长期作用于肝脏引起的慢性、进行性、弥漫性肝病。是在肝细胞广泛坏死基础上产生肝脏纤维组织弥漫性增生,并形成再生结节和假小叶,导致肝小叶正常结构和血液供应遭到破坏。病变逐渐进展,晚期出现肝衰竭、门静脉高压和多种并发症,每年约有100万患者死亡,肝硬化和慢性肝病是全球死亡率第10位的疾病 [1] ,死亡主要与肝硬化临床失代偿的发展有关,每年有4%至12%的肝硬化患者至少出现一次失代偿。对于肝硬化诊疗及预后改善我们目前还面临巨大挑战。

人血白蛋白(human albumin, HA)是一种由肝细胞独家合成的一种水溶性、带负电荷的67 kda蛋白质,在正常情况下半衰期为20 d,它是血清和细胞外液中含量最丰富的蛋白质,在生理上,白蛋白负责维持胶体渗透压,并可能影响微血管的完整性和炎症途径的各个方面 [2] 。白蛋白具有抗肿瘤、抗氧化、解毒、抗炎、内皮稳定和免疫调节等多种作用 [3] 。Bernardi M等人的一项研究表明白蛋白可逆转地结合许多分子,进一步实验室研究得出结论白蛋白抗氧化的机制可能与自身硫醇基团、中和自由铜离子和铁离子以及结合形成白蛋白–血红素复合体等途径有关。同时,白蛋白与内毒素结合以及抑制肿瘤坏死因子α诱导的人主动脉内皮细胞血管细胞黏附分子-1和核因子-KB的激活来达到抗炎及免疫调节的作用。炎症和氧化应激是导致内皮损伤的主要原因,白蛋白具有抗炎抗氧化作用,因此可以维持血管内皮稳定 [4] 。在肝硬化患者中,肝脏合成白蛋白不足等多种因素可能导致低白蛋白血症。肝脏纤维化导致肝内外血管扩张,在肝硬化传统治疗中白蛋白扮演着维持循环平衡的角色,但目前最新研究表明肝硬化失代偿至少部分由全身炎症状态驱动 [5] [6] [7] [8] ,白蛋白的抗炎,稳定血管内皮作用得到了广泛的重视。有研究表明,在肝衰竭中,不仅白蛋白浓度降低,而且白蛋白功能也会降低 [9] 。因此引出了有效白蛋白浓度(effective albumin concentration, eAlb)的概念,事实上,在肝硬化患者中,有功能的白蛋白浓度比常规测得白蛋白浓度低几倍。多年来,白蛋白给药已被用于预防和管理不同形式的失代偿期肝硬化,目前治疗包括单次、短期(<40 d)及长期输注治疗,下文所指均为短期(<40 d)治疗。

本文就肝硬化及并发症进行简述,同时对于HA治疗肝硬化新前景进行综述,为临床诊疗提供新思路,同时提高对于eAlb概念的认识。

2. 肝硬化病因、临床表现及并发症

2.1. 病因、临床表现

导致肝硬化的病因有10余种,我国目前仍以乙型肝炎病毒为主;在欧美国家,酒精及丙型肝炎病毒为多见病因。肝硬化失代偿期的临床表现主要有肝功能减退和门静脉高压两类。

2.2. 并发症

肝硬化主要并发症包括食管胃静脉破裂出血;自发性细菌性腹膜炎;原发性肝癌;肝肾综合征;肝肺综合征;肝性脑病;门静脉血栓形成;肝硬化性心肌病。

3. 白蛋白治疗当前建议及潜在价值

3.1. 当前建议

1) 大容量穿刺及肝衰竭穿刺:大容量穿刺(large-volume puncture, LVP)是目前治疗难治性和紧张性腹水的标准方法,因为其疗效高,并发症发生率低 [10] [11] [12] ,但大量腹水引流后可降低外周血管阻力及血容量,增加心排出量,导致低动脉压,从而引起肾脏及全身各器官血容量及氧含量不足,引起全身脏器功能衰竭,进一步加重病情。这种严重情况被称为穿刺诱导循环障碍(puncture-induced circulatory dysfunction, PICD),对于肝衰竭患者,肝功能明显减退,少量穿刺引流就可能引起PICD,其定义为穿刺后几天血浆肾素基础活性升高50%以上,这表明容量消耗对有效血容量有不利影响 [13] [14] [15] [16] 。一些随机对照试验(RCT)表明,静脉注射人白蛋白可以预防PICD,特别是在穿刺超过5 L的情况下,白蛋白比其他扩容剂更有效 [17] [18] [19] ,可以改善患者预后,提高生存率,但对于复发及死亡未见明显改善。Hamdy等 [20] 的一项随机对照试验比较了其余血管收缩剂和标准HA剂量对肝硬化和顽固性腹水患者PICD的预防作用,结果表明白蛋白优于血管收缩剂。目前HA对于肝硬化LVP及肝衰竭穿刺病人预防PICD的益处不言而喻。

2) AKI与肝肾综合征:急性肾损伤(acute kidney injury, AKI)是肝硬化患者一种严重并发症,据报道有三分之一到二分之一的肝硬化患者会发生AKI [21] ,如何判别是否发生AKI极为重要,目前是基于血清肌酐的急性升高 ≥ 0.3 mg/dL或者 ≥ 基线值的50%被定义为AKI [22] 。在肝硬化患者中AKI的发生大多数由使用利尿剂、乳果糖或肝硬化各种类型腹泻导致的容量不足引起,除停用利尿剂,对症治疗腹泻,治疗原发病外,国际腹水俱乐部建议可给予HA补充容量,治疗及预防AKI。Flamm等 [23] 在评估和管理肝硬化患者急性肾损伤专家共识里认为当诊断为急性肾损伤时,如果血清肌酐比基线增加一倍则给予白蛋白1 g/kg/d治疗两天各项指标有所好转。Velez等 [24] 在一项研究中也表明静脉注射白蛋白是一种辅助治疗AKI的方法。

肝肾综合征(hepatorenal syndrome, HRS)病人肾脏无实质性病变,由于严重门静脉高压,内脏高动力循环使体循环血流量明显减少;多种扩血管物质如前列腺素、NO等不能被肝脏灭活,引起体循环血管床扩张;大量腹水引起腹内压明显升高,均可减少肾血流量尤其肾皮质灌注不足,出现肾衰竭。其诊断是一项排他性诊断,排除肾脏结构病变、近期休克史、肾毒性药物使用史、其余慢性肾病史等后可确诊,目前更倾向于HRS-AKI [25] 。HA在HRS-AKI中应用不止扩张容量,还具有结合循环中细菌的能力,同时具有抗炎、抗氧化、维持血管内皮稳定的作用,这使得其在HRS-AKI患者中具有更大益处 [26] 。在一项非随机实验中表明 [27] ,给予白蛋白治疗可明显改善HRS-AKI患者肌酐等肾功水平,改善预后,提高生存率。Antoniades等人 [28] 的一项研究也得出相同结论。但一项比较特利加压素联合HA对比安慰剂的大型随机实验表明在AKI及HRS-AKI中大量使用HA可能会引起肺水肿及呼吸衰竭 [29] ,这使得对于临床使用HA时应谨慎用量,同时密切注意患者病情变化。

3) 自发性细菌性腹膜炎(spontaneous bacterial peritonitis, SBP):SBP是一个用来描述腹水急性感染的术语,是一种在腹腔内液体的异常积聚,没有明显或可识别的感染源 [30] 。当患者出现腹痛、发烧或精神状态改变时,SBP就会被怀疑。目前还没有公认的SBP诊断标准,少数患者也没有明显的腹痛。SBP最常见(75%)是由革兰氏阴性需氧菌引起的,肺炎克雷伯杆菌占其中的50%。其余病例为革兰氏阳性需氧微生物;其中最常见的是肺炎链球菌 [31] 。在肝硬化患者住院期间发生SBP的概率为25%~30% [32] ,其与肝硬化发病率及死亡率有关 [33] ,Sort等 [34] 的一项研究表明对于肝硬化SBP治疗在药敏试验后给予抗生素治疗,同时应给予HA治疗,这与单纯使用抗生素相比可降低住院患者死亡率及肾损害。在一项荟萃分析中包括四个随机对照实验 [27] [34] [35] 也得出相同结论。这更多可能归功于HA可降低血浆NO、肿瘤坏死因子α、内毒素及白介素6的水平,这表明HA不止具有胶体性质,更具有抗炎特性。一些指南推荐对于SBP患者应大剂量使用HA,即使一些病人未出现或出现轻微肾损伤 [36] 。

3.2. 潜在价值

3.2.1. 腹膜外炎症感染

肝硬化感染中除SBP外全身感染也占有很大比重,Piano等 [37] 的一项回顾性实验表明全身感染,可增加肝硬化进展为失代偿风险。Bernardi等 [3] 的一项研究发现HA治疗可减轻失代偿期肝硬化患者的全身炎症。Wong等 [38] 的一项系统回顾表明细菌感染是肝硬化急性–慢性肝衰竭(acute-chronic liver failure, ACLF)和死亡的常见原因,静脉注射HA可以促进ACLF的恢复。最近的实验数据表明HA在免疫细胞内被内化,并通过与内源性toll样受体信号的相互作用来调节它们的反应 [39] 。这似乎为外源性输注HA治疗腹膜外炎症感染导致的失代偿性肝硬化及ACLF提供了理论依据。

3.2.2. 肝性脑病

在肝硬化基础上出现的神经和精神异常,称为肝性脑病(hepatic encephalopathy, HE)。氨代谢紊乱引起的氨中毒是HE的重要发病机制,同时脑内星形胶质细胞肿胀也是其重要机制,其原因是渗透性肿胀。在Jalan的一项研究中表明 [40] HA与胶体扩容治疗均可以改善HE评分,24 h明显改善,72 h持续改善,同时该实验证明相比于胶体,HA在改善HE分级中作用更加明显。一项随机双盲实验表明白蛋白不能提高住院期间肝性脑病的分辨率,然而,住院后生存率的差异表明,患者可能会从白蛋白治疗中获益。Riggio等 [41] 进行的一项研究目的是评估是否可以通过白蛋白输注来预防TIPS后第一个月内显性HE (II级或更高)的发生率以及改变静脉血氨和心理测试的结果,结论表明两组的存活率相似。HA输注对预防TIPS术后HE没有作用。但这项实验应用历史病例作为对照组,存在一定局限性。

3.2.3. 低钠血症

低钠血症定义为血钠 < 120 mmol/L,肝硬化中低钠血症的发生主要是容量稀释导致,其次肾功能受损及呕吐、腹泻、摄入过少、内分泌紊乱等亦可导致低钠血症发生。低钠血症与肝硬化神经系统紊乱、心脏疾病的发生密不可分。Parving等 [42] 通过对9例肝硬化患者静脉注射125I标记人血清白蛋白在注射后60 min内消失的情况,测定了白蛋白经毛细血管逃逸率,即单位时间内通过血管外空间的白蛋白质量分数。结果表明所有肝硬化患者的白蛋白经毛细血管逃逸率均显著升高。在McCormick等 [43] 的一项研究中表明静脉输注白蛋白是治疗肝硬化合并低钠血症安全有效的方法。在China等 [44] 的一项随机、多中心的实验表明静脉注射20%的HA可改善肝硬化病人低钠血症。

3.2.4. 肝硬化性心肌病

心输出量和心率增加、内脏血管扩张形成高动力循环,由于β-肾上腺能受体信号传导降低,跨膜电流和电机械耦合的改变,NO产生过多和大麻素-1受体刺激上调出现心肌收缩及舒张功能不全,导致肝硬化性心肌病。Bortoluzzi等 [45] 的一项研究表明HA对肝硬化和腹水大鼠具有积极的心肌变力作用,可抵消氧化应激和TNF-α诱导的NF-κB-iNOS通路激活和氧化应激诱导的β受体信号转导的负面影响。可能会改善肝硬化性心肌病,但目前仍缺乏大规模、多中心研究表明HA对于肝硬化性心肌病有明显益处,还有待进一步探究。

3.2.5. 门静脉血栓(Portal Vein Thrombosis, PVT)

PVT是肝硬化的常见并发症之一(在肝硬化患者中的发生率为0.6%~26%),是指发生于门静脉主干、肠系膜上静脉、肠系膜下静脉或脾静脉的血栓。PVT起病较为隐匿,可导致不良结局,包括消化道出血、肝功能持续恶化、肠道坏死等。PVT的早期诊断及治疗可提高患者的生存率及生活质量。对于急性PVT的治疗进行评估后首先要进行抗凝治疗 [46] ,同时可给予HA治疗,根据Bernardi等 [3] 的研究表明HA具有抗氧化、清除、免疫调节和内皮保护等多种特性。内皮损害在PVT形成中不可忽略,给予HA对稳定内皮,改善及预防PVT形成有重要价值,但对此目前暂无有效证据,需要大量实验证明。

综上所述HA在肝硬化代偿及失代偿治疗中扮演着极为重要的角色,Fernández等 [47] 的一项研究发现HA治疗可减轻失代偿期肝硬化患者的全身炎症和心循环功能障碍。这些影响可能是HA治疗对失代偿期肝硬化患者预后的有益影响。HA的总体功能由胶体性质和非胶体性质引起,不仅与其定量循环水平有关,还与其结构的保存有关 [48] ,在此基础上我们提出了“eAlb”概念。

4. eAlb

4.1. eAlb概念及计算

在失代偿期肝硬化,除了数量变化外,由于潜在的全身炎症和氧化应激,循环白蛋白的分子结构也会受到广泛的损害 [7] 。半胱氨酸-34残基的可逆和不可逆氧化作用,即分子的主要抗氧化部位,以及非氧化性改变,包括分子的C端和N端截短或糖基化,在晚期肝硬化中增加,并与疾病严重程度和患者预后相关。由于这些分子改变的累积,具有完整保存结构的分子的比例随着肝硬化的进展而下降 [49] 。因此,HA功能(即结合和解毒能力、抗氧化功能和螯合金属离子的能力)随着疾病严重程度的增加而下降。在S. Orsola-Malpighi大学医院进行的一项前瞻性观察性研究通过评估319例因急性失代偿期住院的肝硬化患者(伴有或不伴有ACLF和18例年龄和性别可比的代偿性肝硬化患者),在肝硬化中伴有如细菌感染、肾衰竭、腹水等并发症中检测eAlb含量下降,且较总血清白蛋白浓度(total albumin concentration, tAlb)下降更加明显,同时得出结论eAlb可以定量化,并与临床实践中常规测量的tAlb相区别。与tAlb相比,eAlb与疾病严重程度和白蛋白功能障碍的关系更密切,具有更大的预测能力。这些结果提示未来的研究评估eAlb作为预测预后和治疗反应的生物标志物 [48] 。同时该研究提出了eAlb的计算方法,根据LC-MS分析定量的天然白蛋白(Natural albumin, nAlb)的相对量和溴甲酚绿法测定的tAlb浓度估算,使用标准商用试剂盒,根据以下公式:eAlb (g/dL) = tAlb (g/dL) × nAlb (\%)/100计算,将eAlb量化更好地进行评估计算 [48] 。

4.2. 价值及期望

在肝硬化进程中随着损伤的累积,保持完整结构的HA分子的比例随着疾病的严重程度加重而下降。在日常临床实践中用标准实验室方法常规测量的白蛋白浓度为tA1b,这其中包括部分已经丧失功能的白蛋白,实际上eAlb浓度要小于测得的tAlb,这导致在治疗时未能补充足够具有完整生理功能的HA (即eAlb),从而导致治疗效果不理想。与此同时更重要的是寻找具有辅助活性的物质,HA与人体必需微量元素锌有着密切的关系。超过75%的失代偿期肝硬化患者不仅存在低蛋白血症,而且还伴有锌缺乏症,这可能是由于HA是血浆中锌的主要载体,对锌的全身分布至关重要 [50] 。因此,在补充eAlb的同时,应加用适量的锌。

5. 结论

肝硬化可出现许多严重并发症,HA在LVP、AKI、HRS-AKI、SBP治疗中应用目前已达成一致,但对于HE、腹膜外全身感染、低钠血症、肝硬化性心肌病及PVT尽管没有正式建议在治疗时使用HA,但已经有初步证据支持使用HA。在这方面应鼓励进一步研究。对于治疗时应补充足够具有完整功能HA (即eAlb)达到更好治疗效果。同时不能忘记微量元素锌的补充。

NOTES

*通讯作者。

参考文献

[1] GBD 2019 Diseases and Injuries Collaborators (2020) Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet, 396, 1204-1222.
https://doi.org/10.1016/S0140-6736(20)30925-9
[2] Quinlan, G.J., Martin, G.S. and Evans, T.W. (2005) Albu-min: Biochemical Properties and Therapeutic Potential. Hepatology, 41, 1211-1219.
https://doi.org/10.1002/hep.20720
[3] Bernardi, M., Angeli, P., Claria, J., Moreau, R., Gines, P., Jalan, R., Cara-ceni, P., Fernandez, J., Gerbes, A.L., O’Brien, A.J., Trebicka, J., Thevenot, T. and Arroyo, V. (2020) Albumin in De-compensated Cirrhosis: New Concepts and Perspectives. Gut, 69, 1127-1138.
https://doi.org/10.1136/gutjnl-2019-318843
[4] Garcia-Martinez, R., Caraceni, P., Bernardi, M., Gines, P., Arroyo, V. and Jalan, R. (2013) Albumin: Pathophysiologic Basis of Its Role in the Treatment of Cirrhosis and Its Complications. Hepatology, 58, 1836-1846.
https://doi.org/10.1002/hep.26338
[5] Bernardi, M., Moreau, R., Angeli, P., Schnabl, B. and Arroyo, V. (2015) Mechanisms of Decompensation and Organ Failure in Cirrhosis: From Peripheral Arterial Vasodilation to Systemic In-flammation Hypothesis. Journal of Hepatology, 63, 1272-1284.
https://doi.org/10.1016/j.jhep.2015.07.004
[6] Moreau, R., Jalan, R., Gines, P., Pavesi, M., Angeli, P., Cordoba, J., Durand, F., Gustot, T., Saliba, F., Domenicali, M., Gerbes, A., Wendon, J., Alessandria, C., Laleman, W., Zeuzem, S., Trebicka, J., Bernardi, M. and Arroyo, V. (2013) Acute-on-Chronic Liver Failure Is a Distinct Syndrome That Develops in Patients with Acute Decompensation of Cirrhosis. Gastroenterology, 144, 1426-1437.
https://doi.org/10.1053/j.gastro.2013.02.042
[7] Clària, J., Stauber, R.E., Coenraad, M.J., Moreau, R., Jalan, R., Pavesi, M., Amorós, À., Titos, E., Alcaraz-Quiles, J., Oettl, K., Morales-Ruiz, M., Angeli, P., Domenicali, M., Alessan-dria, C., Gerbes, A., Wendon, J., Nevens, F., Trebicka, J., Laleman, W., Saliba, F., Welzel, T.M., Albillos, A., Gustot, T., Benten, D., Durand, F., Ginès, P., Bernardi, M. and Arroyo, V. (2016) Systemic Inflammation in Decompensated Cir-rhosis: Characterization and Role in Acute-on-Chronic Liver Failure. Hepatology, 64, 1249-1264.
https://doi.org/10.1002/hep.28740
[8] Trebicka, J., Fernandez, J., Papp, M., Caraceni, P., Laleman, W., Gambino, C., Giovo, I., Uschner, F.E., Jimenez, C., Mookerjee, R., Gustot, T., Albillos, A., Bañares, R., Janicko, M., Steib, C., Reiberger, T., Acevedo, J., Gatti, P., Bernal, W., Zeuzem, S., Zipprich, A., Piano, S., Berg, T., Bruns, T., Bendtsen, F., Coenraad, M., Merli, M., Stauber, R., Zoller, H., Ramos, JP., Solè, C., Soriano, G., de, Gottardi, A., Gronbaek, H., Saliba, F., Trautwein, C., Özdogan, O.C., Francque, S., Ryder, S., Nahon, P., Romero-Gomez, M., Van Vlierberghe, H., Francoz, C., Manns, M., Garcia, E., Tufoni, M., Amoros, A., Pavesi, M., Sanchez, C., Curto, A., Pitarch, C., Putignano, A., Moreno, E., Shawcross, D., Aguilar, F., Clària, J., Ponzo, P., Jansen, C., Vitalis, Z., Zaccherini, G., Balogh, B., Vargas, V., Montagnese, S., Alessandria, C., Bernardi, M., Ginès, P., Jalan, R., Moreau, R., Angeli, P. and Arroyo, V. (2020) The PREDICT Study Uncovers Three Clinical Courses of Acutely Decompensated Cirrhosis That Have Distinct Pathophysiology. Journal of Hepatology, 73, 842-854.
https://doi.org/10.1016/j.jhep.2020.06.013
[9] Jalan, R., Schnurr, K., Mookerjee, R.P., Sen, S., Cheshire, L., Hodges, S., Muravsky, V., Williams, R., Matthes, G. and Davies, N.A. (2009) Alterations in the Functional Capacity of Albumin in Patients with Decompensated Cirrhosis Is Associated with Increased Mortality. Hepatology, 50, 555-564.
https://doi.org/10.1002/hep.22913
[10] European Association for the Study of the Liver (2018) EASL Clinical Practice Guidelines for the Management of Patients with Decompensated Cirrhosis. Journal of Hepatology, 69, 406-460.
https://doi.org/10.1016/j.jhep.2018.03.024
[11] Moore, K.P., Wong, F., Gines, P., Bernardi, M., Ochs, A., Salerno, F., Angeli, P., Porayko, M., Moreau, R., Garcia-Tsao, G., Jimenez, W., Planas, R. and Arroyo, V. (2003) The Management of Ascites in Cirrhosis: Report on the Consensus Conference of the International Ascites Club. Hepatology, 38, 258-266.
https://doi.org/10.1053/jhep.2003.50315
[12] Biggins, S.W., Angeli, P., Garcia-Tsao, G., Ginès, P., Ling, S.C., Nadim, M.K., Wong, F. and Kim, W.R. (2021) Diagnosis, Evaluation, and Management of Ascites, Spontaneous Bacte-rial Peritonitis and Hepatorenal Syndrome: 2021 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 74, 1014-1048.
https://doi.org/10.1002/hep.31884
[13] Ruiz-del-Arbol, L., Monescillo, A., Jimenéz, W., Garcia-Plaza, A., Arroyo, V. and Rodés, J. (1997) Paracentesis-Induced Circulatory Dysfunction: Mechanism and Effect on Hepatic Hemodynam-ics in Cirrhosis. Gastroenterology, 113, 579-586.
https://doi.org/10.1053/gast.1997.v113.pm9247479
[14] Ginès, P., Titó, L., Arroyo, V., Planas, R., Panés, J., Viver, J., Torres, M., Humbert, P., Rimola, A. and Llach, J. (1988) Randomized Comparative Study of Therapeutic Pa-racentesis with and without Intravenous Albumin in Cirrhosis. Gastroenterology, 94, 1493-1502.
https://doi.org/10.1016/0016-5085(88)90691-9
[15] Bernardi, M., Ricci, C.S. and Zaccherini, G. (2014) Role of Human Albumin in the Management of Complications of Liver Cirrhosis. Journal of Clinical and Experimental Hepa-tology, 4, 302-311.
https://doi.org/10.1016/j.jceh.2014.08.007
[16] Zaccherini, G., Tufoni, M., Iannone, G. and Caraceni, P. (2021) Management of Ascites in Patients with Cirrhosis: An Update. Journal of Clinical Medicine, 10, Article No. 5226.
https://doi.org/10.3390/jcm10225226
[17] Ginès, A., Fernández-Esparrach, G., Monescillo, A., Vila, C., Domènech, E., Abecasis, R., Angeli, P., Ruiz-Del-Arbol, L., Planas, R., Solà, R., Ginès, P., Terg, R., Inglada, L., Vaqué, P., Salerno, F., Vargas, V., Clemente, G., Quer, J.C., Jiménez, W., Arroyo, V. and Rodés, J. (1996) Randomized Trial Comparing Albumin, Dextran 70, and Polygeline in Cirrhotic Patients with Ascites Treated by Paracentesis. Gastroen-terology; 111, 1002-1010.
https://doi.org/10.1016/S0016-5085(96)70068-9,
[18] Sola-Vera, J., Miñana, J., Ricart, E., Planella, M., González, B., Torras, X., Rodríguez, J., Such, J., Pascual, S., Soriano, G., Pérez-Mateo, M. and Guarner, C. (2003) Randomized Trial Comparing Albumin and Saline in the Prevention of Paracentesis-Induced Circulatory Dysfunction in Cirrhotic Pa-tients with Ascites. Hepatology, 37, 1147-1153.
https://doi.org/10.1053/jhep.2003.50169
[19] Moreau, R., Valla, D.-C., Durand-Zaleski, I., Bronowicki, J.-P., Du-rand, F., Chaput, J.-C., Dadamessi, I., Silvain, C., Bonny, C., Oberti, F., Gournay, J., Lebrec, D., Grouin, J.-M., Guémas, E., Golly, D., Padrazzi, B. and Tellier, Z. (2006) Comparison of Outcome in Patients with Cirrhosis and Ascites Follow-ing Treatment with Albumin or a Synthetic Colloid: A Randomised Controlled Pilot Trial. Liver International, 26, 46-54.
https://doi.org/10.1111/j.1478-3231.2005.01188.x
[20] Hamdy, H., ElBaz, A.A., Hassan, A. and Hassanin, O. (2014) Comparison of Midodrine and Albumin in the Prevention of Paracentesis-Induced Circulatory Dysfunction in Cirrhotic Patients: A Randomized Pilot Study. Journal of Clinical Gastroenterology, 48, 184-188.
https://doi.org/10.1097/MCG.0b013e31829ae376
[21] Fagundes, C., Barreto, R., Guevara, M., Garcia, E., Solà, E., Rodríguez, E., Graupera, I., Ariza, X., Pereira, G., Alfaro, I., Cárdenas, A., Fernández, J., Poch, E. and Ginès, P. (2013) A Modified Acute Kidney Injury Classification for Diagnosis and Risk Stratification of Impairment of Kidney Function in Cirrhosis. Journal of Hepatology, 59, 474-481.
https://doi.org/10.1016/j.jhep.2013.04.036
[22] Angeli, P., Ginès, P., Wong, F., Bernardi, M., Boyer, T.D., Gerbes, A., Moreau, R., Jalan, R., Sarin, S.K., Piano, S., Moore, K., Lee, S.S., Durand, F., Salerno, F., Caraceni, P., Kim, W.R., Arroyo, V. and Garcia-Tsao, G. (2015) Diagnosis and Management of Acute Kidney Injury in Patients with Cirrhosis: Revised Consensus Recommendations of the International Club of Ascites. Journal of Hepatology, 62, 968-974.
https://doi.org/10.1016/j.jhep.2014.12.029
[23] Flamm, S.L., Wong, F., Ahn, J. and Kamath, P.S. (2022) AGA Clinical Practice Update on the Evaluation and Management of Acute Kidney Injury in Patients with Cirrhosis: Expert Review. Clinical Gastroenterology and Hepatology, 20, 2707-2716.
https://doi.org/10.1016/j.cgh.2022.08.033
[24] Velez, J.C.Q. (2022) Hepatorenal Syndrome Type 1: From Diagno-sis Ascertainment to Goal-Oriented Pharmacologic Therapy. Kidney360, 3, 382-395.
https://doi.org/10.34067/KID.0006722021
[25] Cantin, A.M., Paquette, B., Richter, M. and Larivée, P. (2000) Al-bumin-Mediated Regulation of Cellular Glutathione and Nuclear Factor Kappa B Activation. American Journal of Res-piratory and Critical Care Medicine, 162, 1539-1546.
https://doi.org/10.1164/ajrccm.162.4.9910106
[26] Ortega, R., Ginès, P., Uriz, J., Cárdenas, A., Calahorra, B., De Las Heras, D., Guevara, M., Bataller, R., Jiménez, W., Arroyo, V. and Rodés, J. (2002) Terlipressin Therapy with and without Albumin for Patients with Hepatorenal Syndrome: Results of a Prospective, Nonrandomized Study. Hepatology, 36, 941-948.
https://doi.org/10.1053/jhep.2002.35819
[27] Fernández, J., Monteagudo, J., Bargallo, X., Jiménez, W., Bosch, J., Arroyo, V. and Navasa, M. (2005) A Randomized Unblinded Pilot Study Comparing Albumin versus Hydroxyethyl Starch in Spontaneous Bacterial Peritonitis. Hepatology, 42, 627-634.
https://doi.org/10.1002/hep.20829
[28] Antoniades, C. and Auzinger, G. (2003) Terlipressin and Albumin for the Hepatorenal Syndrome. Hepatology, 37, 946.
https://doi.org/10.1053/jhep.2003.50108
[29] Wong, F., Pappas, S.C., Curry, M.P., Reddy, K.R., Rubin, R.A., Porayko, M.K., Gonzalez, S.A., Mumtaz, K., Lim, N., Simonetto, D.A., Sharma, P., Sanyal, A.J., Mayo, M.J., Frederick, R.T., Escalante, S. and Jamil, K. (2021) Terlipressin plus Albumin for the Treatment of Type 1 Hepatorenal Syndrome. New England Journal of Medicine, 384, 818-828.
https://doi.org/10.1056/NEJMoa2008290
[30] Song, D.S. (2018) Spontaneous Bacterial Peritonitis. The Korean Journal of Gastroenterology, 72, 56-63.
https://doi.org/10.4166/kjg.2018.72.2.56
[31] Maraolo, A.E., Gentile, I., Pinchera, B., Nappa, S. and Borgia, G. (2018) Current and Emerging Pharmacotherapy for the Treatment of Bacterial Peritonitis. Expert Opinion on Pharma-cotherapy, 19, 1317-1325.
https://doi.org/10.1080/14656566.2018.1505867
[32] Mattos, A.A., Wiltgen, D., Jotz, R.F., Dornelles, C.M.R., Fernandes, M.V. and Mattos, Â.Z. (2020) Spontaneous Bacterial Peritonitis and Extraperitoneal Infections in Patients with Cirrhosis. Annals of Hepatology, 19, 451-457.
https://doi.org/10.1016/j.aohep.2020.04.010
[33] Gustot, T., Felleiter, P., Pickkers, P., Sakr, Y., Rello, J., Velis-saris, D., Pierrakos, C., Taccone, F.S., Sevcik, P., Moreno, C. and Vincent, J.L. (2014) Impact of Infection on the Prog-nosis of Critically Ill Cirrhotic Patients: Results from a Large Worldwide Study. Liver International, 34, 1496-1503.
https://doi.org/10.1111/liv.12520
[34] Sort, P., Navasa, M., Arroyo, V., Aldeguer, X., Planas, R., Ruiz-del-Arbol, L., Castells, L., Vargas, V., Soriano, G., Guevara, M., Ginès, P. and Rodés, J. (1999) Effect of Intravenous Albumin on Renal Impairment and Mortality in Patients with Cirrhosis and Spontaneous Bacterial Peritonitis. New England Journal of Medicine, 341, 403-409.
https://doi.org/10.1056/NEJM199908053410603
[35] Chen, T.-A., Tsao, Y.-C., Chen, A., Lo, G.-H., Lin, C.-K., Yu, H.-C., Cheng, L.-C., Hsu, P.-I. and Tsai, W.-L. (2009) Effect of Intravenous Albumin on Endotoxin Removal, Cy-tokines, and Nitric Oxide Production in Patients with Cirrhosis and Spontaneous Bacterial Peritonitis. Scandinavian Journal of Gastroenterology, 44, 619-625.
https://doi.org/10.1080/00365520902719273
[36] Aithal, G.P., Palaniyappan, N., China, L., Härmälä, S., Macken, L., Ryan, J.M., Wilkes, E.A., Moore, K., Leithead, J.A., Hayes, P.C., O’Brien, A.J. and Verma, S. (2021) Guidelines on the Management of Ascites in Cirrhosis. Gut, 70, 9-29.
https://doi.org/10.1136/gutjnl-2020-321790
[37] Piano, S. and Angeli, P. (2021) Bacterial Infections in Cirrhosis as a Cause or Consequence of Decompensation? Clinics in Liver Disease, 25, 357-372.
https://doi.org/10.1016/j.cld.2021.01.006
[38] Wong, Y.-J., Qiu, T.-Y., Tam, Y.-C., Mohan, B.P., Gallegos-Orozco, J.F. and Adler, D.G. (2020) Efficacy and Safety of IV Albumin for Non-Spontaneous Bacterial Peritonitis Infection among Patients with Cirrhosis: A Systematic Review and Meta-Analysis. Digestive and Liver Dis-ease, 52, 1137-1142.
https://doi.org/10.1016/j.dld.2020.05.047
[39] Casulleras, M., Flores-Costa, R., Duran-Güell, M., Alcaraz-Quiles, J., Sanz, S., Titos, E., López-Vicario, C., Fernández, J., Horrillo, R., Costa, M., de, la, Grange, P., Moreau, R., Arroyo, V. and Clària, J. (2020) Albumin Internalizes and Inhibits Endosomal TLR Signaling in Leukocytes From Patients with Decompensated Cirrhosis. Science Translational Medicine, 12.
https://doi.org/10.1126/scitranslmed.aax5135
[40] Jalan, R. and Kapoor, D. (2004) Reversal of Diuretic-Induced Hepatic Encephalopathy with Infusion of Albumin but Not Colloid. Clinical Science, 106, 467-474.
https://doi.org/10.1042/CS20030357
[41] Riggio, O., Nardelli, S., Pasquale, C., Pentassuglio, I., Gioia, S., Onori, E., Frieri, C., Salvatori, F.M. and Merli, M. (2016) No Effect of Albumin Infusion on the Prevention of Hepatic Enceph-alopathy after Transjugular Intrahepatic Portosystemic Shunt. Metabolic Brain Disease, 31, 1275-1281.
https://doi.org/10.1007/s11011-015-9713-x
[42] Parving, H.-H., Ranek, L. and Lassen, N.A. (1977) Increased Transcapillary Escape Rate of Albumin in Patients with Cirrhosis of the Liver. Scandinavian Journal of Clinical and La-boratory Investigation, 37, 643-648.
https://doi.org/10.3109/00365517709100658
[43] McCormick, P.A., Mistry, P., Kaye, G., Burroughs, A.K. and McIntyre, N. (1990) Intravenous Albumin Infusion Is an Effective Therapy for Hyponatraemia in Cirrhotic Patients with Ascites. Gut, 31, 204-207.
https://doi.org/10.1136/gut.31.2.204
[44] China, L., Freemantle, N., Forrest, E., Kallis, Y., Ryder, S.D., Wright, G., Portal, A.J., Becares Salles, N., Gilroy, D.W. and O’Brien, A. (2021) A Randomized Trial of Albumin Infusions in Hospitalized Patients with Cirrhosis. New England Journal of Medicine, 384, 808-817.
https://doi.org/10.1056/NEJMoa2022166
[45] Bortoluzzi, A., Ceolotto, G., Gola, E., Sticca, A., Bova, S., Morando, F., Piano, S., Fasolato, S., Rosi, S., Gatta, A. and Angeli, P. (2013) Positive Cardiac Inotropic Effect of Albumin Infu-sion in Rodents with Cirrhosis and Ascites: Molecular Mechanisms. Hepatology, 57, 266-276.
https://doi.org/10.1002/hep.26021
[46] Martens, K., McMurry, H.S., Koprowski, S., Hum, J., Haraga, J., Jou, J.H. and Shatzel, J.J. (2022) Anticoagulation in Cirrhosis: Evidence for the Treatment of Portal Vein Thrombosis and Appli-cations for Prophylactic Therapy. Journal of Clinical Gastroenterology, 56, 536-545.
https://doi.org/10.1097/MCG.0000000000001713
[47] Fernández, J., Clària, J., Amorós, A., Aguilar, F., Castro, M., Casulleras, M., Acevedo, J., Duran-Güell, M., Nuñez, L., Costa, M., Torres, M., Horrillo, R., Ruiz-Del-Árbol, L., Villanueva, C., Prado, V., Arteaga, M., Trebicka, J., Angeli, P., Merli, M., Alessandria, C., Aagaard, N.K., Soriano, G., Durand, F., Gerbes, A., Gustot, T., Welzel, T.M., Salerno, F., Bañares, R., Vargas, V., Albillos, A., Silva, A., Mo-rales-Ruiz, M., Carlos, García-Pagán, J., Pavesi, M., Jalan, R., Bernardi, M., Moreau, R., Páez, A. and Arroyo, V. (2019) Effects of Albumin Treatment on Systemic and Portal Hemodynamics and Systemic Inflammation in Patients with De-compensated Cirrhosis. Gastroenterology, 157, 149-162.
https://doi.org/10.1053/j.gastro.2019.03.021
[48] Baldassarre, M., Naldi, M., Zaccherini, G., Bartoletti, M., An-tognoli, A., Laggetta, M., Gagliardi, M., Tufoni, M., Domenicali, M., Waterstradt, K., Paterini, P., Baldan, A., Leoni, S., Bartolini, M., Viale, P., Trevisani, F., Bernardi, M. and Caraceni, P. (2021) Determination of Effective Albumin in Pa-tients with Decompensated Cirrhosis: Clinical and Prognostic Implications. Hepatology, 74, 2058-2073.
https://doi.org/10.1002/hep.31798
[49] Baldassarre, M., Domenicali, M., Naldi, M., Laggetta, M., Giannone, F.A., Biselli, M., Patrono, D., Bertucci, C., Bernardi, M. and Caraceni, P. (2016) Albumin Homodimers in Patients with Cir-rhosis: Clinical and Prognostic Relevance of a Novel Identified Structural Alteration of the Molecule. Scientific Reports, 6, Article No. 35987.
https://doi.org/10.1038/srep35987
[50] Grüngreiff, K., Gottstein, T., Reinhold, D. and Blindauer, C.A. (2021) Al-bumin Substitution in Decompensated Liver Cirrhosis: Don’t Forget Zinc. Nutrients, 13, Article No. 4011.
https://doi.org/10.3390/nu13114011